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1 INTRODUCTION AND MOTIVATION

1 Introduction and Motivation

The application domains of cyber-physical systems (CPS) as envisaged in UnCoVerCPS ex-

hibit three main modeling challenges: 1) Their structure is networked either by coupling of

the dynamic behavior of subsystems, or by communication of joint goals or specifications. 2)

The interaction among the subsystems, or the interaction of the CPS with the environment

evolves over time, such that not all conceivable situations can be considered at design time,

but the procedures of control and verification must rely on models which are adapted at

runtime based on current measurements. 3) The dynamics is only suitably modeled if the in-

tertwined behavior of continuous or hybrid plant dynamics with the digital and discrete-time

signal processing and algorithms for control and verification is considered.

Given the project ambition to provide online procedures for control and verification, the

requirement of being applicable in real-time calls for specific routines to handle the complexity

of a general CPS model which accounts for all these challenges. According to the general

philosophy of UnCoVerCPS, the use of approximated models (e.g. to enable online control

synthesis) is justified, if they are complemented by analysis techniques relying on the original

or abstracted models, such that desired system properties like stability or safety can be

guaranteed.

These considerations led us to: (1.) introducing a general model class for CPS, which

comprises model components to account for the above challenges and thus serves as a com-

prehensive modeling framework for the developments in UnCoVerCPS, (2.) covering a set of

methods to modularize, abstract, or approximate the general model format to the purpose of

conformance testing, verification, and control design, each one of these objectives calling for

an appropriate treatment so as to obtain a model that is consistent with its intended use, (3.)

evaluating the various modeling and model transformation procedure for different instances

of the project case studies.

By these developments, the state-of-the-art in modeling CPS is advanced with respect to:

� a new model definition which combines hybrid dynamics with a communication struc-

ture and time-varying state constraints (invariants and guards),

� a new modeling procedure for conformance monitors which enable the verification of

conformance between abstract and concrete systems,

� a new technique for reducing the dimension of the continuous state space for continuous-

time switched affine systems (in the context of probabilistic verification),
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1 INTRODUCTION AND MOTIVATION

� a model reduction scheme for discrete-time piecewise affine systems such that the input-

ouput behavior is preserved for verification,

� and techniqes of model-approximations to represent CPS with switched inputs, or time-

varying state constraints respectively, in a form which is amenable to techniques of

online optimizing control.

The deliverable is organized as follows: The general model structure for hybrid networked

CPS is presented in Section 2, including a paragraph describing how the model format can

be translated into the language of SpaceEx, one of the central verification tools of the project.

In Section 3, a conformance monitor for model-to-model conformance testing is presented,

which relates two models of the same system on different abstraction levels. Model reduction

techniques of affine systems for probabilistic verification and of piecewise affine systems for

preserving the input/output relation are described and illustrated via some numerical exam-

ples in Section 4. Model approximation of the general CPS into modular nonlinear or hybrid

automata with time-varying constraints and affine dynamics as a suitable basis for online

control synthesis is covered in Section 5 (including also examples of application to robot

modeling and automated vehicles). The deliverable concludes with a summary in Section 6.
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

2 General Model Structure for Hybrid Networked CPS

With the ubiquity of information technology, the complexity of systems has dramatically

increased due to the number of embedded computing, communication, and sensing devices.

The term cyber-physical systems (CPS) has become a common one in this context [41],

whereas the definitions of this model class differs among different sources. The common

understanding is, however, that CPS combine a physical system part (exhibiting continuous

or hybrid dynamics) with digital computing devices, and networking aspects arising from

communication networks or coupling of subsystem dynamics. The model definition used in

this section stems from the interpretation that CPS can be understood as the extension of

hybrid dynamic systems [5, 4, 35, 44] to a notion of inputs/outputs to model the interaction

and communication of subsystems – this point of view is, of course, not unique but in line

with a series of previous work. The closest definition in this context is the one in [46], which

defines hybrid I/O automata. We extend this model to a more general definition which:

� comprises time-varying components, in particular time-varying invariants and guard

(as suitable to account for changing restrictions imposed by connected subsystems),

� includes a network of time-varying topology to represent the flow of information between

the local controllers of the subsystems.

Due to the different methodical developments based on this model, we describe versions in

discrete and continuous time, and show for a simple system [48] how the continuous time

version can be represented in the verification tool SpaceEx [25].

2.1 Model Definition

The overall model structure considered in this section is shown in Fig. 1. The model comprises

N subsystems (with index i ∈ {1, . . . , N}), each of which consists of a plant part and a

controller part. The plant parts can affect each other through input and output variables,

while the subsystem controllers can exchange information through a communication network.

The transmitted information may refer to momentary information of the states or control

actions, or to predicted / planned behavior over a future time horizon. In general, the

interaction of controlled subsystems in a CPS can be classified into and modeled by:

� coupling of the dynamics of the plants given by the occurrence of output (and/or input)

variables in the differential / difference equations of another subsystem;
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

� restriction of a subsystem behavior through constraints which are derived from the

outputs or states of another subsystem (e.g. an autonomous vehicle must not enter a

region around another vehicle);

� the control objectives, which may establish a competition (if the subsystems follow only

their own local goals) or cooperation (e.g. if a global cost function is minimized, as in

the case of distributed MPC).

The set of case studies considered in the project require that the subsystem interaction can

be modeled in a time-varying manner. For each of the three named types of subsystem

interaction, a time-varying directed graph is an appropriate means to represent the presence

and direction of an effect between any pair of subsystems. Let G(tk) = (V (tk), E(tk)) denote

a graph established at time tk taken from a discrete time domain TG = {t0, t1, . . .}, modeling

times in which the graph is modified. The set of vertices V (tk) = {1, . . . , N(tk)} represents

the subsystems existing in the overall structure from time tk up to tk+1. The set E(tk) of

directed edges (i, j) ∈ E(tk) for i 6= j, {i, j} ⊆ V (tk) models the existence of a link from

subsystem i to subsystem j in this direction. Such a graph is suitable to establish the system

topology by considering an edge (i, j) to model the effect of an output of subsystem i on

the dynamics of subsystem j, or to represent that subsystem i imposes constraints on the

behavior of the subsystem j, or to indicate that a path of communication exists from i to j.

In order to encode the information transmitted along a link, an edge (i, j) ∈ E(tk) can be

annotated with the specific information transmitted (or imposed) by the sending (or affecting)

subsystem.

If an edge (i, j) ∈ E(tk) represents the transmission of information, the communication

may itself be subject to dynamic behavior modeling imperfect exchange of information. In

this case, the delay of communication, or the loss of packets are typically considered, i.e. an

edge (i, j) is attributed by a function modeling how sent information is transformed into the

received information over time. Such modeling concepts have been extensively studied in the

field of networked control systems in the past decade, but are not the focus of UnCoVerCPS.

The modeling and design of the subsystem controllers is content of WP2, and are thus

described in detail in the corresponding deliverables of that work package. The focus of

the following description is instead the modeling of the plant parts of the subsystems. As

mentioned above, the objective is to provide a modeling scheme for hybrid, time-varying,

interacting subsystem dynamics. To comply with the requirements for the various case studies

and methods for control and verification, definitions with continuous and discrete time domain
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

Plant i− 1 Plant i Plant i+ 1

Controller i− 1 Controller i Controller i+ 1

Communication Network

Figure 1: Networked system structure of the CPS.

are covered. Throughout the definitions, the index i ∈ {1, . . . , N} indicates the subsystem.

Definition 1. Continuous-time plant of a CPS subsystem

The continuous-time dynamics of the plant of subsystem i consists of the following elements:

� a domain of continuous time T ⊂ R
≥0 on which the time variable t is defined;

� a domain Tk = {t0, t1, t2, ...} of discrete points of time tk ∈ R
≥0 in which the discrete

state changes;

� the hybrid state space X i := Zi ×Xi is the Cartesian product of:

– the set Zi of discrete states zik ∈ Zi,

– and the continuous state space Xi ⊆ R
nc,i on which xi(t) ∈ Xi is defined;

the hybrid state is denoted by si =




zi

xi



;

� the hybrid input space U i := V i × U i as the Cartesian product of:

– the set V i of discrete inputs vik ∈ V i,

– and the space U i ⊆ R
mc,i of continuous inputs ui(t) ∈ U i;

the hybrid input vector is denoted by as wi =




vi

ui



 ∈ U i;

� an output space Y i ⊆ R
q,i on which yi(t) is defined;

� a time-dependent invariant set Ii
zi
(t) ⊆ Xi for any discrete state zi ∈ Zi;
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

� a discrete state transition function f id : Tk × Zi × V i ×Xi → Zi;

� a time-dependent guard set Gi
zi,z̄i

(t) ⊆ Xi for any transition between a pair zi, z̄i ∈ Zi

of discrete states;

� a continuous state jump function jic : Tk ×Xi × Zi × Zi → Xi;

� the continuous state dynamics f ic : T ×Xi × U i × Zi → Xi, defining the right-hand

side of a set of ordinary differential equations for the continuous state xi(t);

� an output function gi : T ×Xi × Zi → Y i.

Definition 2. Semantics of the continuous-time plant of a CPS subsystem

For the model according to Def. 1, assume that:

� the time domains T and Tk are bounded with the same limits t0 and tf ,

� an initial state si0 =




zi0

xi(t0)



, zi0 ∈ Z
i, xi(t0) ∈ Xi is given,

� a discrete input sequence φiv = {vi0, ..., v
i
k , ...} with vik = vi(tk) ∈ V i, tk ∈ Tk and a

continuous input trajectory ui(t) ∈ U i, t ∈ T is specified.

Then, the trajectories xi(t), yi(t) for t ∈ T and zi(tk) for tk ∈ Tk are called an ’admissible

run’, iff the following applies:

1. continuous state progress for t ∈ [tk, tk+1[ by solution of ẋi(t) = f ic(t, x
i(t), ui(t), zik)

starting from x(tk):

xi(t−k+1) := xi(tk) +

∫ tk+1

tk

f ic(τ) dτ

where xi(τ) ∈ Ii
zi(tk)

(t) must apply for all τ ∈ [tk, tk+1[ and x
i(t−k+1) denotes the left-

hand time limit limǫ→0 x
i(tk+1 − ǫ);

2. discrete state transition: if x(t−k+1) ∈ Gi
zi(tk),zi(tk+1)

(t−k+1) applies at time tk+1, the

hybrid state si(tk+1) = (zi(tk+1), x
i(tk+1))

T follows from:

� zi(tk+1) := f id(tk+1, z
i
k, v

i
k+1, x

i(t−k+1))

� xi(tk+1) := jic(tk+1, x
i(t−k+1), z

i
k, z

i
k+1) ∈ Ii

zi(tk+1)
(tk+1)

3. system output: yi(t) = gi(t, xi(t), zik) for t ∈ [tk, tk+1].

The input and output vectors in this model definition can be related to a graph G(tk),

as introduced above. The graph specifies which components the vectors wi(t) and yi(t)
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xi(tk)

xi(t−k+1)
xi(tk+1)

Gi
zi(tk),zi(tk+1)

(t)
ui(t)

yi(t)

transition

with v(tk+1) applied

Ii
z(tk+1)

(t)

zik

zik+1

Figure 2: Admissible Run of a continuous time CPS.

include within the time interval [tk, tk+1]. For simplicity of exposition, this functionality is

not explicitely formulated in Def. 1. Note that the discrete input vi(tk) selects the discrete

state which is reached upon a transition. Figure 2 shows exemplarily the evolution of the

subsystem around one transition.

As a frequently-used step in control design (for instance when resorting to model predic-

tive control), the approximation of a continuous-time model by a discrete-time substitute is

important. Thus, we next define a variant of the CPS, in which all time-depending com-

ponents are defined on a common discrete time-domain. Procedures for approximating the

ordinary differential equations in Def. 1 by difference equations for a given (fixed or variable)

sampling time are ample.

Definition 3. Discrete-time plant of a CPS subsystem

The discete-time model consists of the following elements:

� the discrete time-domain Tk = {t0, t1, t2, ...} with tk ∈ R
≥0;

� the hybrid state space X i := Zi ×Xi as in Def. 1, but si =




zi

xi



 defined only for the

time in Tk;

� the hybrid input space U i := V i × U i also as in Def. 1, but wi =




vi

ui



 ∈ U i defined on

Tk;

� an output space Y i ⊆ R
q,i on which yi(tk) is defined;

� a time-dependent invariant set Ii
zi
(tk) ⊆ Xi for all states zi ∈ Zi;

� a discrete state transition function f id : Tk × Zi × V i ×Xi → Zi as in Def. 1;
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

� a time-dependent guard set Gi
zi,z̄i

(tk) ⊆ Xi for any transition between two discrete

states;

� a continuous state jump function jic : Tk ×Xi × Zi × Zi → Xi;

� the continuous state dynamics f ic : Tk ×Xi×U i×Zi → Xi, specifying the right-hand

side of a set of difference equations for the continuous state xi(tk);

� the output function gi : Tk ×Xi × Zi → Y i.

The dynamic evolution of this model is:

Definition 4. Semantics of a discrete-time plant of a CPS subsystem

Given the system according to Def. 3 and:

� a bounded domain Tk = {t0, . . . , tf},

� an initial state si(t0) =




zi0

xi(t0)



, zi0 ∈ Zi, xi(t0) ∈ X
i,

� a input sequences φiv = {vi0, ..., v
i
k , ...} with vik = vi(tk) ∈ V i, tk ∈ Tk as well as

φiu = {ui0, ..., u
i
k , ...} with ui(tk) ∈ U i.

The discrete-time trajectories φix = {xi0, ..., x
i
k , ...} with xik = xi(tk), φ

i
z = {zi0, ..., z

i
k, ...} with

zik = zi(tk), and φ
i
y = {yi0, ..., y

i
k, ...} with yik = yi(tk) determine an ’admissible run’, iff for

any tk ∈ Tk applies:

1. continuous state progress: x̃ik+1 = f ic(k, x
i
k, u

i
k, z

i
k) such that x̃ik+1 ∈ Ii

zi
(tk);

2. discrete state transition: if x̃(tk+1) ∈ Gi
zi(tk),zi(tk+1)

(tk) applies at time tk+1, the hybrid

state si(tk+1) = (zi(tk+1), x
i(tk+1))

T follows from:

� zi(tk+1) := f id(tk+1, z
i
k, v

i
k+1, x̃

i(tk+1)),

� xi(tk+1) := jic(tk+1, x̃
i(tk+1), z

i
k, z

i
k+1) ∈ Ii

zi(tk+1)
(tk+1);

3. system output: yi(tk) = gi(tk, x
i(tk), z

i
k).

The selection of components of ui(tk) and yi(tk) by a time-depending graph to model

time-dependent subsystem interaction applies likewise as commmented for the continuous-

time version of the CPS model.
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2.2 Realization in SpaceEx

The model definitions provided before establish a quite general class of networked, time-

varying, and hybrid models. The specific models of the case studies used in UncoVerCPS

determine (and the methods developed in the project require) different sub-classes of this

general model. In order to illustrate the definition for a simple example, and in particular to

sketch how one model instance can be represented in the main verification tool of the project

(SpaceEx, see [20]), a particular version of a bouncing ball model is briefly described in this

subsection. SpaceEx, which was reported on in the earlier project deliverable D5.1, is an

efficient and scalale tool to compute reachable sets for monolithic hybrid systems. Coupling

to other subsystems can be considered in terms of disturbances of the subsystem dynamics.

We first consider a case of just one subsystem which is not affected by other, coupled

subsystems. A bouncing ball obviously has hybrid dynamics, since a bouncing event resets

the velocity (v(t)) of the ball discontinuously, while the height over ground (h(t)) changes

continuously over time. Let the ball (i = 1) be modeled by a continuous state vector x1(t) :=

(h1(t), v1(t))T, with uncertain initialization of the height h1(0) ∈ [10, 10.2] and v1(0) = 0.

Let the flight phase be modeled by one discrete state (z11) with the normalized continuous

dynamics:

ḣ1(t) = v1(t), v̇1(t) = −1,

and an invariant I1
z1

= [0, 2]×[−10, 10]. The discrete state has a self-loop transition (modeling

the bouncing) which is bound to the guard set G1
z1,z1

= [0, 0] × [−10, 0] and to which the

following jump is associated:

h1(tk) := h1(t−k ), v
1(tk) := −0.75 · v1(t−1

k ).

This model can be straighforwardly represented in SpaceEx, and the left part of Fig. 3 shows

the reachable set computed by the tool for the named configuration.

Next, assume that the ball is affected by an input w1(t) ∈ [−0.05, 0.05], interpreted as

a disturbance for wich the bounds are known. For this case, the continuous dynamics is

extended to:

ḣ1(t) = v1(t), v̇1(t) = −1 + w1(t), (1)

and the corresponding reachable set for the height as obtained by SpaceEx is shown in the

right part of Fig. 3.

Now, in order to consider a model with time-varying components, assume a variant of

the model with time-varying guard set. As sketched in Fig. 4, this scenario may be obtained
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2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS

Figure 3: Reachable set of the height h1(t) of the bouncing ball over time for the case without

disturbance (left) and with disturbance (right).

m1

k

Initial time t0

Impuls input

Zero altitude

tk

Figure 4: Ball bouncing on a ground with varying height over time.

when the ball hits a plate fixed on top of a spring. This system is naturally modeled by

two subsystems, one representing the ball and one the plate with spring. When bouncing,

the ball imposes an impulse on the plate, leading to its oscillation. On the other hand,

the plate height determines a time-varying guard for the self-loop transition in the subsystem

modeling the ball. For the case that the jump function associated to this transition is specified

as v1(tk) := −0.75 ∗ v1(t−k ), the following figures 5 and 6 show the evolution of the height of

the ball and the plate.

2.3 Conclusion

The type of model introduced in Sec. 2.1 combines hybrid dynamics with a modular and

networked system structure, and time-variance of several system components. Thus, it in-

cludes the model characteristics of the case studies of UnCoVerCPS, and can be seen as an

Deliverable D1.2 – Report on modelling of networked cyber-physical system
for verification and control

14 of 84



2 GENERAL MODEL STRUCTURE FOR HYBRID NETWORKED CPS
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Figure 5: Height h1(t) of the ball over time.
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Figure 6: Height h2(t) of the board over time.

envelope of the types of models underlying the different methods developed in the project.

With respect to the techniques of model abstraction and approximation to be reported in the

upcoming sections, the following specific instances of the general model are considered:

� Sec. 3 refers to a concrete model with continuous-time continuous dynamics which can

be considered either as the composition of a set of plant subsystems (i ∈ {1, . . . , N}),

or as a single subsystem without coupling, but subject to inputs ui; the same section

furthermore considers abstracted models (the conformance monitors) with hybrid hy-

brid time-invariant dynamics, where differential equations are replaced by differential

inclusions;

� Sec. 4.2 uses again monolithic systems with hybrid dynamics specified as continuous-

time switched affine systems, in which switching is triggered endogenously in time-

invariant manner;

� Sec. 4.3 is focused on hybrid dynamics given as mixed-logical dynamic systems (i.e. an

alternative representation of piecewise affine systems) formulated in discrete-time;

� Sec. 5.1 considers networked CPS, in which the subsystem plant dynamics is mod-

eled by nonlinear differential equations and is subject to time-varying state constraints

communicated by interacting subsystems;

� finally, Sec. 5.2 also starts from nonlinear continuous-time dynamics subject to varying

constraints imposed by other subsystems, and it derives time-varying discrete-time

linearizations for different modes.

These model instances as well as the abstracted / approximated substitutes are defined in

more detail in the respective sections and illustrated for examples.
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3 Conformance Monitors for Model-To-Model Conformance

3.1 Introduction

In this section, we present results from Task 1.2: “Abstraction and refinement of hybrid

system models.” Here, the goal is to relate two models of the same system on different

abstraction levels: we will in the following refer to an abstract model and a concrete model.

In an industrial development process, abstract models are first built to verify high-level

properties and these models are then concretized step by step into implementations.

For example, abstract models of controllers are typically continuous-time and continuous-

value models, abstracting away from the execution platform. Also, for a first analysis of

a controller, certain aspects of the physical or software environment of the system under

design may be neglected. In practice, these abstract models are usually simulated, and also

sometimes used for systematic controller design. Since, in the end, an actual implementation

of the controller is needed, it is highly desirable to be able to transfer properties shown on

the abstract system to the concrete one.

Within Task 1.2, we looked at this problem from a formal standpoint, doing conformance

verification. In particular, we deal with the question how conformance between models on

different abstraction levels can be shown formally, while, in contrast, the preceding Deliver-

able 5.2 used conformance testing only for the two use cases on automated driving and wind

turbine control. Since, for these use cases, we do not have models on different abstraction

levels at our disposal which are amenable to formal methods, the methods presented in the fol-

lowing were validated on a Bosch example: the experimental electro-mechanical brake (EMB)

system, which is described in detail in [62, 24]. For this system, there are two controller

abstraction levels available: an abstract level with a time-continuous idealized controller and

a concrete level with a fixed-rate discrete-time controller.

As a tool for the formal conformance verification, we employed SpaceEx. The basic idea

of the approach is to model the conformance relation as a conformance monitor which runs

in parallel in SpaceEx with the concrete model of the system. The monitor checks if the

generated traces are also permitted under the abstract system, and goes to an error state if

this is not the case. The verification task then becomes to show that these error states are

unreachable, proving conformance between the models. These conformance monitors comple-

ment the requirement monitors that were defined in Deliverable 1.1: instead of monitoring

the fulfillment of a temporal property, they monitor the fulfillment of a conformance property

to another model. In order to show conformance, we in fact show that the abstract system
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can trace every step taken by the concrete system.

3.2 Related Work

The work provided in this section is in part also inspired by the ModelPlex approach by

Mitsch et al. [49]. In contrast to ModelPlex, which concentrates on conformance monitoring

for online monitoring, our approach is presented here for the offline case, i.e., the monitor

is run in SpaceEx, but not in the actual control software. Therefore, we can not only check

the currently observed concrete trajectory, but instead all possible trajectories at once, via

reachability analysis.

A common approach to related formal models of the same system in a formal manner is

based on the notion of simulation, for example as described in [63]. A generalization of this

is the notion of approximate simulation, as proposed in [29, 30], where simulation relations

are only required to hold with some tolerance parameters. This is particularly useful if

safety properties are to be shown. Since, in this section, we are not only interested in safety

properties in the context of this deliverable, we choose a different approach, showing trace

inclusion instead of approximate simulation. For the same reason, we do not employ our own

concept of reachset conformance [59], as it is also tailored to showing safety properties of

systems.

A detailed survey of different conformance notions and conformance checking approaches

will be included in Deliverable 1.3 “Conformance Testing in the Development Process” by

the conclusion of UnCoVerCPS.

3.3 Model-To-Model Conformance

Let C be the concrete (continuous) model, given by an initial set XC(0) and a differential

equation:

ẋ(t) = f(x(t), u(t)), (2)

and let A be the abstract (continuous) model, given by an initial set XA(0) and a differential

inclusion:

ẋ(t) ∈ g(x(t), u(t)) ⊕ V(t). (3)

Here, u(t) is the time-dependent input to both models, assumed to be taken from some set

U of possible input signals, i.e., ∀t : u(t) ∈ U . The time-variant set V(t) is added to the

right hand side of a differential equation, turning it into a differential inclusion with several

possible state derivatives per input-state pair. This non-determinism will be used to enclose
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the behaviors of the concrete model in the set of behaviors of the abstract model. Here, the

operator ⊕ represents the Minkowski sum:

x⊕ V := {x+ v | v ∈ V}. (4)

Note that we are restricting ourselves to a time-dependent additive uncertainty V(t) here,

because this is what is currently supported by the tool SpaceEx. In the general case, we

could write ẋ(t) ∈ G(x(t), u(t)) as a general differential inclusion. To simplify the discussion,

we first restrict ourselves to purely continuous models. In the following discussions, we will

then also look at the case when the concrete system has a discrete-time controller instead.

The example application in Sec. 3.4 then also has a discrete-time controller, turning the

concrete system into a sampled-data control loop.

Given two models above, the task is to show that C is trace conformant to A. We define

trace conformance as follows:

Definition 5 (Trace conformance). Let TraceC(u) be the set of traces generated by C under

input signal u, and let TraceA(u) be the set of traces generated by A under input signal u. C

is trace conformant to A, if for all u ∈ U we have TraceC(u) ⊆ TraceA(u).

This means that all behaviors of C can also be observed in A, guaranteeing the transfer-

ence of linear temporal logic (LTL, [56]) properties from A to C, i.e. all LTL properties that

hold on all traces of A can also be shown on to hold on all C. In general, LTL covers the vast

majority of functional requirements that are relevant in industrial practice. This enables us

to use a (possibly simpler or more general) model A for verifying properties of the system.

These properties are then guaranteed to also hold for C.

3.3.1 Conformance Relation as a Hybrid Automaton

For continuous systems, trace conformance can be proven by:

1. showing that XC(0) ⊆ XA(0) (Property 1), and

2. showing that the condition f(x(t), u(t)) ∈ g(x(t), u(t)) ⊕ V(t) holds for all times t and

all pairs (x(t), u(t)), x(t) ∈ Reacht(C, u) (Property 2),

where Reach t(C, u) is the set containing all reachable states x of C at time t, under the

input signal u. The conditions above can be viewed as a special kind of simulation relation

between the two systems: all trajectory segments of C can be generated by A as well. For

the purpose of this deliverable we assume that the state variables and inputs of A and C

are identical – this restriction can also be lifted by providing a mapping between the input
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and state spaces of A and C. The first property is a set inclusion and can be easily checked.

The second property can be checked by successively checking the condition on the computed

reachable sets ReachI(C, u) for time intervals I = [ti, ti+1]. This check can also be translated

to a monitor automaton consisting of two discrete states:

� one state “conf” with no invariant

� one fault state “notconf” with no invariant

and one transition from “conf” to “notconf” with guard f(x, u) /∈ g(x, u)⊕V(t). This monitor

automaton is meant to be composed in parallel with C, checking the conformance of C and

A via reachable set computation. In this case, the absence of traces leading to “notconf”

would prove conformance. This is sound, but due to the overapproximative reachable set

computation not complete.

3.3.2 Example

In the following, we give a simple example to illustrate the approach. Its application to a

more complex system is then described in Section 3.4.

Consider the following differential equations for the concrete model C

ẋ(t) = f(x(t)) = aC · x(t) (5)

with aC = −1, and the abstract model A

ẋ(t) ∈ g(x(t)) ⊕ V = aA · x(t)⊕ [ṽmin, ṽmax] (6)

with aA = −0.99. The analytical solution of C is x(t) = x0 · e
aC t. Furthermore we assume

that, in both models, x is limited by −1 ≤ x ≤ 1. Thus, the abstract model ẋ(t) = aA ·x(t)⊕

V(t) is trace conformant to the concrete model C if the uncertainty V(t) = [ṽmin, ṽmax] =

[−0.01, 0.01] for all t. Figure 7 shows the conformance monitor as a hybrid automaton in

SpaceEx. The two transitions from state “conf” to state “notconf” capture the case that

f(x) − g(x) /∈ V(t) (negation of Property 2). For numerical reasons, the theoretical limits

ṽmin and ṽmax of the conformance monitor have to be extended by the parameter ǫ, arriving

at vmin = ṽmin − ǫ and vmax = ṽmax + ǫ.

By choosing ǫ = 10−9 and constraining the initial state to −1 ≤ x(0) ≤ 1 for our

example, the state “notconf” cannot be reached. Figure 8 shows the reachable set (initial

state −1 ≤ x(0) ≤ 1) of the concrete model C and the abstract model ẋ(t) = aA · x(t)⊕V(t)

for a time horizon of 10s.
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Figure 7: Conformance monitor as a hybrid automaton in SpaceEx of the example

Figure 8: Overlay of the reachable set of the concrete model C (blue) and the abstract model A

(green)

In a next step, we extend the conformance monitor by a time-discretization of the concrete

model. This is supposed to reflect the fact that the physical quantities of the concrete system

can only be observed at discrete points in time, with a certain fixed rate. As a consequence, we

also only execute the monitor when new data is available. To this end, we use an estimated

derivative ẋ based on the observations, by using linear interpolation. Figure 9 shows the

discretized version of the conformance monitor for our example. The transition to the state

conf updates the variable xprevious with respect to the synchronization label tic, thus reflecting

the discrete update of values in concrete implementations of a system.

Here, a parallel automaton generates the synchronization label tic with a strict period

sampling (not shown in Figure 9). The transitions from state “conf” to state “notconf”
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capture the negation of Property 2. In contrast to the continuous conformance monitor,

the guards of both transitions contain the interpolated derivative with respect to the period

sampling.

Figure 9: Time discretized version of the example’s conformance monitor

3.4 Conformance Monitors for the Experimental Electro-Mechanical Brake

Example

The system under consideration is an experimental electro-mechanical brake (EMB) with a

closed-loop controller, which has been described in detail in [62]. We use a simplified model

of physics and controller, which has also been used in [24]. This model consists of a brake

system with a brake caliper, which is brought into contact with a brake disk via an electrical

engine. This engine is controlled by applying an appropriate current to the engine. The

goal here is to study the effects of time discretization on controller performance. We do this

by deriving an abstract model A that does not explicitly contain a discretized controller,

but instead over-approximates possible discretization effects by an uncertainty V(t), and by

relating it to a concrete model C containing a discrete-time controller.

The challenges faced are twofold: a) deriving an abstract model A for which the system

requirement still holds, and b) implementing a conformance monitor of the trace conformance

relation and using it to prove that C is indeed trace conformant to A. As outlined above, this
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proof is conducted by showing that non-conformant states are unreachable in C. Together,

this implies that C also fulfills the requirement.

3.4.1 Plant Dynamics and Controller Model

The idealized plant model is as follows:

İ(t) = f(I(t), U(t)) =
1

L
·

(

−R+
K ·K

drot

)

· I(t) +
1

L
· U(t) (7)

ẋ(t) = h(I(t)) =
K

i · drot
· I(t) (8)

Here, x is the position of the brake caliper, I is the electric current in the electrical engine

moving the caliper, and U is the voltage that is set by the controller. All other symbols

represent physical constants which concrete values are summarized in Table 1 (see [62] for a

detailed description). The controller we use is a simple P-controller with

U(t) = kP (x0 − x(t)), (9)

where kP is the controller parameter, and the target position x0 is an input to the system.

x0 is the desired position of the brake caliper, representing the point where contact is made

with the brake disk. After a brake request has been registered, controller (9) is supposed to

control the position, smoothly steering it towards the position were brake disk and caliper

make contact. As soon we have reached a certain distance to this point, a second controller

(not modeled here) would take over, slowly moving the caliper onto the disk and subsequently

controlling the brake force.

The requirement we focus on is the following condition: x(t) should reach x0 = 0.05dm

within 20ms with a precision of 4% (i.e., x = 0.048dm). This means that our controller needs

at most 20ms until it can hand over to the second controller, with a position within 4% of

x0.

Both the concrete model C and the abstract model A are derived from the dynamics

above. Note that both plant models and the continuous controller are hybrid systems in the

sense of Definition 2 of Section 2.1. Since we use SpaceEx, which only allows for continuous-

time modeling, the discrete-time controller used in C is also modeled as a continuous-time

hybrid system. It can also be expressed as a discrete-time system according to Definition

3 of Section 2.1. The concrete closed-loop model C is then a sampled-data system: the

controller equation is computed every ∆ seconds, whereas the dynamics for x and I are still

time-continuous. As can be seen in the following, this leads to a faster response as in the

idealized model above. This is due to the strong controller response in the beginning, which

is held for a longer time due to the sample-hold controller.

Deliverable D1.2 – Report on modelling of networked cyber-physical system
for verification and control

22 of 84



3 CONFORMANCE MONITORS FOR MODEL-TO-MODEL CONFORMANCE

Parameter Value

sampling conformance monitor 0.2ms

sampling controller 1.0ms

x0 0.05dm

kP 75

R 0.5

L 10−3

K 0.02

drot 0.1

i 113.1167

Table 1: Overview of the concrete parameter values used in the EMB system

Formally, the concrete model is:

İ(t) = f(I(t), U(t)) =
1

L
·

(

−R+
K ·K

drot

)

· I(t) +
1

L
· U(t) (10)

ẋ(t) = h(I(t)) =
K

i · drot
· I(t) (11)

U(t) = kP (x0 − x(t̃)), (12)

where t̃ = max{∆n | n ∈ N,∆n <= t} is the time of the last discrete sampling and with

sampling time ∆.

Figures 10 and 11 show simulation runs of the idealized model without uncertainties versus

the concrete model C. Figure 10 gives the caliper position over time, while Figure 11 shows

the electric current. As can be seen here, the sampled-data controller in C results in faster

convergence of x(t) to the target position x0 = 0.05, while the signal I(t) is close to being

piecewise constant, with fast changes at the sampling points and near constant behavior in

between.

The abstract model is derived from the idealized model by including additive, time-variant

uncertainties to the differential equations. The model then becomes:

İ = f(I, U) =
1

L
·

(

−R+
K ·K

drot

)

· I +
1

L
· U ⊕ VI(t) (13)

ẋ = h(I) =
K

i · drot
· I ⊕ Vx(t) (14)

U(t) = kP (x0 − x(t)) (15)

The intervals VI(t) and Vx(t) are given in Table 2. Note that the uncertainties are chosen

to become progressively smaller over time, as the effect of the time discretization error on
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the derivatives decreases as the control error gets smaller. This means that the uncertainty

actually has the characteristic of a multiplicative error – as SpaceEx can only deal with

additive errors at present, we model the uncertainty as a time dependent, decreasing additive

error instead. The SpaceEx plant model for the system A is given in Figure 12.

Figure 10: x-position over time. The red line indicates the parameters of the related requirement.
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Figure 11: Current I over time.
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Figure 12: Conformant plant model of the EMB with switched uncertainties.
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Time interval for t in ms Interval Vx(t) Interval VI(t)

[0, 0.2] [0, 1.33 · 10−2] [−3712.21, 0]

(0.2, 4.0] [−3.7065 · 10−3, 1.05 · 10−5] [75.33025, 1039.45905]

(4.0, 8.0] [−1.4637 · 10−3, 1.05 · 10−6] [21.6885, 410.403]

(8.0, 10] [−4.305 · 10−4, 1.05 · 10−6] [11.6318, 118.1208]

(10,∞) [−2.268 · 10−4, 1.05 · 10−6] [0.148865, 63.3696]

Table 2: Resulting uncertainty intervals of the EMB with continuous P control.

The interval bounds were determined by a combination of random search and interval

bound minimization. First, we identified the range for the candidate interval bounds based

on simulations. We then used random search combined with binary search to explore the

Pareto front of possible uncertainties with successive SpaceEx calls, checking whether the

“notconf” state of the conformance monitor (see Figure 13) was reachable. A call to SpaceEx

using a small flowpipe tolerance took around 150s on an Intel Xeon Workstation, whereas

for initial exploration higher tolerance are reasonable. The result is then a set of possible

Pareto-optimal uncertainties for which “notconf” is not reachable. Note there is a Pareto

front of uncertainties because the distribution of uncertainties between Vx(t) and VI(t) is not

unique – these are degrees of freedom in defining the abstract model A. Pareto-optimal here

then means that there is no other possible abstract system with strictly smaller intervals

that is also conformant. Which model on the Pareto front to choose is then dependent on

the properties to be shown on abstract model A. We picked one point on the Pareto front,

leading to the uncertainties given in Table 2. Computing the reachable set for the resulting

model shown in Figure 12 took around 8500s with the result shown in Figure 14. Figure 14

shows the upper and lower bounds of the reachable set on the position x(t) as black lines.

What can be seen here is that under this abstraction, the requirement can not quite be

shown (x = 0.048 is reached around 22.5ms instead of 20ms). The reason for the slower

dynamics on x(t) that are also included in the reachset lies in the fact that the dynamics

for I(t) also need to be conservatively over-approximated. The over-approximation for I(t)

also contains uncertainties that can make the dynamics of I(t) slower and consequently also

the dynamics of x(t). One solution to this may be an automatic exploration of the Pareto

front, searching for an abstract model A for which the requirements is fulfilled. Due to the

long computation times in SpaceEx we did not run a systematic analysis of this type. Failing

this, either the requirement or the controller itself must be changed. The controller could be

made more aggressive by increasing the constant kP . The requirement could also be relaxed
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by increasing the time bound or by increasing the tolerance band around x0. This second

changed would mean that the force controller that takes over once we are close to x0 must

be prepared to deal also with slightly smaller positions x(t) upon being activated.
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Figure 13: Excerpt of the switched conformance monitor for the EMB in SpaceEx.
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Figure 14: Upper and lower bound of the reachable set of the EMB with uncertainties (cf. Figure

12). The red line indicates the parameters of the related requirement.

3.5 Conclusions

In this work, we showed that SpaceEx can in principle be used to relate controller models

on different abstraction levels, containing different implementation effects. By showing non-

reachability of non-conformant states, conformance can be shown. As an extension to the

monitor automata for temporal requirements, as proposed in Deliverable 1.1, it is now also

possible to treat conformance to an abstract model as a requirement within SpaceEx. While

this has proven a difficult task – meaningful abstractions for cyber-physical systems that are

also formally stringent are hard to find – we succeeded in applying this method to an example

exhibiting some characteristics of automotive control loops. In practice, the presented work

can reduce the time to verify a variant of a system considerably since one only has to check

conformance between the abstract and the concrete model of the new variant, rather than

checking all requirements on the new variant again. For instance, a controller solutions can be

instantiated with different sampling rates or embedded into different scheduling algorithms,

without the need to re-verify all requirements if conformance to an abstract model is shown.

On top of this, conformant abstract models of control loops are also useful for analyzing

interactions between different controllers that for example have been designed independently

by different departments, and where the complexity of the concrete models would be too

difficult to handle.

Note that the work on conformance testing in Deliverable 5.2 does, in contrast, focus on
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the testing aspect, when the concrete system can only be observed through measurements.

Similar ideas about how to identify a suitable abstract model were applied there, replacing

the formal analysis of SpaceEx by individual tests.
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4 Model Reduction and Approximation for Verification

4.1 Introduction

This section addresses the design of an approximate model for a hybrid system (see e.g. [47,

38, 60, 31, 32, 57, 29]). The study of hybrid systems is typically challenging since they are

characterized by intertwined continuous and discrete dynamics, [43]. Indeed, many problems

that have been solved for purely discrete or purely continuous systems still lack an effective

solution for hybrid systems. In particular, this is the case for the design of a reduced model.

We shall consider the problem of approximating a system so as to mimic its input/out

put behavior. This is of interest when dealing with verification of properties that depend on

the behavior of the system output. Verification of properties related to the system response,

like, e.g., safety and reach/avoid properties, is typically addressed in the literature through

reachability analysis methods in both the deterministic, [65, 28, 23, 40], and the stochastic, [1,

2], settings. These methods scale unfavorable with the dimension of the continuous state space

component, with an exponential dependence if they do resort to gridding like [1, 2]. One can

then conceive a two-step procedure where an approximate abstraction with a reduced order

continuous state space component is built first, and then a numerical verification method is

applied to this abstraction in place of the original system.

We do address model reduction in this section for the class of hybrid systems that are

characterized by different affine dynamics, each one associated with a mode that depends

on the value taken by the state of the system. This class of systems naturally arise as

models in various application contexts and can also be adopted as approximate models for

classical nonlinear systems, given that a smooth nonlinear function can be approximated

with arbitrary accuracy by a piecewise linear function if an appropriately fine partition of its

domain is taken, [61]. Various analysis and control problems have been studied for this class

of systems, which are characterized by significant modeling capabilities, despite their simple

description via affine equations and constraints, which typically simplifies analysis and design

problems. Here, we shall focus on the recent developments within UnCoVerCPS on model

reduction in both continuous and discrete time in Subsections 4.2 and 4.3, respectively. The

presented work has appeared in [52] and [70].
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4.2 Model Reduction of Switched Affine Systems for Probabilistic Verifi-

cation

We focus on continuous-time Switched Affine (SA) systems with endogenous switching, and

address the problem of obtaining a model that is simpler to analyze than the original system,

and that is able to mimic its output behavior over a finite horizon T . When the input

signal of the system is stochastic, the notion of approximate simulation introduced in [38] for

stochastic hybrid systems [45] can be used to quantify the model performance over the output

realizations. A randomized approach for assessing the performance of a given abstracted

model according to this notion was proposed in [57]. The approach also extends to model

design. However, no constructive procedure is given on how to select and parameterize the

model class. On the contrary, in this paper we provide a constructive procedure to build an

approximate model of a SA system in the form of a reduced order Switched Linear (SL) system

with appropriately defined state reset maps. The SA system is first rewritten as a SL one

with state reset, and then Balanced Truncation (BT) [6] is adopted for reducing the order

of the linear dynamics governing the evolution of the continuous state component in each

mode. State reset maps are suitably redefined accounting for the mismatch in the continuous

state vectors associated with different modes. A randomized method is also proposed to

determine the order of the reduced linear dynamics in each mode, while accounting for the

effect of discrete transitions and state resets on the hybrid system evolution. The overall

methodology is extended to the case when a Dwell Time (DT) is present.

Note that BT is applied to switched linear systems in [55] which however deals with

the case of externally induced switching. Our approach is inspired by [47] which uses BT

for hybrid systems with linear dynamics and endogenous switching. The main advances

with respect to [47] are: 1) the extension to the class of SA systems, 2) the introduction of

novel state reset maps that provide better performance than the one adopted in [47], and of

variants of these maps able to preserve continuity. Correspondingly, different initializations

of the approximate model are derived based on the same logic underlying the reset maps

definition, 3) the introduction of a randomized approach to select the order of the reduced

linear dynamics in each mode, when the input is stochastic, and 4) the extension to the

case of SA systems with DT. As a matter of fact, mode transitions and resets may strongly

affect the system evolution. Indeed, the state reset map determines the new value of the

continuous state after a discrete transition between modes has just occurred; while for a

linear asymptotically stable system the contribution of the initial state becomes negligible

in the long run, in a SA system this is generally not the case. One would in fact need to
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guarantee that the time between discrete transitions is sufficiently large to make the zero-input

response (ZIR) vanish, which cannot be guaranteed a-priori, unless a suitable DT triggering

the discrete transitions is enforced.

The choice of the order of the approximate model should then account for the influence

of the state reset map on the quality of the approximation. Hence it cannot be based only on

the analysis of the Hankel Singular Values (HSVs) of the linear dynamics in each mode, as

suggested in [47]. The proposed randomized approach serves this purpose, since it accounts

for the hybrid evolution of the candidate approximate model including mode transitions and

resets. The quality of the approximation is determined also by the domains triggering the

mode transitions of the SA system. Notably, redesigning the domains is quite a complex

issue, [27], and it is not addressed in this paper but left for further investigation.

The scope of this work does not include the problem of minimal realization. To the

best of our knowledge, minimal realization theory has been mainly developed for linear and

bilinear switched and hybrid systems with externally induced switching, while it is still an

open problem for continuous-time hybrid systems with endogenous switching [53].

4.2.1 Switched affine systems modeling framework

A SA system is an instance of a hybrid system, whose dynamics are characterized through

a discrete state component qa (mode) taking values in Q = {1, 2, . . . ,m} and a continuous

component ξa ∈ Ξa = R
n evolving according to affine dynamics that depend on the value

taken by qa. The output ya ∈ Ya = R
p of the systems is an affine function of the state and of

the input u ∈ U = R
m that depends on qa as well. The continuous dynamics of a SA system

within a given mode qa ∈ Q are given by

Sa :







ξ̇a(t) = Aqaξa(t) + Bqau(t) + fqa

ya(t) = Cqaξa(t) + gqa .

(16)

Assumption 1. For any i ∈ Q, matrix Ai is Hurwitz, (Ai,Bi) is controllable, and (Ai, Ci)

is observable.

As for the discrete state evolution, a collection of polyhedra {Doma,i ⊆ Ya × U, i ∈ Q}

is given, which covers the whole set Ya × U , i.e., ∪i∈QDoma,i = Ya × U . Doma,i is defined

through ri linear inequalities, i.e., Doma,i = {(ya, u) ∈ Ya × U : Gya
i ya + Gu

i u ≤ Gi}, with

Gya
i ∈ R

ri×p, Gu
i ∈ R

ri×m and Gi ∈ R
ri .

Mode i ∈ Q is active as long as (ya, u) keeps evolving within Doma,i and a transition to

mode j 6= i ∈ Q occurs as soon as (ya, u) exits Doma,i and enters into Doma,j (endogenous

switching).
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Assumption 2. The switched affine system (16) admits a unique solution from any initial

state.

Note that the considered switched system can be rephrased in the hybrid automata

framework described in [64], where a precise notion of execution is given and conditions

for well-posedness (existence and uniqueness) are mentioned. Moreover, if the collection

{Doma,i, i ∈ Q} is a polyhedral subdivision of Ya × U1, then the SA system reduces to a

standard piecewise affine system.

Remark 1. If the transition condition depends on the state ξa, then one can include ξa as

output variable to get back to the considered modeling framework where domains are defined

as a function of the output (and input).

4.2.2 System reduction based on balanced truncation

The proposed procedure unfolds into the following steps: 1) the SA system is rewritten as a

SL system with state reset; 2) a reduced order model of the SL system is introduced by first

applying BT to the continuous dynamics in each mode, and then introducing appropriate

maps for the reset of the reduced continuous state component when a mode transition occurs;

3) the output of the SA system is reconstructed based on the reduced SL system output.

1) Reformulation as a SL system with state reset: We next build a SL system with

state reset that is equivalent to the original SA system, in that (ξa, qa) and ya can be recovered

exactly from the state and output variables of the SL system.

Let y ∈ Y = Ya, and ξ ∈ Ξ = Ξa evolve according to linear dynamics that depend on the

operating mode q ∈ Q as follows:

S :







ξ̇(t) = Aqξ(t) + Bqu(t)

y(t) = Cqξ(t)

(17)

Set ȳa,q = Cq ξ̄a,q+gq, where ξ̄a,q = −A−1
q fq, with Aq invertible by Assumption 1. A transition

from mode i ∈ Q to mode j ∈ Q occurs as soon as (y + ȳa,i, u) exits Domi and enters Domj,

where Domq = Doma,q, q ∈ Q.

When a discrete transition from mode i ∈ Q to mode j ∈ Q occurs at time t−, then, ξ is

reset as follows

ξ(t) = ξ(t−) + ∆ξ
ji, with ∆ξ

ji = ξ̄a,i − ξ̄a,j . (18)

1This requires that each polyhedron Doma,i is of dimension p+m, and the intersection Doma,i ∩Doma,j ,

i 6= j, is either empty or a common proper face of both polyhedra.
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Proposition 1. Suppose that the SA and SL systems are initialized with initial conditions

ξa(0), qa(0), and ξ(0) = ξa(0) − ξ̄a,qa(0), q(0) = qa(0), respectively, and are both fed by the

same input u(t), t ∈ [0,T ]. Then, the executions of ξa, qa and ya over [0,T ] can be recovered

from those of ξ, q and y as follows:

qa(t) = q(t),

ξa(t) = ξ(t) + ξ̄a,q(t), (19)

ya(t) = y(t) + ȳa,q(t).

Remark 2. The reset condition (18) is such that ξa reconstructed from ξ according to (19)

is continuous. Continuity of ξa is generally not guaranteed if ξ is approximated through a

reduced order model of the SL system.

2) Reduction of the SL system: A reduced order model of the SL system with state reset

defined above can be obtained by applying BT with the state residualization approach [6], to

each single linear dynamics in (17). If the mode of the system were fixed, then, BT would be

effective in reproducing the response y, at least in the long run, when the ZIR has vanished.

We associate with each mode q ∈ Q a reduced model of order nr,q < n:

Sr :







ẋr,q(t) = Ar,qxr,q(t) +Br,qu(t)

ŷ(t) = Cr,qxr,q(t) +Dr,qu(t)

(20)

and define transitions between modes, say from mode i to mode j, by evaluating when

(ŷ + ȳa,i, u) exits from domain Domi and enters into Domj. Indeed, ŷ + ȳa,i represent the

output ya reconstructed using (19). As for the state reset map (18) associated with a mode

transition from i ∈ Q to j ∈ Q, we shall reformulate it as

xr,j(t) = Ljixr,i(t
−) +Mjiu(t

−) +Nji∆
ξ
ji, (21)

where xr,i(t
−) ∈ R

nr,i is the value of the reduced state in mode i, prior to the transition to

mode j, xr,j(t) ∈ R
nr,j is the updated reduced state value, and Lji, Mji, Nji are matrices of

appropriate dimensions. In Section 4.2.3, we present different methods to define them.

3) Reconstruction of the SA system output: The output of the SA system is recon-

structed based on (19) using the output ŷ of the SL reduced system as an estimate of the

output y of the SL system. This leads to

ŷa(t) = ŷ(t) + ȳa,q(t). (22)
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4.2.3 State reset maps: alternative choices

In this section we introduce different reset maps that can be used for the approximate model.

The choice of the reset map is of utter importance, since it strongly affects the quality of the

approximated solution.

Preliminary definitions: Consider a transition from mode i ∈ Q to mode j ∈ Q. One

can determine an expression for ξ̂j , representing the SL system state associated with mode j

as reconstructed from the reduced state xr,i.

Recall first that ξ̂i can be obtained by applying the balanced transformation matrix Ti

to the reconstructed continuous state x̂i of the SL system, i.e., ξ̂i = T−1
i x̂i. In turn, x̂i can

be reconstructed as x̂i =
[

x′r,i x
′
nr,i

]′
, where xnr,i is the part of the state that is neglected

in the reduced model (20), and that can be recovered as a function of xr,i and u by as-

suming an equilibrium condition in the original not-reduced linear dynamics (BT with state

residualization) [6]. This leads to:

x̂i = Hixr,i +Kiu,

where Hi and Ki are suitable defined matrices [51]. Plugging the expressions of ξ̂i and x̂i

into (18), yields

ξ̂j(t) = ξ̂i(t
−) + ∆ξ

ji (23)

= T−1
i Hi xr,i(t

−) + T−1
i Ki u(t

−) + ∆ξ
ji.

We next shall define the reset maps for the state of the reduced SL system when a mode

transition occurs from i ∈ Q at time t− to j ∈ Q at time t.

SR map – a reset map based on state reconstruction: The State Reconstruction-

based reset map (SR map for brevity) was proposed in [47] and relies on the following idea:

reconstruct the whole state x̂j(t) in balanced form and then extract its first nr,j components

corresponding to the reduced order state in mode j. In formulas, xr,j(t) = Enr,j
x̂j(t), where

Enr,j
is a matrix that extracts the first nr,j rows from x̂j(t), nr,j being the dimension of xr,j

in mode j. Now, x̂j(t) can be obtained as x̂j(t) = Tj ξ̂j(t). Plugging the expression of xr,j(t)

into the expression of x̂j(t), and using (23), we finally obtain

xr,j(t) = Enr,j
Tj

(

T−1
i Hixr,i(t

−) + T−1
i Kiu(t

−) + ∆ξ
ji

)

. (24)

Matrices Lji, Mji, and Nji can be obtained by direct comparison with (21). According to a

similar reasoning, the system is initialized as follows

qr(0) = qa(0) = q0, xr,q0(0) = Enr,q0
Tq0

(
ξa(0)− ξ̄a,q0

)
,
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with the understanding that (ya(0), u(0)) is an interior point of Doma,q0 , for any admissible

u(0).

OG map – a reset map to reproduce the output ZIR: Model reduction techniques

for asymptotically stable linear systems aim at finding a model that best reproduce the forced

response of the system, while neglecting the ZIR. However, in SA systems, the system response

depends on the mode transitions, which, in turn, depends on the continuous output behavior

(forced plus ZIR). We here introduce a reset map that minimizes the L2-norm of the error

when reproducing the ZIR of the output y. As we shall see next, its expression depends on

the Observability Gramians (OG) of the linear systems associated with the different modes.

In formulas, we set xr,j = Ψj ξ̂j and choose Ψj so as to minimize

J(Ψj) =
∫ +∞
0 ‖yzir,j(t)− ŷzir,j(t)‖

2 dt, (25)

where yzir,j and ŷzir,j respectively denote the ZIR of the original linear dynamics (17) initial-

ized with ξ̂j and that of the reduced order dynamics (20) initialized with xr,j = Ψj ξ̂j . The

solution to this optimization problem can be found analytically as shown in Proposition 2,

which proof can be found in [51].

Proposition 2. Suppose that the reduced order model (20) with q = j is observable. Then,

matrix Ψ⋆
j minimizing (25) for any ξ̂j is given by Ψ⋆

j = W−1
r,o,jW×,j, where

Wr,o,j =
∫ +∞
0 (eAr,jt)′C ′

r,jCr,je
Ar,jt dt

W×,j =
∫ +∞
0 (eAj t)′C′

jCr,je
Ar,jt dt.

Remark 3. Note that the observability assumption in Proposition 2 is satisfied under mild

conditions as detailed in [6].

Matrix Wr,o,j can be obtained by solving the Lyapunov equation

Ar,jWr,o,j +Wr,o,jA
′
r,j + C ′

r,jCr,j = 0,

while matrix W×,j is the solution to the Sylvester equation

A′
r,jW×,j +W×,jAj + C ′

r,jCj = 0.

Now, plugging the expression (23) for ξ̂j(t) into xr,j = Ψj ξ̂j and setting Ψj = Ψ⋆
j , we get

xr,j(t) = Ψ⋆
j

(

T−1
i Hixr,i(t

−) + T−1
i Kiu(t

−) + ∆ξ
ji

)

(26)

Matrices Lji, Mji, and Nji can be obtained by direct comparison of with (21). As for the

system initialization, we set

qr(0) = qa(0) = q0, xr,q0(0) = Ψ⋆
q0

(
ξa(0)− ξ̄a,q0

)
. (27)
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Instead of considering an infinite horizon when evaluating the ZIR output error, one can take

into account the switching nature of the system and consider the error only during the finite

horizon [0, τ ]. Correspondingly, the error function to be minimized becomes

Jτ (Ψ
τ
j ) =

∫ τ

0 ‖yzir,j(t)− ŷzir,j(t)‖
2 dt.

The resulting optimal Ψτ⋆
j matrix is given by Ψτ⋆

j = W−1
r,o,j(τ)W×,j(τ), where

Wr,o,j(τ) =
∫ τ

0 (e
Ar,jt)′C ′

r,jCr,je
Ar,jt dt

W×,j(τ) =
∫ τ

0 (e
Aj t)′C′

jCr,je
Ar,jt dt.

The proof of this result is analogous to that in the infinite horizon case. Still, observability of

the reduced order model (20) with q = j is required for Wr,o,j to be invertible and Remark 3

applies.

The finite horizon quantities involved in the expression of Ψτ⋆
j can be computed as

Wr,o,j(τ) =Wr,o,j −
∫ +∞
τ

(eAr,jt)′C ′
r,jCr,je

Ar,jt dt

=Wr,o,j −W
(τ,∞)
r,o,j ,

W×,j(τ) =W×,j −
∫∞
τ

(eAjt)′C′
jCr,je

Ar,jt dt

=W×,j −W
(τ,∞)
×,j ,

where W
(τ,∞)
r,o,j and W

(τ,∞)
×,j can be obtained as the solution of the Lyapunov and Sylvester

equations

Ar,jW
(τ,∞)
r,o,j +W

(τ,∞)
r,o,j A′

r,j +
(
eAr,jτ

)′
C ′
r,jCr,je

Ar,jτ = 0,

A′
r,jW

(τ,∞)
×,j +W

(τ,∞)
×,j Aj +

(
eAr,jτ

)′
C ′
r,jCje

Ajτ = 0.

Note that well-posedness of the above equations is guaranteed by the fact that Aj and Ar,j

are Hurwitz.

The matrices in the reset map (21) and the system initialization are analogous to the case

of infinite horizon, but with Ψτ⋆
j in place of Ψ⋆

j .

The choice for τ depends on the settling times of the different mode dynamics. A sensible

choice is to set τ equal to the settling time of the neglected dynamics.

To distinguish between the two OG reset maps, we shall refer to the one with the infinite

horizon as OG∞ and the one with finite horizon [0, τ ] as OGτ .

Variants that preserve the output continuity In certain application contexts, it may

be desirable to preserve the continuity of the output of the original system. This is not guar-

anteed when adopting the reset maps defined above and motivates the derivations hereafter.
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To get continuity, the value of the output ŷa(t) reconstructed based on (22) before and

after the reset should be identical. This leads to the following equation

Cr,jxr,j(t) +Dr,ju(t) + ȳa,j = Cr,ixr,i(t
−) +Dr,iu(t

−) + ȳa,i.

Under the assumption that the input u is a continuous signal, and letting ∆y
ji = ȳa,i − ȳa,j,

this simplifies to

Cr,jxr,j(t) = Cr,ixr,i(t
−) + (Dr,i −Dr,j)u(t

−) + ∆y
ji.

The values of xr,j(t) that satisfy the above condition can be expressed as xr,j(t) = x̃r,j(t)+wj ,

with

x̃r,j(t) = C†
r,j

(

Cr,ixr,i(t
−) + (Dr,i −Dr,j)u(t

−) + ∆y
ji

)

where C†
r,j is the pseudo-inverse of Cr,j and wj ∈ R

nr,j is in the null space of Cr,j, here

denoted as ker(Cr,j). If ker(Cr,j) 6= {0}, we have some degrees of freedom to spend and we

can choose wj so that the resulting value for xr,j(t) best matches some given reference value

x̄r,j(t). If instead ker(Cr,j) = {0}, then, wj = 0, and the reset matrices are derived by a

direct comparison with (21).

Let us consider now the case when ker(Cr,j) 6= {0}. If we let {v1, v1, . . . , vnv,j
} be a basis

of ker(Cr,j), and set Vj =
[
v1 v2 . . . vnv,j

]
, then, wj = Vjα with α ∈ R

nv,j and we can select

α by solving the least squares problem

α⋆ = argmin
α

‖x̃r,j(t) + Vjα− x̄r,j(t)‖,

which leads to α⋆ = V †
j x̄r,j(t), since it holds that V †

j C
†
r,j = 0. We then finally have:

xr,j(t) = x̃r,j(t) + VjV
†
j x̄r,j(t), (28)

which, depending on the chosen x̄r,j(t) leads to different expressions for the matrices Lji,Mji,

and Nji in the reset map (21).

If we adopt the expression in the SR map (24) for x̄r,j(t), then we can define the Con-

tinuous State Reconstruction-based reset map (CSR map). If we instead set x̄r,j(t) equal to

the OG∞ map expression (26), we obtain the Continuous Observability Gramian-based map

with infinite horizon (COG∞ map). Analogously, we can define the Continuous Observability

Gramian-based map with finite horizon [0, τ ] (COGτ ).

As for the initialization, q(0) = qa(0) = q0, whereas the value for xr,q0(0) is obtained

by setting the value of the output ŷa(0) reconstructed based on (22) equal to that of ya(0)

obtained based on the system initialization. This leads to the following equation

Cr,q0xr,q0(0) +Dr,q0u(0) + ȳa,q0 = ya(0),
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where ya(0) is given by the initial conditions of the system, i.e., ya(0) = Cqaξa(0) + gq0 .

From this equation, by following similar steps than those used for deriving (28), we get

that

xr,q0(0) =







x̃r,q0(0), ker(Cr,j) = {0}

x̃r,q0(0) + Vq0V
†
q0x̄r,q0(0), ker(Cr,j) 6= {0},

where we set x̃r,q0(0) = C†
r,q0(−Dr,q0u(0) − ȳa,q0 + ya(0)), and x̄r,q0(0) is the initialization of

the SR, OG∞, or OGτ reset map.

4.2.4 A randomized method for order selection

In [47], following an approach that is quite standard for linear systems [6], a threshold value

γ is chosen, and the order of the reduced SL system (20) in mode q ∈ Q is set equal to

nr,q = min{i ∈ {1, 2, . . . , n} : ψq(i) < γ}, (29)

where ψq : {1, 2, . . . n} → [0, 1) is given by ψq(i) = 1 −
∑i

j=1 σj,q/
∑n

j=1 σj,q, σ1,q ≥ σ2,q ≥

· · · ≥ σn,q being the HSVs of the SL system dynamics (17) in mode q.

Our goal here is to introduce a sound method for making an appropriate selection of

the threshold value γ, when the input u is stochastic and one has to verify a property that

depends on the behavior of the SA system output ya along a finite time horizon T . For

the resulting stochastic hybrid system and its executions to be well-defined according to the

notion in [37], we shall assume in the following that input u is a white noise with a given

power spectral density.

A randomized method for order selection is proposed, which involves feeding the candidate

reduced order models and the system with the same realizations of the stochastic input and

comparing their outputs over T . If the number of realizations is appropriately chosen, then

the quality of the model assess over them generalizes to the unseen instances, except for a set

of a-priori defined probability ǫ. Notably, this can be reinterpreted as an ǫ-robust assessment

result.

Let us denote by Γ the (finite) set of possible threshold values γ, those that result in a

different choice for {nr,q, q ∈ Q}, and by ŷγa the estimate of ya obtained through the reduced

SL system when the threshold value is set equal to γ.

The approximation error can be quantified through a function dT (·, ·) that maps each

pair of trajectories ya(t), t ∈ T , and ŷγa(t), t ∈ T , into a positive real number dT (ya, ŷ
γ
a) that

represents the extent to which the output ya of the SA system differs from its estimate ŷγa
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along the time horizon T . Function dT (·, ·) satisfies dT (ya, ŷ
γ
a) = 0 if γ = 0, since in that

case no reduction is performed and, hence, ŷγa(t) = ya(t), t ∈ T .

In order to make an appropriate selection of γ, we adopt the notion of approximate simu-

lation in [38, 3, 26, 57] to assess the quality of the reduced order model with threshold value

γ. This involves computing the maximal value ρ⋆γ taken by dT (ya, ŷ
γ
a) over all realizations of

the stochastic input u(t) and the (possibly) stochastic initialization ξa(0) of the SA system,

except for a set of probability at most ǫ ∈ (0, 1). An ‘optimal’ value for γ can then be chosen

by inspecting the values of ρ⋆γ as a function of γ ∈ Γ and selecting the appropriate compromise

between quality of the approximation and tractability of the resulting reduced order model.

More precisely, we introduce the following family of chance-constrained optimization prob-

lems (CCPs) parametrized by γ ∈ Γ:

CCPγ :min
ρ
ρ (30)

subject to: P{dT (ya, ŷ
γ
a) ≤ ρ} ≥ 1− ǫ.

By directly inspecting the solution of (30) as a function of γ, one can then select the ap-

propriate compromise between accuracy and simplicity of the model, respectively expressed

through ρ⋆γ , and nr,q, q ∈ Q, in (29).

Remark 4. As argued in [3], the directional Hausdorff distance dT (ya, ŷ
γ
a) = supt∈T infτ∈T ‖ya(t)−

ŷγa(τ)‖ is a sensible choice for dT (ya, ŷ
γ
a) when performing probabilistic verification, e.g., when

estimating of the probability that ya will enter some set within T .

Solving CCPs like (30) is known to be difficult, and even NP-hard in some cases, [15].

We then head for an approximate solution where instead of considering all the possible re-

alizations for the stochastic uncertainty, we consider only a finite number N of them called

“scenarios”, extracted at random, and treat them as if they were the only admissible uncer-

tainty instances. This leads to the formulation of Algorithm 1, where the chance-constrained

solution is determined based on the extracted scenarios and a empirical violation parameter

η ∈ (0, ǫ). Notably, in Proposition 3 it is proven that, if the number N of extractions is

appropriately chosen, the obtained estimate of ρ⋆γ is chance-constrained feasible, uniformly

with respect to γ ∈ Γ, with a-priori specified (high) probability. The proof of Proposition 3

can be found in [51], and rests on results from the scenario approach [16, 15].

Proposition 3. Select a confidence parameter β ∈ (0, 1), and an empirical violation param-

eter η ∈ (0, ǫ). If N satisfies

∑⌊ηN⌋
i=0

(
N
i

)
ǫi(1− ǫ)N−i ≤ β

|Γ| , (31)
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Algorithm 1

1: extract N realizations of the stochastic input u(i)(t), t ∈ T , i = 1, 2, . . . , N , and N

samples of the initial condition ξa(0)
(i), i = 1, 2, . . . , N , and let k = ⌊ηN⌋;

2: for all γ ∈ Γ do

2.1: determine the N realizations of the output signals y
(i)
a (t) and ŷ

γ,(i)
a (t), t ∈ T ,

i = 1, 2, . . . , N , when the SL system and the reduced order model with parameter

γ are fed by the extracted u(i)(t);

2.2: compute ρ̂(i) := dT (y
(i)
a , ŷ

γ,(i)
a ), i = 1, 2, . . . , N , and determine the indexes

{h1, h2, . . . hk} ⊂ {1, 2, . . . , N} of the k largest values of {ρ̂(i), i = 1, 2, . . . , N}

2.3: set ρ̂⋆γ = maxi∈{1,2,...,N}\{h1,h2,...,hk} ρ̂
(i).

where |Γ| denotes the cardinality of Γ, then, the solution ρ̂⋆γ , γ ∈ Γ, to Algorithm 1 satisfies

P{dT (ya, ŷ
γ
a) ≤ ρ̂⋆γ} ≥ 1− ǫ, ∀γ ∈ Γ, with probability at least 1− β.

If we discard the confidence parameter β for a moment, this proposition states that for

any γ ∈ Γ, the randomized solution ρ̂⋆γ obtained through Algorithm 1 is feasible for the

chance-constrained problem (30). As η tends to ǫ, ρ̂⋆γ approaches the desired optimal chance

constrained solution ρ⋆γ . In turn, the computational effort grows unbounded since N scales

as 1
ǫ−η

, [15], therefore, the value for η depends in practice from the available computational

resources. As for β, one should note that ρ̂⋆γ is a random quantity that depends on the ran-

domly extracted input realizations and initial conditions. It may happen that the extracted

samples are not representative enough, in which case the size of the violation set will be larger

than ǫ. Parameter β controls the probability that this happens and the final result holds with

probability 1− β. N satisfying (31) depends logarithmically on |Γ|/β, [15], so that β can be

chosen as small as 10−10 (and, hence, 1− β ≃ 1) without growing significantly N .

Interestingly, the guarantees provided by Proposition 3 are valid irrespectively of the

underlying probability distribution of the input, which may even not be known explicitly,

e.g., when running Algorithm 1 with collected time series as realizations of the stochastic

input u.

Remark 5. Note that even in the case of stable continuous dynamics, switching can produce

unstable behaviors. However, if some reduced order model presents an unstable behavior,

which makes the distance between ya and ŷγa large, that model is not selected.
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4.2.5 Numerical example

In this section, a multi-room heating system with a switching control policy is presented. The

example is inspired to a benchmark for hybrid system verification presented in [21].

Consider the problem of controlling the temperature in a number of rooms of a building.

Each room has one heater, but there is a constraint on the number of heaters in the building

that can be “active” (i.e., that can be used and turned on if needed) at the same time.

Differently from the original benchmark in [21], we model also the dynamics of the heaters.

The temperature Ti in a room i ∈ {1, . . . , Nr} depends on Ti itself, on the temperature

of the adjacent rooms Tj with j 6= i, on the outside temperature Text, and on hi, a boolean

variable that is 1 when the heater is on in room i, and 0 otherwise. The heat transfer

coefficient between room i and room j is kij , and the one between room i and the external

environment is ke,i. We assume that the heat exchange is symmetric, i.e., kij = kji. Rooms

i and j are adjacent when kij > 0, otherwise kij = 0.

The volume of the room is Vi, and the wall surface between room i and room j is Sr,ij,

while that between room i and the environment is Se,i. Air density and heat capacity are

ρa = 1.225 kg/m3 and c = 1005 J/(kgK), respectively. Letting φi = ρacVi, we can formulate

the following dynamic model for room i and its heater:

φiṪi =
∑

j 6=i

Sr,ijkij (Tj − Ti) + Seike,i (Text − Ti) + κiθi

τh,iθ̇i = −θi + hi · pi − χiText

which is an affine system, with κi representing the maximum heat flow rate that the heater

can provide, while pi ∈ {0, 1} is a binary variable indicating if the heater is active in room i

(pi = 1) or not (pi = 0). The heater dynamics is represented by a first-order system with a

time constant τh,i. If we neglect the term −χiText in the heater dynamics and set hi = pi = 1,

the heater state variable θi will tend to 1 so that the heater will provide its maximum heat

flow rate κi to the room when it is active and on. The term −χiText is introduced to account

for the influence of the external temperature on the heating system. Notice that pi = 1 just

indicates that the heater is active in room i, while hi is the variable that indicates whether

it is actually turned on (hi = 1).

The physical nature of the considered system is not switching. However, the switching

control policy presented in [21] is used to control the temperature in the rooms.

A room policy decides whether to switch the heater on in the room: each room has a

thermostat that switches the heater on if Ti ≤ oni, and off when Ti ≥ offi.

A building policy decides and limits the number of heaters that are jointly active, by

Deliverable D1.2 – Report on modelling of networked cyber-physical system
for verification and control

44 of 84



4 MODEL REDUCTION AND APPROXIMATION FOR VERIFICATION

setting the constraint
∑Nr

i=1 pi = P , with P ≤ Nr. The heater of room i is turned active, and

the heater of room j becomes not active when: 1) the heater of some room, say room i, is

not active, i.e., pi = 0, 2) room j is adjacent to room i and has an active heater, i.e., pj = 1,

3) temperature Ti ≤ geti, and 4) the difference Tj − Ti ≥ difi.

Each room is identified by an integer index, and whenever a room has more than one

adjacent room fulfilling the above condition, the heater is always set active in the room with

higher index.

In the following we consider Nr = 4 adjacent rooms, with the constraint that only P = 3

heaters can be active at the same time. The values of the physical system parameters for

the considered instance of the problem are reported in Table 3. The external temperature

Text is modeled as a sinusoidal source of period 24 hours with an offset of 4◦C, affected by

an additive white noise. Note that the resulting stochastic hybrid system and its execution

are still well-defined (see [39]).

We assume deterministic initial conditions, i.e., Ti(0) = 20, θi(0) = 0, i = 1, . . . , Nr,

h(0) = p(0) = [0 1 1 1]′. The condition that only 3 out of 4 heaters are active at the same

time is satisfied by p(0) . As for the control policy parameters, we set offi = 21, oni = 20,

geti = 18, difi = 1, with i = 1, . . . , Nr. Due to the switching policy, the control system can

be described as a SA system with continuous state ξa = [T ′ θ′]′, input u = Text, and output

ya = T :






ξ̇a = A ξa + B u+ fqa

ya = Cξa.

(32)

As for the mode qa, it is identified by the values of the binary variables hi and pi, which

determine the affine term fqa entering the dynamics of ξa. The polyhedral sets Doma,qa are

determined by the building and room control policies through the chosen thresholds. Note

that only the affine term fqa in (32) depends on the discrete mode qa ∈ Q, while the state-

space matrices (A,B, C) are constant. Therefore, the BT can be computed only once, and

applied identically for each discrete mode. Still, when selecting the order of the reduced model

Table 3: The multi-room physical system parameters.

Sr,ij 12m2 ke,i 1W/(m2K) τh,3 45.00s

Se,i 24m2 κ1 0.373 τh,4 47.25s

Vi 48m3 κ2 0.395 χ1 1.0× 10−4

φi 59094 J/K κ3 0.417 χ2 2.0× 10−4

k12 2W/(m2K) κ4 0.439 χ3 3.0× 10−4

k23 5W/(m2K) τh,1 40.50s χ4 4.0× 10−4

k34 2W/(m2K) τh,2 42.75s
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one should consider the impact of the selected order on the switched system approximation,

which involves also mode transitions. Using standard approaches for the order selection,

as the one used in [47] relying on classical HSV analysis, can be misleading. Indeed, the

obtained HSVs are σ1 = 0.993, σ2 = 0.026, σ3 = 0.001, σ4 = 4.514× 10−5, σ5 = 1.897× 10−6,

σ6 = 6.995 × 10−7, σ7 = 1.805 × 10−8, σ8 = 3.534 × 10−10. The HSV analysis suggests

that most of the dynamics can be caught by reducing the continuous dynamics of the SA

system to a first-order one. Indeed, computing the distance ψ(nr) used in [47] results in

ψ(1) · 100 = 2.64%.

Care has to be taken when applying HSV analysis to the context of SA systems. In fact,

classical BT techniques are typically based on the assumption that the ZIR of the system can

be neglected since it vanishes in an asymptotically stable linear system, a fact that notoriously

does not always hold when dealing with switching systems. Moreover, HSV analysis does not

take into account the impact of the reset map.

The multi-room control system is next reduced by means of the constructive methodol-

ogy proposed in this paper, and the randomized approach for order selection based on the

directional Hausdorff distance evaluated over a finite horizon T = [0, 200] min is applied. In

particular, we set ǫ = 0.1 in the CCP (30) and solve it via Algorithm 1. The number of

extractions in Algorithm 1 is N = 778 and is obtained through the implicit formula (31) with

η = 0.05, β = 10−6 and |Γ| = 7.

Since we adopt the same order for the reduced dynamics in each mode, 7 model order re-

ductions are examined, and, according to Proposition 3, the results on the quality assessment

of the reduced order models hold with probability 1− 10−6.

The length τ of the finite horizon [0, τ ] adopted in OGτ and COGτ is set to the settling

time of the neglected dynamics. Equation (29) maps each threshold value γ ∈ Γ into the

order nr,q of the reduced dynamics within mode q ∈ Q of the SL system with state reset.

In this example, we adopt the same order for the reduced dynamics in each mode. Hence,

we can simplify the notation to nr, dropping the dependence from mode q. The values for

ρ̂⋆γ obtained with the different reset methods are presented in Figure 15 as a function of nr.

Some interesting considerations can be made by analyzing the results presented in Figure 15.

First of all, one can compare the reset maps that do preserve continuity with those that do

not. The plots in Figure 15 show that preserving continuity leads to worse performance in

terms of accuracy of the approximation. This holds despite of the fact that, for the maps that

do not preserve output continuity, a drastic order reduction may yield discontinuities in the

state reset that possibly produce chattering behaviors. Furthermore, Figure 15 shows that

the OG reset maps exhibit better performance with respect to the SR maps. In particular,
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Figure 15: Performance of different reduced models as a function of the order nr and of the adopted

reset maps.

for the OGτ map ρ̂⋆γ is reduced on average over nr by 10.03% in the discontinuous map case,

and by 2.68% in the continuous map case.

Notice also that when a reduced order nr ≤ p = 4 is used and the output continuity is

enforced, then, the same results are obtained with the different reset maps. This is due to the

fact that whenever nr ≤ p, there are no degrees of freedom left by the continuity constraint

to match the originally introduced SR or OG reset maps (see the derivations in Section 4.2.3),

so that all maps just enforce continuity and become identical.

From the randomized analysis in Figure 15, it appears that one can push the reduction

up to a fifth order without significantly deteriorating the accuracy of the model when the

goal of the approximation is the analysis of reachability properties for which the directional

Hausdorff distance is a suitable accuracy measure. Reducing the system to a first-order

approximation as suggested by the analysis based on the HSV only would instead result in a

quite significant degradation of the reduced model performance.

4.2.6 Extension to switched affine systems with dwell time

The approach that we proposed in Section 4.2.5 for model order reduction can also be applied

to the case when the mode transitions of the SA system are subject to a DT constraint, which

means that a transition from mode i ∈ Q to mode j 6= i ∈ Q is enabled when (ya, u) exits

Doma,i and enters into Doma,j, but can actually occur only if a certain minimum amount

of time δ̄i ∈ R
+ (the so-called dwell time) has elapsed. Note that DT can be present in a

system for two different reasons: either is due to an intrinsic characteristic of the system that

presents some delay/inertia when commuting, or it is introduced when designing a control

strategy, as in DT switching control, see e.g. [36, 42].
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An extension of the SA modeling framework is needed if a DT constraint is present. If

we start from a SA system of the form (16), we can introduce the DT constraint as described

next. DT can be accounted for by adding to each mode a continuous state variable δ ∈ R that

represents a clock with the dynamics of an integrator. The dynamics (16) then is augmented

as follows:



ξ̇a(t)

δ̇(t)



 =




Aqa 0

0 0








ξa(t)

δ(t)



+




Bqa 0

0 1








u(t)

v(t)



+




fqa

0








yδ(t)

ya(t)



 =




0 1

Cqa 0








ξa(t)

δ(t)



+




0

gqa





with v(t) = v̄ = 1∀t ≥ 0, and the extended domain of a discrete mode qa ∈ Q is modified as

Dome
a,qa = R

+ ×Doma,qa × {1} ∪
[
0, δ̄qa

]
× R

p×m × {1}

so as to impose the DT constraint.

Within this extended framework, mode i ∈ Q is active as long as ([yδ y
′
a]
′, [u′ v]′) keeps

evolving within Dome
a,i, and a transition to mode j 6= i ∈ Q occurs as soon as ([yδ y

′
a]

′, [u′ v]′)

exits Dome
a,i, and enters into Dome

a,j. The reset map δ(t) = 0 needs to be added as soon as

a mode transition occurs at time t−.

Note that the augmented dynamics within each mode is still affine. However, the resulting

dynamic matrix is not Hurwitz due to the presence of the clock. Yet, under Assumption 1,

the procedure in Section 4.2.2 for model order reduction can be still adopted, in that it can

be applied to the original SA system. The clock dynamics and its reset can be considered

separately, and only affect the mode transitions of the reduced system via the extended

domains definition.

As a consequence to the introduction of the DT, dynamics that decay in a time scale

that is larger than the DT itself will be unlikely to be removed when selecting the model

order through the proposed randomized approach: This is because of their contribution at

the switching times when the state is reset. Finally, the length τ of the time horizon in OGτ

and COGτ can be tailored to the DT value.

Numerical example: the multi-room heating system: We consider the example of

the multi-room heating system in Subsection 4.2.5 and introduce a DT to the switching policy.

This means that, we require that the time elapsing between two subsequent switches (heater

activated/de-activated and heater turned on/off when active) must be greater than or equal

to the DT. We thus increase the state vector with a clock δ(t) with dynamics δ̇ = 1, that is

reset to 0 whenever a switch occurs.
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Figure 16: Quality of the reduced order model when a DT is introduced in the control policy (light

bars) and when it is not adopted (dark bars).

Note that since the unstable dynamics of the clock do not affect the dynamics of the

remaining state variables, one can apply BT to the original system without the clock. There-

fore, even if the (augmented) continuous state variable of the multi-room heating system has

dimension 9, the reduction must be performed only on the original state of dimension 8 as in

the example of Section 4.2.5.

The results obtained when the neglected dynamics has order 1 are reported in Figure 16.

The value of the optimal directional Hausdorff distance ρ̂⋆γ is computed through Algorithm 1

for the different reset maps, but just for a value of γ corresponding to an unitary order

reduction of the asymptotically stable part of the system. The same parameter values of

Section 4.2.5 are here adopted. The DT is set equal to 5 minutes (which is also the settling

time of the continuous dynamics) and the time horizon length τ in the OGτ reset map is set

equal to the DT. The OGτ map gives the best performance in terms of ISE with respect to

the other reset maps (see Figure 16). Indeed, the DT is long enough to let the ZIR of the

asymptotically stable continuous component vanish.

Not surprisingly, a comparative analysis with the values of the directional Hausdorff

distance obtained without the adoption of the DT in the switching policy (see Figure 16)

reveals that the quality of the reduced order model deteriorates when the DT is present, and

this occurs irrespectively of the adopted reset map.

4.2.7 Conclusions

In this work, we proposed to extend BT to the model reduction of SA systems with endogenous

switching. This involved introducing appropriate state reset maps and integrating the reduced

order model design with a randomized procedure for model order selection. A comparative

analysis of different maps, possibly preserving the output continuity, was performed on a

benchmark example of a multi-room heating system. The approach was extended to the case

of switched affine systems with DT.
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The proposed order selection is based on the discrepancy between the real and approxi-

mated output trajectories. If the obtained discrepancy is zero, then the reduced order model

exactly reproduces the input-output behavior of the system, and it is possibly a minimal re-

alization. A rigorous approach to exact model reduction for piecewise-affine hybrid systems

is proposed in [54].

The considered class of switched systems is characterized by an endogenous switching

signal. However, our method can be applied also to the case when transitions are determined

by some exogenous switching signal, possibly probabilistic as in the case of Markov jump

linear systems.

4.3 Model reduction preserving the input/output behavior for discrete

time piecewise affine systems

In this section, we consider the problem of model reduction for discrete time hybrid systems.

We focus on the class of Mixed Logical Dynamical (MLD) systems originally introduced in

[11]. MLD systems are equivalent to various classes of hybrid models [34, 9], and, in particular,

to PieceWise Affine (PWA) systems commuting between a finite set of affine dynamics (the

modes), each one associated with a polyhedral region in the partitioned state cross input

space. Various analysis and design problems have been addressed for this class of systems

using an optimization-based perspective with a mixed integer programming formulation, see

e.g. [12, 66, 10, 13, 68, 69]

The goal is to simplify the structure of the system while preserving its input/output be-

havior. This is particularly useful when addressing a reachability problem where the input has

to be designed so as to satisfy some specification expressed in terms of the output evolution,

or, more generally, when addressing analysis or design problems that concern the output.

To achieve our goal, we introduce a structural approach based on observability-like anal-

ysis. The notion of observability for MLD systems has been treated extensively in [9], where

the concept of incrementally observable MLD system is introduced. Possible impact of ob-

servability analysis on model reduction is mentioned in the conclusions of the related paper

[22]. Here, we propose an approach to model reduction that rests on the Kalman canonical

decomposition into observable and unobservable part of the affine dynamics appearing in the

MLD model description, which can be isolated by neglecting the discrete component of the

hybrid dynamics. The so-obtained seemingly unobservable components may actually affect

the discrete mechanism underlying the hybrid system evolution and, hence, they may become

observable. We then introduce a sufficient condition to determine if the unobservable com-

Deliverable D1.2 – Report on modelling of networked cyber-physical system
for verification and control

50 of 84



4 MODEL REDUCTION AND APPROXIMATION FOR VERIFICATION

ponents of the affine dynamics remains unobservable in the hybrid system dynamics. The

approach applies to MLD systems and their equivalent PWA counterpart. If the obtained

reduced MLD system is mapped into a PWA system (e.g., via the approach in [8]) that has

the same dynamics in adjacent regions of the state cross input space, a mode aggregation

procedure can be applied to further simplify the PWA model.

The proposed approach is conceptually simple and easy to implement, since it is based

on the standard notion of observability for linear systems. Model reduction methods that

preserve the input/output behavior of a PWA system have been proposed in the literature

but in a continuous time setting, [54]. These approaches are, hence, not directly comparable

with our discrete time method.

It is worth noticing that the work in this section strictly relates to minimal realization the-

ory in that the MLD systems is simplified while preserving exactly its input/output behavior.

In the literature, minimal realization theory has been mainly developed for linear and bilinear

switched and hybrid systems with externally induced switching. Apparently, it remains an

open problem when considering hybrid systems with endogenous switching (see [53]). Our

work can hence be seen as a preliminary step in this direction.

The rest of the section is structured as follows. In Subsection 4.3.1, we describe the

modeling context, recalling the equivalence between MLD and PWA systems that was proven

in [9]. We then illustrate the proposed approach for model reduction based on observability-

like analysis in Subsection 4.3.2. We describe the mode reduction procedure in Subsection

4.3.3. We present some numerical examples in Subsection 4.3.4 and conclude the section with

some remarks in Subsection 4.3.5.

4.3.1 Modeling framework

We consider a Mixed Logical Dynamical (MLD) system described by the following equalities

and inequalities:

x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) +Bzz(k) +Baff

y(k) = Cx(k) +Duu(k) +Dδδ(k) +Dzz(k) +Daff (33)

Exx(k) + Euu(k) + Eδδ(k) + Ezz(k) ≤ Eaff

where x ∈ R
nc × {0, 1}nl is the state composed of both continuous and binary variables,

u ∈ R
mc × {0, 1}ml is the input vector comprising a continuous and a discrete component.

As for δ and z, they are binary and continuous-valued auxiliary variables: δ ∈ {0, 1}rl and

z ∈ R
rc .
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We assume that some reachability specification is given in terms of the behavior in time

of the output y ∈ R
pc × {0, 1}pl .

For an MLD system to be well-defined, the solution to the inequalities in (33) must be

unique, i.e., given a state-input pair there exists a unique value for the auxiliary variables δ

and z satisfying such inequalities.

Without loss of generality, we shall assume next that the affine terms Baff and Daff are

both zero. Indeed, if this were not the case, one can introduce x̄(k) and ȳ(k) given by the

solution to the system

x̄(k + 1) = Ax̄(k) +Baff (34)

ȳ(k) = Cx̄(k) +Daff (35)

and replace x and y in (33) with x + x̄ and y + ȳ. As a result, the affine terms will cancel

out and the right hand side of the last inequality in (33) will become Eaff − Exx̄(k). If

I − A is invertible and one can choose x̄(0) = (I − A)−1Baff , then, the solution x̄(k) and

ȳ(k) to (34) keep constant and, hence, Eaff in (33) is replaced by a time invariant term

Eaff − Exx̄(k) = Eaff − Ex(I −A)−1Baff .

Let us consider a PieceWise Affine (PWA) systems governed by

x(k + 1) = Aix(k) +Biu(k) + fi

y(k) = Cix(k) +Diu(k) + gi
for




x(k)

u(k)



 ∈ Ai, (36)

where x ∈ X ⊆ R
n is the state, u ∈ U ⊆ R

m is the input, and y ∈ R
p is the output, whereas

fi, gi are constant vectors. Suppose that the collection of sets {A}si=1 forms a polyhedral

subdivision of the space X ×U , that is if ∪s
i=1Ai = X ×U , each Ai is of dimension n+m, and

the intersection Ai ∩ Aj, i 6= j, is either empty or a common proper face of both polyhedra.

Then, system (36) is well posed and if X and U are bounded, it can be converted in an

equivalent MLD system. The idea behind the conversion of a PWA system into the MLD

form is to introduce auxiliary variables δ and z that respectively capture which of the original

PWA mode is active, and the dynamics associated to that mode. This is done by means of

big-M techniques that lead to the linear inequalities in (33) (see [9]). The MLD form is

typically more convenient when performing optimization-based analysis and design. Notably,

the opposite implication also holds true, i.e., MLD systems have an equivalent PWA form.

4.3.2 Structural reduction

Our aim is to detect whether there exists some part of the MLD system (33) that can be

neglected without affecting the output behavior.
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We start by considering the simple case when the MLD system (33) reduces to a standard

linear system, i.e.,

x(k + 1) = Ax(k) +Buu(k) (37)

y(k) = Cx(k) +Duu(k).

In this setting, we just need to determine the non-observable part of the system and then

remove it, which entails neglecting those inputs that do not affect the observable part (non-

influential inputs). This is achieved via a three-steps procedure:

1. Rewrite the system in its observable canonical form by means of an appropriate simi-

larity transformation To:




xno(k + 1)

xo(k + 1)



 = Ã




xno(k)

xo(k)



+ B̃uu(k),

y(k) = C̃




xno(k)

xo(k)



+Duu(k),

where




xno

xo



 = Tox, xno ∈ R
νno , xo ∈ R

νo, B̃ = ToBu, C̃ = C T−1
o = [0 Co] and Ã

has the following upper triangular structure:

Ã =




Ano A12

0 Ao



 .

2. Remove the non-observable state component xno, i.e., remove the first νno rows of Ã, B̃u

and the first νno columns of C̃. The resulting system is given by:

xo(k + 1) = Aoxo(k) + B̃u,ou(k), (38)

y(k) = Coxo(k) +Duu(k),

where B̃u,o is the matrix obtained by extracting the last νo rows of B̃u.

3. Check if there exists an index j ∈ {1, . . . ,m} such that the j-th column of both B̃u,o

and Du are null; if that is the case, input uj is non-influential and can be removed.

Note that, by construction, the evolution of the output of the reduced order system (38)

coincides with the evolution of the output of the original system (37), for any initial condition,

and for any assignment of the input.

Our aim now is to detect and remove the non-observable part of the system in the case

when some discrete dynamics is present. For sake of simplicity, we consider MLD systems
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without logic states, i.e., x ∈ R
nc . We rewrite the MLD system (33) with Baff = 0 and

Daff = 0 and the time index dropped for convenience:

x+ = Ax+Buu+Bδδ +Bzz

y = Cx+Duu+Dδδ +Dzz (39)

Exx+ Euu+ Eδδ + Ezz ≤ Eaff .

We start focusing on matrices A, Bu, C, Du, as if the system were linear, and compute the

similarity transformation To as in the linear case. The system become:




xno

xo





+

= Ã




xno

xo



+ B̃uu+ B̃δδ + B̃zz (40)

y = C̃




xno

xo



+Duu+Dδδ +Dzz (41)

Ẽx




xno

xo



+ Euu+ Eδδ + Ezz ≤ Eaff (42)

where Ã and C̃ are defined as in the previous section and B̃u = ToBu, B̃δ = ToBδ, B̃z = ToBz,

Ẽx = ExT
−1
o .

Despite the structure of matrices Ã and C̃, before possibly removing xno, we need first to

check if xno affects the output via the inequalities (42). To understand why this might be the

case, suppose that xno affects the value of δ via the inequalities (42), then, xno is indirectly

influencing the output via the term Dδδ. However, it may be also the case that xno affects

only those elements of δ that are ”hidden” by matrix Dδ, so that in the end xno does not

affect the output. For this reason we should check if xno affects ˜̃δ = Dδδ instead of δ. This

consideration applies also to variables u and z, so that before analyzing the dependencies

introduced by the inequalities (42) we need first to set some changes of variables.

To make the discussion as general as possible we consider the general case when Du, Dδ

and Dz may be rank deficient matrices, i.e.: rank(Du) = ru ≤ min{p,m}, rank(Dδ) = rδ ≤

min{p, rl}, rank(Dz) = rz ≤ min{p, rc}.

The full rank factorization (see [14]) of Du, Dδ and Dz: Du = Du,LDu,R, Dδ = Dδ,LDδ,R,

Dz = Dz,LDz,R, where Du,L, Dδ,L, Dz,L have, respectively, ru, rδ , rz columns, can be used

to introduce the following change of variables:




ũ

ũ⊥



 =




Du,R

Fu



u,




δ̃

δ̃⊥



 =




Dδ,R

Fδ



 δ,




z̃

z̃⊥



 =




Dz,R

Fz



 z, (43)
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where each row of matrix Fi, i ∈ {u, δ, z}, is orthogonal to each row of the corresponding

matrix Di,R (i.e., the rows of Fi form a basis of the null space of Di,R). Note that the resulting

matrices Pi defined as Pi = [D′
i,R F ′

i ]
′, i ∈ {u, δ, z} are square and invertible by construction.

In view of the change of variables in (43), the system can be rewritten as:



xno

xo





+

= Ã




xno

xo



+
[

B∗
u,L B

∗
u,R

]




ũ

ũ⊥



+
[

B∗
δ,L B

∗
δ,R

]




δ̃

δ̃⊥



+
[

B∗
z,L B

∗
z,R

]




z̃

z̃⊥





y = C̃




xno

xo



+Du,Lũ+Dδ,Lδ̃ +Dz,Lz̃

Ẽx




xno

xo



+
[

E∗
u,L E

∗
u,R

]




ũ

ũ⊥



+
[

E∗
δ,L E

∗
δ,R

]




δ̃

δ̃⊥



+
[

E∗
z,L E

∗
z,R

]




z̃

z̃⊥



 ≤ Eaff ,

where we set
[

B∗
u,L B∗

u,R

]

= P−1
u B̃u

[

E∗
u,L E∗

u,R

]

= P−1
u Eu

[

B∗
δ,L B∗

δ,R

]

= P−1
δ B̃δ

[

E∗
δ,L E∗

δ,R

]

= P−1
u Eδ

[

B∗
z,L B∗

z,R

]

= P−1
z B̃z

[

E∗
z,L E∗

z,R

]

= P−1
z Ez.

Finally, by defining variables ˜̃u, ˜̃δ, ˜̃z as:

˜̃u = Du,Lũ,
˜̃
δ = Dδ,Lδ̃, ˜̃z = Dz,Lz̃, (44)

the system can be rewritten as:



xno

xo





+

= Ã




xno

xo



+
[

B̄u B
∗
u,R

]





˜̃u

ũ⊥



+
[

B̄δ B
∗
δ,R

]





˜̃
δ

δ̃⊥



+
[

B̄z B
∗
z,R

]





˜̃z

z̃⊥



 (45)

y = C̃




xno

xo



+ ˜̃u+ ˜̃δ + ˜̃z (46)

Ẽx




xno

xo



+
[

Ēu E
∗
u,R

]





˜̃u

ũ⊥



+
[

Ēδ E
∗
δ,R

]





˜̃
δ

δ̃⊥



+
[

Ēz E
∗
z,R

]





˜̃z

z̃⊥



 ≤ Eaff (47)

where

B̄u = B∗
u,LD

†
u,L Ēu = E∗

u,LD
†
u,L

B̄δ = B∗
δ,LD

†
δ,L Ēδ = E∗

δ,LD
†
δ,L

B̄z = B∗
z,LD

†
z,L Ēz = E∗

z,LD
†
z,L

and Q† denotes the left Moore-Penrose pseudoinverse of Q, i.e., Q† = (Q′Q)−1Q′. Note that

the transformations (43) and (44) can be combined, thus leading to:




˜̃u

ũ⊥



 = Tuu,




δ̃

δ̃⊥



 = Tδδ,




z̃

z̃⊥



 = Tzz,
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where matrices Tu, Tδ and Tz are given by

Tu =




Du

Fu



 , Tδ =




Dδ

Fδ



 , Tz =




Dz

Fz





and have all full column rank by construction. Note that the above transformation highlights

˜̃u, ˜̃δ, ˜̃z, which represent the linear combinations of elements of the original vectors u, δ, z

that affect the output of system (39).

Based on (45), (46), (47), we can now carry out the removal of those parts of the system

that do not affect the output. To this purpose, we propose the following procedure.

1. Construct the undirected graph G of dependencies among the components of xno, xo,

˜̃u, ũ⊥,
˜̃
δ, δ̃⊥, ˜̃z, z̃⊥ induced by inequalities (47). In particular, define as the nodes of G

such components and draw an arc between two nodes if there is a scalar inequality in

(47) involving the corresponding variables.

2. Build vector x̂no with the components of xno that are not connected via a path of G to

any component of xo, ˜̃u,
˜̃
δ, ˜̃z.

3. Collect in ˆ̃u⊥ the components of ũ⊥, whose corresponding column in B∗
u,R is null and

that are not connected via a path of G to any component of xo, ˜̃u,
˜̃
δ, ˜̃z. Similarly, define

ˆ̃
δ⊥ and ˆ̃z⊥.

4. Remove from (45) all state equations corresponding to the elements of x̂no. Accordingly,

remove also the corresponding columns of Ã, C̃, Ẽx.

5. Remove from ũ⊥ the components in ˆ̃u⊥ and remove the corresponding columns in B∗
u,R

and E∗
u,R. Proceed in the same way for the components of

ˆ̃
δ⊥ and ˆ̃z⊥.

6. Remove from the transformation matrix Tu the rows corresponding to the components

in ˆ̃u⊥. If the resulting matrix has a column j which is identically 0, then the associated

original input uj is non-influential, and, hence, can be neglected.

Note that the procedure described above can be carried out with very little computational

effort, since it only requires the computation of the paths on a graph, which is an operation

for which extremely efficient methods exist. Also, it is not affected by Eaff , so that the fact

that Eaff may be time varying is not an issue.

4.3.3 Removal of redundant modes

As mentioned in Section 4.3.1, if an MLD system is well-posed, then, it can be converted in

an equivalent PWA system.
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It may be the case that, after the model reduction performed on the MLD system, some

modes in the PWA form share the same dynamics. In these cases it may be convenient

to merge them, so as to reduce the total number of modes in the PWA model. The PWA

representation (36) requires the sets Ai to form a polyhedral subdivision of the state-input

space. For this reason, in the proposed mode merging approach, we first detect the subsets

of modes that share the same dynamics, then we check if there exists a pair of modes such

that their union is convex and, if so, we merge them. The resulting set becomes a new

element of the subset of modes that share that same dynamics, and the exploration continues

iteratively. Note that the order followed in the merging of the modes matters, as it is shown

in Figure 17. One can opt for a greedy exploration which is sub-optimal in terms of number

of modes merged but it is less time consuming, or an exhaustive exploration, which merges

the maximum number of modes but it is more time consuming.

Figure 17: Pictorial view of the difference between a greedy merging routine and an exhaustive

one. In the greedy routine we merge a mode with the first mode found that makes the union convex.

Merging A1 with A2 generates a region that can not be merged neither with A5 nor with the union

of A3 and A4. Thus, the total number of obtained regions that share the same dynamics is 3. On the

other hand, an exhaustive exploration is able to construct only two regions.
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4.3.4 Numerical examples

We next show the effectiveness of the approach described in Section 4.3.2 via a numerical

example. Consider the MLD system described by:

x(k + 1) = Ax(k) +Buu(k) +Bzz(k)

y(k) = Cx(k) +Duu(k) +Dzz(k) (48)

Exx(k) + Euu(k) + Eδδ(k) + Ezz(k) ≤ Eaff

where

A =











1 0 −2 0

0 1 0 0

−3 0 −4 0

0 0 0 1











, C =




1 0 0 0

0 1 1 0



 ,

Bu =











1 0 0 0 0

1 0 2 0 0

1 3 0 0 0

0 0 0 1 1











, Bz =











1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1











,

Du =




1 0 0 0 0

0 0 0 0 0



 Dz =




−1 0 1 0

0 0 2 0





and the matrices of the linear inequalities in (48) are defined according to the following

relations (we refer to the HYSDEL notation, see [67] )

δ1 = u1 ≤ 5 if δ1 then x1 else x1 + x3

δ2 = u2 ≤ 5 if δ2 then 2x2 else − x1 − x2

δ3 = u3 ≤ 5 if δ3 then x1 − x3 else − x3

δ4 = u4 ≤ 5 if δ4 then − x4 else 2x4

We aim at obtaining a reduced order system, that preserves the input/output behavior of

(48). To this end, we apply the procedure described in Section 4.3.2 and obtain:

1 State variables eliminated: x4

2 Non-influential input variables found: u4, u5

2 Auxiliary variables eliminated: δ4, z4
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so that the resulting system is described by:

Ared =








1 0 −2

0 1 0

−3 0 −4







, Cred =




1 0 0

0 1 1



 ,

Bu,red =








1 0 0

1 0 2

1 3 0







, Bz,red =








1 0 0

0 1 0

0 0 1







,

Du,red =




1 0 0

0 0 0



 Dz,red =




−1 0 1

0 0 2





with matrices Ex,red, Eu,red, Eδ,red, Ez,red, Eaff,red defined by:

δ1 = u1 ≤ 5 if δ1 then x1 else x1 + x3

δ2 = u2 ≤ 5 if δ2 then 2x2 else − x1 − x2

δ3 = u3 ≤ 5 if δ3 then x1 − x3 else − x3.

Note that u4, and u5 were found to be non-influential inputs. This means that they will not

affect the output behavior and hence can be removed.

We now illustrate some results of the modes merging algorithm in Subsubsection 4.3.3.

Consider the following PWA system:




x+1

x+2



 =












1 0

0 1











x1

x2




+






1

0




u,










x1

x2

u










∈ ∪6
i=1Ai






0 1

1 1











x1

x2




+






0

2




u,










x1

x2

u










∈ A7 ∪ A8,

(49)

where (x1, x2) ∈ X = [−100, 100]2, u ∈ U = [−10, 10] and the sets Ai, i = 1, . . . , 8 are the

elements of the partition of the space X ×U defined by the following inequalities (see Figure

18):

x1 ≤ 0, x2 − x1 ≤ 2, u ≤ 2. (50)

We now exploit the procedure described in Section 4.3.3 to merge the modes associated

to the same dynamics. We group the modes in the two sets {A1, A2, A3, A4, A5, A6} and
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Figure 18: Partition of space X × U defined by inequalities (50)

Figure 19: Merging of modes A1, A2, A3, A4, A5, A6 associated to the first dynamics

{A7, A8} and perform the merging on each of them. The results are depicted in Figure 18

and Figure 20.

Starting from a total of 8 modes we have obtained a reduced system with just 3 modes.

The results have been obtained by applying a greedy exploration, that, in this case, perform

as well as the exhaustive exploration. The case of the greedy exploration performing worse

than the exhaustive one is shown in Figure 21, where we associated mode A8 to the first

dynamics and mode A6 to the second dynamics. In this case the reduction returns a total of

5 modes.
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Figure 20: Merging of modes A7, A8 associated to the second dynamics

Figure 21: Greedy exploration: the modes associated to the first dynamics (on the left) are merged

in a total of 4 regions

4.3.5 Conclusions

In this section, we introduced an approach to model reduction of discrete time hybrid systems

that preserves the input/output behavior. The proposed approach rests on a sufficient con-

dition for the unobservable part of the affine dynamics entering the MLD model description

to remain unobservable when accounting for the hybrid system evolution. Our aim was re-

producing the input/ouput behavior, irrespectively of the system initialization. If the system

initialization were exactly known or confined to some region, the model reduction procedure

could account for this additional information and, possibly, further reduce the model. This

would be the case for linear systems. In the MLD systems framework, some combinations of

the δ auxiliary variable that define the switching between modes in the PWA form might be

pruned out because not admissible, which will possibly simplify the inequalities in the MLD

representation. This requires further work.
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5 Model Approximation for Control

This section addresses the question of how model approximations of the general CPS model

from Sec. 2 can be obtained such that, in particular, optimization-based techniques of online

control become applicable in real-time. This is one key objective in WP 2 of the project,

where predominantly variants of model-predictive control are investigated. Typically such

techniques are formulated in discrete time, and time-discretization is often used also to restrict

the optimization to finite-dimensional problems. The techniques to be proposed in Sec. 5.1

and Sec. 5.2 follows this line, and they consider CPS, in which for any subsystem the effects

of other subsystems are cast into time-varying constraints. This is possible, if the behavior

of interacting subsystems was communicated, and is transformed (e.g.) into a subset of the

state space in which the local controller can plan the state trajectory of the subsystem plant.

The optimization can then be carried out in a decentralized fashion, if the control objectives

are decoupled, or in a cooperative scheme, if the results of local optimization problems are

iteratively exchanged. Another aspect of model approximation to be covered in Sec. 5.1 is

that of approximating nonlinear dynamics by on-the-fly linearization. Using linearized models

in computing controls is justified by the fact that UnCoVerCPS proposes techniques in which

verification complements control – the following parts illustrate the modeling procedures for

control with reference to two use cases of the project (robot control and autonomous driving).

5.1 Approximations To Reach-Avoid Problems in Human-Robot-Interaction

With respect to the CPS model of Sec. 5.2, this section focuses on one CPS subsystem in

which environments uncertainties are modeled by establishing constraints, determined such

that the state is restricted to regions in which the uncertainties may not cause unsafe behavior.

We consider time-varying state space constraints, as well as time-varying goal states for

control. The state constraints can be immediately referred to the invariant functions Iz(t) on

Definition 1 (Sec. 2) of the continuous-time subsystem of a CPS. The continuous dynamics of

the subsystem (for which the subsystem index is omitted for ease of notation) is first modeled

by a set of nonlinear differential equations:

ẋ(t) = f(x(t), u(t)), (51)

with time t ∈ R, state vector x(t) ∈ R
nx, and input vector u(t) ∈ U ⊆ R

nu . Time discretiza-

tion with zero-order-hold (ZOH) approximation yields a discrete-time system:

xk+j+1|k = f(xk+j|k, uk+j|k), (52)
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with time indices j ∈ JN := {0, ..., N}, k ∈ N0, state vector xk+j|k ∈ R
nx , and input vector

uk+j|k ∈ U ⊆ R
nu,∀j ∈ JN . The index of xk+j|k denotes the state x at point of time k + j

determined by the information available at time k. The goal state is denoted by x0
f |k, u

0
f |k,

and may, as mentioned above, change over time k.

A typical reach-avoid problem for such a system is to control the nonlinear system from teh

current state xs into a goal state, while avoiding collisions with a polytopic moving obstacle

Px,k+j (modeling the uncertain environment of the subsystem, e.g. the space occupied by

another subsystem). The obstacle position is assumed to be known over the prediction horizon

j ∈ J := {0, ...,H}, which is justified if it is obtained from communicated information, or

from estimation using an appropriate model. The goal is then to control the system by

minimizing given cost functional while satisying all relevant state and input constraints. This

problem can be formulated as:

min
xk+j|k, uk+j|k

(xk+H|k − xf |k)
TQend(xk+H|k − xf |k) + . . .

. . . +

H−1∑

j=0

(xk+j|k − xf |k)
TQ(xk+j|k − xf |k) + (uk+j|k − uf |k)

TR(uk+j|k − uf |k)

(53)

s.t. xk+j+1 = f(xk+j|k, uk+j|k), uk+j|k ∈ U , xk+j|k /∈ Px,k+j.∀j ∈ J , xk|k = xs,

The solution of this problem yields the optimized trajectories x̂∗:|k, û
∗
:|k for the prediction

horizon H. The considered performance function is quadratic for positive-definite weighting

matrices Q ∈ R
nx×nx , and R ∈ R

nu×nu . In model predictive control (MPC, see e.g. [33]),

the solution to the control problem (53) is implemented in a receding horizon fashion, where

only in the first entry u∗
k|k of the input sequence is applied to the system, and the calculation

then repeated for incremented k.

As an application example, consider a CPS modeling human-robot cooperation in an

industrial process, i.e. human worker and a robotic manipulator working in the same space.

The task is to control the manipulator such that collisions with the human worker are excluded

while, at the same time, the robot maintains a close-to-optimal operation in accomplishing

its task.

This problem can be addressed by model predictive control (MPC) using mixed integer

programming (MIP), as shown already in [17, 18]. A problem of these techniques is that

the integer variables needed to encode the collision avoidance together with the nonlinear

dynamics typically slows down may the solution of the optimization problems considerably –

this is the very motivation of the developments in the tasks 2.2/2.3 on fast online-optimizing

control. As a preparing step, the space occupied by the human worker is over-approximated
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by convex polytopes (see [19] for a technique to accomplish this step):

Px,k+j := {xk+j| Ck+jxk+j ≤ dk+j} ⊆ R
nx, (54)

with C ∈ R
c×nx, and d ∈ R

c. Furthermore, the nonlinear dynamics (51) of the robot system

has to be simplified. This is done by time-varying linearization around the current state xk.

5.1.1 Robot Modeling and Abstraction

In this part, a simple model of a 2-D robotic manipulator is introduced, and the steps of

model transformation are illustrated. The obtained approximation is tailored to be used for

validation of a fast online control method based on homotopies, as described in deliverable

D2.2.

The model consdierd here is a robotic manipulator with two joints and two links, in

a 2-D Cartesian space x(t) = (x1(t), x2(t))
T ∈ R

2, see Fig. 22. The manipulator con-

figuration is described by the angles θ = (θ1(t), θ2(t))
T ∈ R

2, and the angular velocities

θ̇(t) = (θ̇1(t), θ̇2(t))
T ∈ R

2 for time t. The combined vector is denoted by Θ(t) = (θ1(t), θ̇1(t),

θ2(t), θ̇2(t))
T . The two links have the lengths l1, l2. The masses m1, m2 are assumed as

mass points which are centered at the end of the first and second links, hence on positions

ri(t) ∈ R
2, i = {1, 2}. The end effector r2(t) of the manipulator is also described as the tool

center point (TCP). Furthermore, friction depending on the angular velocities is modeled by

the coefficients c1, c2, and the gravitational constant is denoted by g. The torques applied to

the joints are f(t) = (τ1(t), τ2(t))
T .

TCP

l1

l2

θ1

θ2

x1

x2

Px,k+j

Figure 22: Illustration of a robotic manipulator with two links and joints working in the same area

with a human. The robot is operating in a two dimensional Cartesian space x = (x1, x2). The safety

region of the human worker is approximated by a convex time-varying polytope Px,k+j

By means of Lagrange mechanics, the nonlinear differential equation can be derived as:

∂L(t)

∂θi(t)
−
d

dt

∂L(t)

∂θ̇i(t)
= −τi, i = {1, 2}, (55)
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where the Lagrangian L(t) for a system of particles is:

L(t) = Tkin(t)− Vpot(t), (56)

with Tkin(t) as the total kinetic energy:

Tkin(t) =
2∑

i=1

1

2
miṙi(t)

2, (57)

and the potential energy:

Vpot(t) =
2∑

i=1

1

2
migṙi(t)

2. (58)

To determine the two energy equations, the positions ri(t) of each mass point mi are mod-

eled as functions of the generalized coordinates θi(t) by means of the Denavit-Hartenberg

convention. There, a rotation (by an angle θi(t)) around the x3,[i−1]-axis from the x3-axis of

the i− 1 to the i-th coordinate system is given by:

Rot(x3,[i−1], θi(t)) =











cos θi(t) − sin θi(t) 0 0

sin θi(t) cos θi(t) 0 0

0 0 1 0

0 0 0 1











. (59)

A translation of length li along the x1,[i]-axis of coordinate system i is modeled by:

Trans(x1,[i], li) =











1 0 0 li

0 1 0 0

0 0 1 0

0 0 0 1











. (60)

With these transformations, the position ri(t) of mass mi can be obtained from the matrix:

Qi =








O
ri(t)

0

0 0 1 1







, (61)

where O ∈ R
3×3 is a submatrix describing the rotation. Therefore, the position r1(θ1(t)) is
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obtained from:

Q1 = Rot(x3,[0], θ1(t)) · Trans(x1,[1], l1)

=











O

l1 cos θ1(t)

l1 sin θ1(t)

0

0 0 1 1











(62)

⇒ r1(θ1(t)) =




l1 cos θ1(t)

l1 sin θ1(t)



 , (63)

and position r2(θ1(t), θ2(t)) of mass m2:

Q2 = Rot(x3,[0], θ1(t)) · Trans(x1,[1], l1) ·Rot(x3,[1], θ2(t)) · Trans(x1,[2], l2)

=











O

l1 cos θ1(t) + l2 cos(θ1(t) + θ2(t))

l1 sin θ1(t) + l2 sin(θ1(t) + θ2(t))

0

0 0 1 1











(64)

⇒ r2(θ1(t), θ2(t)) =




l1 cos θ1(t) + l2 cos(θ1(t) + θ2(t))

l1 sin θ1(t) + l2 sin(θ1(t) + θ2(t))



 . (65)

With these equations, the evaluation of (55) yields a system of two differential equations,

each of order two, describing the manipulator dynamics:

τ1(t)− c1θ̇1 = (l21m1 + l21m2 + l22m2 + 2l1l2m2 cos θ2(t)) · θ̈1(t) + (l22m2 + l1l2m2 cos θ2(t)) · θ̈2(t)

+ g · (l2m2 cos(θ1(t) + θ2(t)) + l1m1 cos θ1(t) + l1m2 cos θ1(t)) (66)

τ2(t)− c2θ̇2 = (l22m2 + l2m2l1 cos θ2(t)) · θ̈1(t) + l22m2θ̈1(t)

+ l2m2l1 sin θ2(t) (θ̇1(t))
2 + l2m2θ̇2(t)l1 sin θ2(t) θ̇1(t) + g · (l2m2 cos(θ1(t) + θ2(t))).

(67)

The nonlinear manipulator dynamics has the form:

M(θ(t))θ̈(t) + C(θ(t), θ̇(t))θ̇(t) +G(θ(t))− f = 0, (68)

with M(θ(t)) representing the inertial forces due to acceleration of the joints, C(θ(t), θ̇(t))

modeling the Coriolis and centrifugal forces, G(θ(t)) the gravitational forces, and f =

(τ1, τ1)
T ∈ R

2 are the applied torques.

The next step is to transform the second order system of differential equations into a

system of four equations, each of order one, by substituting the state vector Θ(t) by Z(t) =
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(z1(t), z2(t), z3(t), z4(t))
T ∈ R

4:











θ1(t)

θ̇1(t)

θ2(t)

θ̇2(t)











=











z1(t)

z2(t)

z3(t)

z4(t)











, and











θ̇1(t)

θ̈1(t)

θ̇2(t)

θ̈2(t)











=











ż1(t)

ż2(t)

ż3(t)

ż4(t)











. (69)

With this substitution, the nonlinear differential equations (68) become:











ż1(t)

ż3(t)

ż2(t)

ż4(t)











=











z2(t)

z4(t)

(M(z1(t), z3(t)))
−1[f − C(Z(t))




z2(t)

z4(t)



−G(z1(t), z3(t))]











(70)

Linearization of this dynamics by a first order Taylor expansion around the current state

vector Z̄ and input vector f̄ , followed by a zero-order hold (ZOH) discretization with step

dT leads to:

Zk+j+1|k = AZ,:|kZk+j|k +BZ,:|kfk+j|k

+ g(Z̄, f̄)−AZ,:|kZ̄ −BZ,:|kf̄
︸ ︷︷ ︸

RZ,:|k

. (71)

Here, AZ,:|k, BZ,:|k, and RZ,:|k are matrices of the configuration dynamics denoted by the

index Z, determined at time k, and a prediction time denoted by : |k. Since the linearized

dynamics (71) is defined in the configuration space, but the obstacle Px,k+j in the Cartesian

space, there are basically two options to bring the system and the obstacle into the same

space:

1. using forward kinematics by means of the Denavit-Hartenberg convention to describe

a certain point on the manipulator (e.g. the TCP) by its Cartesian states: Ψ(t) =

(x1(t), ẋ1(t), x2(t), ẋ2(t))
T

2. mapping the obstacle into the configuration space by a dicretization-based mapping.

From [50], it is known that the nonlinear mapping of the obstacle into the configuration

space is very time demanding, let alone for predicted obstacles. The non-convex shapes of

the transformed obstacles do not allow for an intuitively planning procedure and, for the

homotopy-based control method, not for an intuitively parameterization of so-called base

trajectories. Therefore, rather than mapping the obstacle into the configuration space, the

linearized dynamics (71) is transferred into the Cartesian space by forward kinematics of
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the TCP. However, this procedure limits the obstacle-avoidance problem to the TCP (or

respectively a single considered point on the manipulator).

To determine the TCP position x(t) depending on Z(t), the forward kinematics is given

by the nonlinear function r2 : R
4 → R

2, and the TCP velocity ẋ(t) by its time derivative:

x(t) = r2(Z(t)), ẋ(t) =
∂r2(Z(t))

∂t
. (72)

Rearranging the two equations (72) into a combined vector Ψ(t) = (x1(t), ẋ1(t), x2(t), ẋ2(t))
T

leads to the nonlinear equation:

Ψ(t) = Ξ(Z(t)). (73)

Evaluating (73) at discrete points Zk+j|k from (71), and by further linearizing the nonlinear

function (73) around the current state vector Z̄k|k, leads to:

Ψk+j|k =
∂Ξ(Zk+j|k)

∂Zk+j|k

∣
∣
∣
∣
Z̄k|k

︸ ︷︷ ︸

Φ:|k

Zk+j|k

+ Ξ(Z̄k|k)−
∂Ξ(Zk+j|k)

∂Zk+j|k

∣
∣
∣
∣
Z̄k|k

Z̄k|k

︸ ︷︷ ︸

Ω:|k

. (74)

This equation means that the predicted Cartesian state vector Ψk+j|k is determined from the

configuration vector Zk+j|k with the matrices Φ:|k, and Ω:|k. By solving (74) for Zk+j|k:

Zk+j|k = (Φ:|k)
−1Ψk+j|k − (Φ:|k)

−1Ω:|k, (75)

and insertion of (75) into (71), the linearized dynamics in the Cartesian space becomes finally:

Ψk+j|k = AΨ,:|kΨk+j|k +BΨ,:|kfk+j|k +RΨ,:|k, (76)

with the similarity transformations:

AΨ,:|k = Φ:|kAZ,:|k(Φ:|k)
−1, (77)

BΨ,:|k = Φ:|kBZ,:|k, (78)

RΨ,:|k = Φ:|kRZ,:|k +Ω:|k − Φ:|kAZ,:|k(Φ:|k)
−1Ω:|k. (79)

5.1.2 Conclusion

The derived Cartesian state space model describes the motion of the TCP, and can be used

for the homotopy-based obstacle avoidance procedure. Since the model is linearized at each

Deliverable D1.2 – Report on modelling of networked cyber-physical system
for verification and control

68 of 84



5 MODEL APPROXIMATION FOR CONTROL

time step, the properties of homotopies as described in Deliverable D2.2 apply. As typical in

trajectory optimization, a high computational effort results from the number of inputs and/or

state variables that have to be considered for reasons of obstacle avoidance over the prediction

horizon. However, the homotopic control method reduces the number of variables by selecting

a desired trajectory only from a set of homotopic trajectories. While these trajectories are

parametrized by a low dimensional variable vector, the problem can be reduced to obtain

real-time applicability.

One may argue that the use of linearized dynamics leads to only coarse predictions for

states being far away from xk (typically those states predicted to be attained for times

k + j|k). However, since the linearization is adapted in any time-step k, the predictions for

the considered example show only small deviations to the original nonlinear dynamics, when

the online-control method is applied.

In addition, to guarantee that no collision between the links of the robot and the obstacle

occur, the robotic manipulator can be approximated by a set of particles along each link of

the robot, which likewise are considered in the homotopic control method, when selecting a

collision-free homotopic trajectory. Papers on the homotopic control method with application

to the robotic manipulator dynamics are in preparation, as well as papers on cooperative

manufacturing for multiple robots.

5.2 Approximated Modeling of Automated Vehicles for Online Control

The case study of automated driving as in UnCoVerCPS constitutes an example of a CPS

being composed of several subsystems (representing the automated vehicles) which evolve

over time in interacting / cooperative manner. The number of vehicles involved in a scenario

determines the information exchanged through the communication network and the number

of restrictions to be considered for the driving plans of each vehicle. This requires suitable

procedures for any vehicle to select the relevant information and to compute timely a suitable

trajectory compliant to the current constraint. A basic cooperative objective is obviously

that the local maneuvers of the single vehicles guarantee safety with respect to avoiding

inter-vehicle collision. One possibility to achieve this is to over-approximate for any vehicle

the region of possible positions over a future time span, and to exclude this region from the

planning space available for the other vehicles. The following description presents a modeling

concept as basis of vehicle planning techniques. First, an appropriate nonlinear model of the

vehicle dynamics is provided, and then a collision avoidance scheme is presented to discuss

different approximating models in a predictive planning algorithm.
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In deliverable D5.1, a model of the vehicle dynamics for the case study of automated

driving was already reported. The model structure was that of a bicycle model, which is

quite frequently used in trajectory planning and vehicle control. The model in D5.1 was

tailored to constant longitudinal velocity – here, we instead intend to use this velocity as

degree of freedom and thus consider a slightly more general model as motivated by [58].

Consider the variables and notation as shown in Fig.23, where COG abbreviates ’center of

gravity’ (positioned in the vehicle center), a and b are the distances of the front and rear axes

to the COG[m], and m is the mass of the vehicle [kg].

Assume that the state of the vehicle is modeled by the following six state variables:

� x1: longitudinal velocity vx [m/s] in the local coordinate system,

� x2: lateral velocity vy [m/s] in the local coordinate system,

� x3: yaw rate [rad/s],

� x4, x5: position in the world coordinate system,

� x6: angle to the lateral axis α in the world coordinate system,

while the inputs are:

� u1, u2: front left/right tire torque [ratio],

� u3: steering angle [rad] of the front tires.

Then, the vehicle dynamics in a world coordinate system can be described by the following

state-space model:

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















x1x3 +
1
m
(Cx(u1 + u2)cos(u3)− 2Cy(u2 −

x2+ax3

x1
)sin(u3))

−x1x3 +
1
m
(Cx(u1 + u2)sin(u3) + 2Cy(u3 −

x2+ax3

x1
)cos(u3) + 2Cy

bx3−x2

x1
)

J(a(Cx(u1 + u1)sin(u2)) + 2Cy(u2 −
x2+ax3

x1
cos(u2))− 2bCy

bx3−x2

x1
)

x1cos(x6) + x2sin(x6)

x1sin(x6)− x2cos(x6)

x3

















.

(80)

Here, Cx and Cy represent the longitudinal and lateral tire stiffness, for the moment of in-

ertia applies J = 1
0.5(a+b)2m

, and we assume the following parametrization: m = 1700kg,

a = b = 1.5m, Cx = 150000 and Cy = 40000 in the rest of this chapter.
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a[m]

b[m]

δ = u3[rad]

Fx,FR[N ]Fx,FL[N ]

Fy,FR[N ]Fy,FL[N ]

r = x3[rad/s]

vx = x1[m/s]

vy = x2[m/s]

COG

u1[ratio]

u2[ratio]

m[kg]

Figure 23: Scheme of a vehicle with relevant variables.

For control techniques involving online optimization (such as the schemes of distributed

model predictive control investigated in WP2), the model is too complex for real-time solution.

A natural work-around is to transfer the model to discrete time and to linearize it around

the current state x(tk) at any discrete point of time tk. Then, the question arises how well

such a model can be used for online prediction and optimization – this point is studied in the

following.

Let the model (80) first be discretized using a zero-order hold approximation of the input,

and a sampling time δ(t) = tk+1 − tk of 0.2 sec, which is suitable given the time constants of

the model. If the resulting model of type:

xk+1 = Ax̄k,ūk
xk +Bx̄k,ūk

uk +Rx̄k,ūk
(81)

with k ∈ N0 is subsequently linearized around the current state x̄k and input ūk, a model of

the structure:

xk+1 = Ax̄k,ūk
xk +Bx̄k,ūk

uk +Rx̄k,ūk
(82)

is obtained, where the matrices Ax̄k,ūk
, Bx̄k,ūk

, and Rx̄k,ūk
are specific for the linearization

point and the discretization time.

Let us now focus on a reach-avoid problem, in which the autonomously driving vehicle

has to reach a goal position from the current position while circumventing an obstacle, as
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sketched in Fig.24.
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Figure 24: The dark rectangle represents a convex obstacle in between the current position xk and

a goal position xf . The blue rectangle represents the vehicle.

For the numeric study, let the current position be given as xk = [3, 0, 0, 25, 40, 0]T , the

goal position as xf = [0, 0, 0, 40, 40, 0]T , and the obstacle P be modeled by:

P :=







x|











0 0 0 1 0 0

0 0 0 −1 0 0

0 0 0 0 1 0

0 0 0 0 −1 0











x ≤











8

−2

41

−39

















(83)

Furthermore, let the restriction of the vehicle to the region of the street be represented by

limiting the vertical position to the range: x5 ∈ [34, 46]. To consider restrictions of the

longitudinal velocity, the lateral velocity, the yaw rate as well as the slip and steering angle,

the following constraints are added:

x1 ∈ [−5, 15], x2 ∈ [−5, 5], x3 ∈ [−0.5, 0.5], u1 = u2 ∈ [−0.002, 0.002], u3 ∈ [−0.2, 0.2].

(84)

Now, by adopting x̄k = xk and ūk = [0, 0, 0]T , exemplarily the following parametrization of

(82) is obtained:

xk+1 =

















1 0 0 0 0 0

0 0.0019 −0.0079 0 0 0

0 0 0.0434 0 0 0

0.2 0 0 1 0 0

0 −0.0318 0.0322 0 1 0.6

0 0 0.061 0 0 1

















xk +

















17.6470 17.6470 0

0 0 1.4097

0 0 0.9566

1.7647 1.7647 0

0 0 −0.2084

0 0 0.1390

















uk

(85)

With reference to the general model definition of CPS provided in Sec. 2, this setting refers

to a subsystem with discrete-time time-varying linearized dynamics, and a state constraint
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imposed by the condition xk /∈ P for any k. The complement of P is identical to the space

encoded by an invariant function Iz in Def. 3 (Sec.2). While, for simplicity of notation, the

obstacle was here introduced as being static, the extension to time-varying state constraints

(stemming from the region occupied by a moving other vehicle) is straightforward.

To solve the reach-avoid problem online by a technique like model-predictive control (as

investigated in Task 2.2), the following a cost functional Ω is defined:

Ω =

H−1∑

j=0

(xk+j+1|k − xf )
TQ(xk+j+1|k − xf ) + (uk+j|k)

TR(uk+j|k), (86)

with Q = QT ≥ 0 and R = RT > 0.

The minimization of Ω is complemented by the constraints listed above, as well as by collision

avoidance constraints. These can be formulated by linear inequalities which are enforced by

binary variables implying that the vehicle is on the safe side of hyperplanes determining the

boundary of the space occupied by the obstacle. The result is an optimization problem of

the type MIQP (Mixed Integer Quadratic Programming), for which the solution (if existing)

leads to a feasible, collision-free vehicle trajectory, see Fig.25. The corresponding input signal

is shown in Fig.26.

-30 -20 -10 0 10 20 30 40

34

36

38

40

42

44

46

xk xf

Figure 25: Trajectory planned at time tk over a prediction horizon of H = 50 steps.
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Figure 26: Input trajectory for the state trajectory shown in Fig. 25: the left figure shows the tire

forces (u1 = u2), while the right figure illustrates the steering angle.

When applying the same input trajectory to the original nonlinear dynamics (80), it

becomes obvious from Fig.s27 and 28 that the approximation error remains relatively small
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Figure 27: Comparison of vehicle trajectory planned at time tk for the approximating linear (green)

and the original nonlinear dynamics (magenta).
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Figure 28: Comparison of all states for the cases referenced in Fig. 27: planned state trajectory

for the linear dynamics (red), and the one obtained for the nonlinear dynamics (blue) with the same

input trajectory.

for the first 20 steps, but increases afterwards. However, if a repeated optimization (planning)

is applied in any time tk (as in model-predictive control), the the deviations for later points

of time within the prediction horizon are compensated, and the model accuracy can be rated

as sufficiently good for development and application of the MPC techniques for CPS, as

described in deliverable D2.2. This can be seen in Fig. 29, showing the solution for an MPC

scheme using linearization in any tk and a prediction horizon of H = 15, such that the goal

state xf is reached in 66 steps withou collision.

To further improve the model accuracy, in particular for larger horizons, the use of hy-

brid dynamics is a suitable extension. Especially, if the vehicle has to accomplish one or

more swerves within one prediction, the approximation error may significantly increase with

respect to changes of x3 (yaw rate) and x6 (angle to the lateral axis in the world coordinate
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Figure 29: Vehicle trajectory obtained by using MPC with a prediction horizon of H = 15.

system). Fig.30 shows a case where the initial position of the vehicle is selected near to an

obstacle (compare to the example in Fig.27, which means a swerve should be accomplished

immediately): the optimization result obtained is unsuitable for the nonlinear model (as it

leads to collision), while the computation time is relatively high.
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Figure 30: If the lateral initial position is selected to be -10 instead of -25 (the value in Fig.27),

while the other settings are kept constant, a larger approximation error between the trajectories of

the linear and nonlinear model are obtained.

Note that if the vehicle is driving straight along its longitudinal direction in the local

coordinate system (i.e. x2 = 0, x3 = 0 and u3 = 0), then the state-space model takes the

following from:

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















Cx

m
u1 +

Cx

m
u2

0

0

x1cos(x6) + x2sin(x6)

x1sin(x6)− x2cos(x6)

0

















, (87)
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which can be further rewritten to:

















ẋ1

ẋ2

ẋ3

ẋ4

ẋ5

ẋ6

















=

















0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

cos(x6) sin(x6) 0 0 0 0

sin(x6) −cos(x6) 0 0 0 0

0 0 0 0 0 0
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Cx

m
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m
0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0
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u2
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(88)

Now, if the angle to the lateral axis (x6) selected to be inside a finite set of constant values

V = {v1, v2, · · · , vnv} instead of being a real variable (in [0, 2Π]), then, the state-space model

(88) is linear and time-invariant for any x6 ∈ V. After eliminating the constant states and

inputs in (88), the original state-space model (80) can be approximated by using the following

hybrid dynamics:











ẋ1

ẋ2

ẋ4

ẋ5











=











0 0 0 0

0 0 0 0

cos(x6) sin(x6) 0 0

sin(x6) −cos(x6) 0 0
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+











Cx

m
Cx

m

0 0

0 0

0 0














u1

u2



 , x6 ∈ V (89)

The model (89) is actually describing a straight-driving behavior of the vehicle with differ-

ent driving directions. Clearly, this approach omits the state evolution during a change of

the driving direction. Motivated by the work in [7]), one can determine a controller Kvi,vj ,

∀vi, vj ∈ V and a set of states Xvi ,Xvj , such that applies: if xk+j|k ∈ Xvi , then through ap-

plying the controller Kvi,vj , a change of the driving direction from vi to vj within Hvi,vj > 0

steps can be realized, and the constraint xk+j+Hvi,vj
|k ∈ Xvj is satisfied. With the determi-

nation of the controller Kvi,vj , the time step Hvi,vj > 0, and setting Xvi and Xvj , ∀vi, vj ∈ V,

we can obtain the following result by solving the same problem as was done in Fig. 30. (The

set V is selected to be V = {0, Π8 ,−
Π
8 }).
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Figure 31: Comparison between the planned trajectory (in green) by using model (89), and the

trajectory generated for the nonlinear model (magenta).
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Figure 32: Sequence of the events in x6 for all predicted steps, where ’1’ represents ’x6 = 0’, ’2’

represents ’x6 = −Π

8
’ and ’3’ represents ’x6 = Π

8
’.

Obviously, the new model results in a much smaller approximation error than the one in

Fig.30. Therefore, with the help of (89), much better plans can be computed based on more

accurate predictions. As the optimization of hybrid systems usually involves binary variables

(what typically increases the computation time significantly), different methods have been

developed for this case and are described in Deliverable 2.2.

5.2.1 Conclusions

Starting from a four-wheel vehicle dynamics in state-space realization, we have discussed

different model approximations in form of discrete-time and time-varying linearizations with

respect to the suitably for MPC schemes to solve reach-avoid problem for vehicles online.

The numerical studies show that:

� the use of linearized discrete-time approximations in an optimization-based scheme is

mandatory to obtain the optimization results timely,

� the deviations between the results for the original and the approximated model are

largely compensated by the adapted linearization and the repetitive optimization as

used in MPC,

� larger deviations for particular driving scenarios are avoided by using a hybrid dynam-

ics which includes tailored linearizations for different driving modes (here modeled by

selected discrete values of the state variable x6).

Note that the modeling of one vehicle as described before extends straightforwardly to the case

of groups of vehicles: Let the obstacles (as the one denoted by P) refer to the predicted and

communicated (or estimated) trajectories of other interacting vehicles. Then the complement

of this occupied space defines the free space on which the vehicle can plan its own trajectory.

To ensure convergence of the optimization, the free space should be defined by invariant

functions Ii
zi
(tk) (see Def. 3 in Sec. 2) which determine convex sets.
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Note that a multi-vehicle scenario, in which the dynamics of each vehicle is represented

by hybrid dynamics, in which the vehicles communicate planned trajectories, and in which

collision avoidance is cast into time-varying constraints leads exactly to the model class of

CPS with networked, time-varying, and hybrid dynamics as specified in Def. 3 and 4 of

Sec. 2.

In order to ensure recursive feasibility of the MPC scheme, the tasks 2.2 and 2.3 of

WP2 investigate which conditions have to be formulated for admissible replanning of the

state trajectories of the involved automated vehicles. These investigations also include the

study to which degree the planning of the vehicles should be combined (in a cooperative /

centralized scheme), or executed in decentralized fashion.
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6 Summarizing Conclusions

This document has reported on the type of models and the set of techniques for modeling

and model transformation as investigated in UnCoVerCPS. The contributions are as follows:

� A general model class for CPS has been proposed which combines properties of net-

worked, hybrid, and time-varying models, and by this extends existing definitions of

cyber-physical systems. These properties are (in combination or separately) relevant

for the developments of methods for control and verification as envisaged in WP2 and

WP3 of the project. It was shown for an example how subsystems of the general model

(including the coupling to other subsystems) can be represented in the tool SpaceEx.

Furthermore, the relation to the (more restricted) model classes underlying the tech-

niques of model transformation has been pointed out.

� A method for conformance verification has been proposed which checks whether a con-

crete model conforms to an abstract one in the sense that a trace of the first is contained

in the set of behaviors of the latter. For this purpose, a conformance monitor with

hybrid dynamics was defined, for which verification with SpaceEx reveals, whether con-

formance applies. This technique is particularly useful if initial high-level specifications

of controllers are refined to more detailed representations.

� In the context of verifcation, two approaches for model reduction have been described:

The first one shows how balanced truncation can be used to approximate continuous-

time switched affine systems by switched linear systems of reduced order, but with state

resets. The second one simplifies the structure of discrete-time mixed-logical dynamical

systems (an equivalent to piecewise-affine systems) by using a notion of obervability,

while the input/ouput behavior is preserved. The ideas presented here include to remove

the non-observable part of the dynamics, and to merge modes with the same dynamics.

All options contributed to reduce the compuational burden of system verification.

� With specific relation to two of the project case studies, methods for providing appropri-

ate models for online control were proposed: For reach-avoid problems in robot-human

interaction, a modeling scheme has been presented which starts from the nonlinear

continuous-time robot dynamics, and then step-by-step reduces the model (including

the constraints arising from human motion) to a format which is amenable to an online

optimizing control technique based on homotopies. Likewise, for a reach-avoid problem

within an automated driving scenario, different model approximations were discussed
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with respect to model accuracy and computational effort in solving online optimization

problems for trajectory planning and control.

Overall, the proposed techniques provide a toolset for modeling and model transformation

which is suitable as basis for the development of the methods for control synthesis and

verification as carried out in WP2 and WP3 of the project. Note that the latter methods itself

establish in certain steps additional means of model transformation (as, e.g., the mapping of

the robot dynamics according to (76) into a space of homotopic trajectories, as described in

D2.2).
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