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1 INTRODUCTION

1 Introduction

Cyber-physical systems are pervasive in many sectors, and in particular in the energy and

transportation domains. In order to ensure a safe, reliable, but at the same time high

performance operation of the underlying systems, traditional methods need to be revisited,

and conceptually new approaches need to be developed.

The challenges are immense since these systems are growing ever more complex: they

typically include, not only the interleaving between software logic components and physical

continuous elements, but also the interconnection of many subsystems that can interact either

physically or via information exchange through a communication network, thus bringing

networked cyber-physical systems into the picture.

In this report we address explicitly the interacting and distributed nature of complex

cyber-physical systems arising in the energy and transportation application domains, proposing

solutions that account for three main complexity features that are prominent in such systems:

i) heterogeneity – the subsystems composing a large scale system may have different

parameters, objectives, physical and/or technological constraints,

ii) uncertainty – each subsystem is affected by both endogenous (e.g., incomplete knowledge

of some of the underlying processes) and exogenous (e.g., environmental) uncertainties,

iii) locality of information – not all interacting subsystems are willing to share information

relevant to their processes and/or not all communication links may be available.

According to the type of application, the interacting subsystems may cooperate to achieve

some overall objective, or they may act in a non-cooperative manner, seeking to achieve their

individual objectives. Each case poses different information constraints and calls for different

algorithmic solutions. Therefore, to capture all types of objectives that may underly decision

making problems in complex interacting systems, both cooperative and non-cooperative

set-ups have been considered.

In Section 2 of this deliverable, we describe the cooperative solutions developed within

work package 2. Studies on a non-cooperative set-up have been performed as well within

work package 2. The interested reader is referred to [1, 2] where the Nash equilibrium of the

associated game is characterized and a decentralized algorithm is proposed for its computation.

Interestingly, as the number of agents grows to infinity, the Nash equilibrium tends to the

social optimum of the centralized cooperative version of the problem.

The crucial part of designing a cyber-physical system with (fully or partially) automated

behavior is to equip the cyber-component with algorithms for control and planning, which affect
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1 INTRODUCTION

the physical part (through actuation devices) consistent to given specifications. Algorithms for

control and planning of a system interacting with a dynamic environment have to be reactive,

i.e., specifications have to be satisfied also for time-varying interactions with the environment.

In addition, the specifications like goals to be attained or safety restrictions to be enforced may

change over time. This is indeed the case of automated driving or human-robot interaction,

since not all behavior of the environment possibly occurring during operation can be foreseen

and an off-line a-priori solution that accounts for all possible behaviors will be too conservative

and even infeasible. This motivates the investigation of online techniques for decision making

within work package 2.

For many realizations of cyber-physical systems (partial) modeling or identification of the

physical behavior of the system and the environment is possible, thus enabling the use of model-

based predictions for decision making. This jointly with the need to account for constraints

(e.g., collision avoidance in automated driving or sharing of resources as storage systems in

a smart grid) suggests the use of Model Predictive Control (MPC). The investigations in

this work package aim at extensions of MPC to networked cyber-physical systems affected by

real-time constraints. Distributed MPC solutions are discussed in Section 3 with reference to

the class of piecewise-affine systems with time-varying constraints and discrete inputs.

The success of applying an MPC scheme will be inherently bound to the question whether

the optimization in each MPC iteration can be completed timely. The computational complex-

ity is largely determined by the combinatorics of the discrete-event part of the hybrid dynamics

and the number of constraints for the continuous variables (both depending on the time

setting). In Section 4 of this deliverable we illustrate techniques to enhance the computational

efficiency in determining suboptimal and approximated solutions. While a certain (small)

loss of performance seems acceptable in favor of an enhanced real-time computability, the

requirement of maintaining certain key requirements like stability and feasibility has to be

kept.

This deliverable presents contributions developed within work package 2 of the UnCoVer-

CPS project that go beyond the state of the art in several directions:

� the approaches for distributed optimization in multi-agent systems described in Section

2 are able to jointly cope with heterogeneity, locality of information, and uncertainty,

and are also resilient to communications failure. They work also for non-differentiable

functions and are numerically more stable than sub-gradient based techniques;

� the method described in Section 3 extends existing algorithms for distributed model

predictive control to switching affine dynamics;
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1 INTRODUCTION

� Section 4 introduces new methods of distributed model predictive control, in which the

effects of interacting subsystems are cast into time-varying constraints, and which are

tailored to low online computational effort. More specifically, the method in Section 4.2

extends existing schemes to mixed inputs, while the method in Section 4.3 uses offline

designed control laws to react to changing state constraints very fast.

Various examples of application to the case studies in work package 5 on smart grid (and

related energy management problems), automated driving, and human-robot interaction are

presented alongside the theoretical developments in Sections 2, 3, and 4. The goal is to show

the performance of the proposed approaches for distributed optimization and MPC with

enhanced computational capabilities on simple, easy to interpret, numerical examples. The

concluding Section 5 provides an outlook on possible transfer of the described approaches to

more complex instances of the case studies in work package 5.
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2 DISTRIBUTED OPTIMIZATION

2 Distributed Optimization

2.1 Introduction

In this section we present the results developed within work package 2 on distributed co-

operative optimization for networked systems composed by interacting heterogeneous sub-

systems, [3–6]. The agents decisions are coupled via common decision vectors (see [3, 4])

or joint constraints like in the case of resource sharing (see [5, 6]), whilst the cost function

to be minimized has a separable structure. The communication structure of the network

can be time-varying and commute between different topologies, which makes the algorithm

resilient to (temporary) failures. In the case of definitive communication failures that break

the network in two or more sub-networks, a feasible though sub-optimal solution can be found

in the resource sharing case (see Remark 2.4).

Examples of application to energy systems will be presented alongside the theoretical

developments, to the purpose of illustrating the effectiveness of the proposed methods.

References to the related literature will be given when presenting the specific application.

This will also serve the purpose of showing the connection with the smart grid case study in

work package 5.

We also address the case where the agents’ constraint sets are affected by a possibly

common uncertainty vector. Our approach is particularly suited for data-driven optimization

where agents are provided with a given set of uncertainty realizations, a setting that is not

addressed in the literature. Also, we differentiate from existing approaches in that we do not

impose any assumptions on the distribution of the uncertainty neither on geometry of the

uncertainty sets. Overall, we offer a unifying framework for distributed optimization, since we

take into account time-varying graphs, constraints and uncertainty, features that are typically

treated separately in the literature. Results are proven under some assumptions, which are

actually standard in the related literature. The only restrictive assumption is convexity, which

is however needed not only for proving consensus and optimality but also for computational

purposes. Additional assumptions regarding the connectivity of the possibly time varying

communication graph are needed to allow information to reach all the agents in the network.

Also, parameters in the distributed algorithms need to be appropriately tuned to enforce

consensus and optimality at the same time. These latter assumptions are not restrictive at all

but part of the design.

Within work package 2, we also studied the cases when the coupling is due to the cost

function only or to both cost function and constraints. The interested reader is referred to
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2 DISTRIBUTED OPTIMIZATION

the work presented in [7,8] and [9], where decentralized schemes with a central unit collecting

some pieces of information from all agents are introduced to cope with those set-ups.

In all our work on distributed and decentralized optimization, we address static problems.

However, problems with discrete-time dynamics can actually be reformulated into static ones

by propagating the dynamics in time, thus expressing the system state as a function of the

initial condition and the decision variables/inputs, and substituting it in the objective and

the constraint functions.

As for continuous time systems, the interested reader is referred to the related literature on

distributed optimization, e.g., [10–15], and references therein.

2.2 Coupling via global decision variables

We consider a time-varying network of m agents that communicate to cooperatively solve an

optimization problem of the form

P : min
x∈Rn

m∑
i=1

fi(x) (1)

subject to x ∈
m⋂
i=1

Xi,

where x ∈ Rn represents a vector of n decision variables. For each i = 1, . . . ,m, fi(·) : Rn → R

is the objective function of agent i, whereas Xi ⊆ Rn is its constraint set. Xi is supposed

to represent all constraints to the decision vector imposed by agent i, including explicit

constraints expressed e.g., by inequalities like hi(x) ≤ 0 and restrictions to the domain of the

objective function fi.

Since most of the subsequent results are based on fi(·) and Xi being convex, we formulate

the following assumption:

Assumption 2.1 [Convexity] For each i = 1, . . . ,m, the function fi(·) : Rn → R and the

set Xi ⊆ Rn are convex.

Problem P cannot be solved in a centralized fashion if fi(·) and Xi represent private infor-

mation, available only to agent i, and even if all necessary information (objective functions

and constraint sets) was available to all agents, imposing all the constraints in one shot, by

encoding
⋂m
i=1Xi, may result in a computationally intensive program. To alleviate this and

account for information privacy, we follow a distributed, iterative approach, where each agent

i solves an appropriate, local optimization problem and exchanges information with other

agents based on the outcome of this optimization.
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2 DISTRIBUTED OPTIMIZATION

Algorithm 1 Distributed algorithm

1: Initialization
2: Set {aij(k)}k≥0, for all i, j = 1, . . . ,m.
3: Set {c(k)}k≥0.
4: k = 0.
5: Consider xi(0) ∈ Xi, for all i = 1, . . . ,m.
6: For i = 1, . . . ,m repeat until convergence
7: zi(k) =

∑m
j=1 a

i
j(k)xj(k).

8: xi(k + 1) = arg minxi∈Xi fi(xi) + 1
2c(k)‖zi(k)− xi‖2.

9: k ← k + 1.

We will show that under certain structural and communication assumptions agents reach

consensus to an optimal solution of P (note that P does not necessarily admit a unique

solution). The basic steps of the proposed approach are summarized in Algorithm 1. Initially,

each agent i, i = 1, . . . ,m, starts with some tentative value xi(0), which constitutes its estimate

of what a minimizer of P might be (step 5, Algorithm 1). This estimate belongs to the local

constraint set Xi of agent i, but not necessarily to
⋂m
i=1Xi. One sensible choice for xi(0) is to

set it such that xi(0) ∈ arg minxi∈Xi fi(xi). At iteration k, each agent i constructs a weighted

average zi(k) of those solutions xj(k), j = 1, . . . ,m, communicated by the other agents and

its local one (step 7, Algorithm 1). Coefficient aij(k) ∈ R+ ∪ {0} indicates how agent i weights

the solution received by agent j at iteration k, and aij(k) = 0 encodes the fact that agent

i does not require any information from agent j at iteration k, or the communication link

between agents i and j is not active at iteration k. Agent i then solves a local minimization

problem, seeking the optimal solution within Xi that minimizes a performance criterion, which

is defined as a linear combination of the local objective function fi(xi) and a quadratic term,

penalizing the difference from zi(k) (step 8, Algorithm 1). The relative importance of these

two terms is dictated by c(k) ∈ R+. Note that, under Assumption 2.1 and due to the presence

of the quadratic penalty term, the resulting problem is strictly convex with respect to xi, and

hence admits a unique solution.

We impose some additional assumptions on the structure of problem P in (1) and the

communication set-up that is considered in this work. In particular, we shall show that

Algorithm 1 provides a fully distributed implementation, where agent i uses information only

from neighboring agents. This information exchange is time-varying, since the weighting

coefficients depend on the iteration index k, and may be occasionally the empty set.

Assumption 2.2 [Compactness] For each i = 1, . . . ,m, Xi ⊆ Rn is compact.

Assumption 2.3 [Interior point] The feasibility region
⋂m
i=1Xi of P has a non-empty inte-

rior, i.e., there exists x̄ ∈ ⋂m
i=1Xi and ρ ∈ R+ such that {x ∈ Rn : ‖x− x̄‖ < ρ} ⊂ ⋂m

i=1Xi.
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2 DISTRIBUTED OPTIMIZATION

Due to Assumption 2.3, by the Weierstrass’ theorem (Proposition A.8, p. 625 in [16]),

P admits at least one optimal solution. Therefore, if we denote by X∗ ⊆ ⋂m
i=1Xi the set of

optimizers of P, then X∗ is non-empty. Notice also that fi(·), i = 1, . . . ,m, is continuous

due to the convexity condition of Assumption 2.1; the addition of Assumption 2.2 is to imply

Lipschitz continuity. However, fi(·), i = 1, . . . ,m, is not required to be differentiable.

The reader should note that, differently from other approaches, we require an interior point

to exists, but we do not need the agents to actually compute it, which might be impractical

in a distributed set-up.

We impose the following assumption on the coefficients {c(k)}k≥0, that appear in step 8

of Algorithm 1. This assumption is similar to those in [17,18].

Assumption 2.4 [Coefficient {c(k)}k≥0] Assume that for all k ≥ 0, c(k) ∈ R+ and {c(k)}k≥0

is a non-increasing sequence, i.e., c(k) ≤ c(r) for all k ≥ r, with r ≥ 0. Moreover,

1.
∑∞

k=0 c(k) =∞,

2.
∑∞

k=0 c(k)2 <∞.

In standard proximal minimization [16] convergence is highly dependent on the appropriate

choice of c(k). Assumption 2.4 is in fact needed to guarantee convergence of Algorithm 1. A

direct consequence of the last part of Assumption 2.4 is that limk→∞ c(k) = 0. One possible

choice for {c(k)}k≥0 satisfying Assumption 2.4 is c(k) = α/(k + 1)β for some α ∈ R+ and

0.5 < β ≤ 1. Note that Assumption 2.4 is in a sense analogous to the conditions that the

authors of [17,18] impose on the step-size of their subgradient algorithm. It should be also

noted that our set-up is synchronous, using the same c(k) for all agents, at every iteration k.

Extension to an asynchronous implementation is a topic for future work.

In line with [19–21] we impose the following assumptions on the information exchange

between the agents.

Assumption 2.5 [Weight coefficients] There exists η ∈ (0, 1) such that for all i, j ∈ {1, . . . ,m}
and all k ≥ 0, aij(k) ∈ R+ ∪ {0}, aii(k) ≥ η, and aij(k) > 0 implies that aij(k) ≥ η. Moreover,

for all k ≥ 0,

1.
∑m

j=1 a
i
j(k) = 1 for all i = 1, . . . ,m,

2.
∑m

i=1 a
i
j(k) = 1 for all j = 1, . . . ,m.

For each k ≥ 0 the information exchange between the m agents can be represented by

a directed graph (V,Ek), where the nodes V = {1, . . . ,m} are the agents and the set Ek of
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2 DISTRIBUTED OPTIMIZATION

directed edges is given by

Ek =
{

(j, i) : aij(k) > 0
}
, (2)

i.e., at time k agent i receives information (estimate xj(k)) from agent j, and this information

is weighted by aij(k). From (2), in the absence of communication we set aij(k) = 0. If aij(k) > 0

we say that j is a neighboring agent of i at time k. Under this set-up, Algorithm 1 provides

a fully distributed implementation, where at iteration k each agent i = 1, . . . ,m receives

information only from neighboring agents.

Let E∞ =
{

(j, i) : (j, i) ∈ Ek for infinitely many k
}

denote the set of edges (j, i) that

represent agent pairs that communicate directly infinitely often. We then impose the following

connectivity and communication assumption.

Assumption 2.6 [Connectivity and Communication] The graph (V,E∞) is strongly con-

nected, i.e., for any two nodes there exists a path of directed edges that connects them.

Moreover, there exists T ≥ 1 such that for every (j, i) ∈ E∞, agent i receives information

from a neighboring agent j at least once every consecutive T iterations.

Assumption 2.6 guarantees that any pair of agents communicates directly infinitely often,

and the intercommunication interval is bounded.

The interpretation of having a uniform lower bound η, independent of k, for the non-zero

coefficients aij(k) in Assumption 2.5 is that it ensures that each agent is mixing information

received by other agents at a non-diminishing rate in time [17]. Moreover, Conditions 1

and 2 in Assumption 2.5 ensure that this mixing is a convex combination of the other agent

estimates, assigning a non-zero weight to its local one due to the fact that aii(k) ≥ η.

For further details on the interpretation of the imposed network structure the reader is

referred to [17,22].

Assumptions 2.5 and 2.6 are identical to Assumptions 2-5 in [17] (the same assumptions

are also imposed in [18]), but were reported also here to ease the reader and facilitate the

exposition of our results. Note that these are rather standard for distributed optimization

and consensus problems; for possible relaxations the reader is referred to [21,23].

Remark 2.1 (weights computation) Satisfying Assumption 2.5 requires agents to agree

on an infinite sequence of doubly stochastic matrices (double stochasticity arises due to

conditions 1 and 2 in Assumption 2.5), where aij(k) would be element (i, j) of the matrix at

iteration k. This agreement could be performed prior to the execution of the algorithm in a

centralized manner, and the resulting matrices communicated to all agents via some consensus
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2 DISTRIBUTED OPTIMIZATION

scheme; this is standard in distributed optimization algorithms of this type (see also [17,18,21]).

Alternatively, in the symmetric case when aij(k) = aji (k), i, j = 1, . . . ,m, k ≥ 0, the distributed

algorithm in [24] can be adopted. This requires each pair (i, j) of agents that can communicate

over a bi-directional link to exchange their planned weighting coefficients âij(k) and âji (k)

together their solutions xi(k) and xj(k) and then setting aij(k) = aji (k) = min{âij(k), âji (k)}.

Algorithm 1 terminates if the iterates maintained by all agents converge. From an

implementation point of view, agent i, i = 1, . . . ,m, will terminate its update process if

the absolute difference (relative difference could also be employed) between two consecutive

iterates ‖xi(k+ 1)− xi(k)‖ keeps below some user-defined tolerance for a number of iterations

equal to T (see Assumption 2.6) times the diameter of the graph (that is, the greatest distance

between any pair of nodes that are connected via an edge in E∞). This is the worst case

number of iterations required for an agent to communicate with all other agents in the network;

note that if an agent terminated the process at the first iteration where the desired tolerance

is met, then convergence would not be guaranteed since its tentative solution may still change

as an effect of other agents updating their solutions.

The proposed iterative methodology resembles the structure of proximal minimization

for constrained convex optimization [16, Chapter 3.4.3]. The difference, however, is that our

set-up is distributed and the quadratic term in step 8 does not penalize the deviation of xi

from the previous iterate xi(k), but from an appropriately weighted average zi(k). Note that,

in contrast with the inspiring work in [17, 18, 25] addressing P under a similar set-up but

following a projected subgradient approach, our proximal minimization-based approach allows

for an intuitive economic interpretation: at every iteration k we penalize a consensus residual

proxy by the time-varying coefficient 1/(2c(k)), which, due to Assumption 2.4, progressively

increases. This can be thought of as a pricing settling mechanism, where the more we delay

to achieve consensus the higher the price is.

In the case where aij(k) = 1/m for all i, j = 1, . . . ,m, for all k ≥ 0, that corresponds to a

decentralized control paradigm, the solution of our proximal minimization approach coincides

with the one obtained when the alternating direction of multipliers [16], [26], is applied to

this problem (see eq. (4.72)-(4.74), p. 254 in [16]). In the latter the quadratic penalty term is

not added to the local objective function as in step 8 of Algorithm 1, but to the Lagrangian

function of an equivalent problem, and the coefficient c(k) is an arbitrary constant independent

of k; however, a dual-update step is required. Formal connections between penalty methods

and the method of multipliers have been established in [27].

Remark 2.2 (Application to a specific problem structure) Algorithm 1 can be sim-
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2 DISTRIBUTED OPTIMIZATION

plified when the underlying optimization problem exhibits a specific structure, namely agents

need to agree on a common decision vector y ∈ Rn̄, but each of them decides upon a local

decision vector ui ∈ Rni, i = 1, . . . ,m as well:

min
y∈Rn̄,{ui∈Rni}mi=1

m∑
i=1

fi(y, ui)

subject to y ∈
m⋂
i=1

Yi, ui ∈ Ui, i = 1, . . . ,m, (3)

where Yi ∈ Rn̄ and Ui ⊆ Rni, for all i = 1, . . . ,m. Provided that Assumptions 2.1-2.6 hold

for problem (3) with x = (y, u1, . . . , um) and Xi = Yi × Rn1 × · · · × Ui × · · · × Rnm, we can

rewrite it as miny∈Rn̄
∑m

i=1 gi(y) subject to y ∈ ⋂m
i=1 Yi, where gi(y) = minui∈Ui fi(y, ui) and

simplify Algorithm 1 by replacing steps 7-8 with:

zi(k) =

m∑
j=1

aij(k)yj(k),

(
yi(k + 1), ui(k + 1)

)
= arg min

yi∈Yi,ui∈Ui
fi(yi, ui) +

1

2c(k)
‖zi(k)− yi‖2.

This entails that agents only need to communicate their local estimates yi(k), i = 1, . . . ,m, of

the common decision vector y while the local solutions related to ui, i = 1, . . . ,m, need not be

exchanged.

Under the structural assumptions and the communication set-up described above, Algo-

rithm 1 converges and agents reach consensus, in the sense that their local estimates xi(k),

i = 1, . . . ,m, converge to some minimizer of problem P. This is formally stated in the

following theorem, which constitutes the main contribution of our work in [3, 4].

Theorem 2.1 (Optimality) Consider Assumptions 2.1-2.6 and Algorithm 1. We have that,

for some minimizer x∗ ∈ X∗,

lim
k→∞

‖xi(k)− x∗‖ = 0, for all i = 1, . . . ,m. (4)

As a concluding remark, note that we provided a proximal minimization perspective to

the problem of distributed optimization over time-varying networks and in the presence of a

possibly different constraint set per agent. Proximal minimization serves as an alternative to

gradient methods, where, instead of a gradient (subgradient) step, a penalty term (proxy)

is introduced in the objective function of each agents’ local decision problem. As observed

in [28] with reference to incremental algorithms, the proximal minimization approach leads to

numerically more stable algorithms compared to their gradient-based counterparts. This will
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be shown in the numerical examples of Section 2.4.1 where Algorithm 1 is applied to power

control in cellular networks.

2.3 Coupling via constraints

In this section, we address a specific class of convex optimization problems over time-varying,

multi-agent networks, where each agent has its own decision vector, objective function, and

constraint set, and is coupled to the others via a constraint expressed as the non-positivity of

the sum of convex functions, each function corresponding to one agent.

More precisely, we consider the following optimization program

P : min
{xi∈Xi}mi=1

m∑
i=1

fi(xi)

subject to:
m∑
i=1

gi(xi) ≤ 0,

(5)

involving m agents that communicate over a time-varying network. xi ∈ Rni is the decision

vector of agent i, Xi ⊆ Rni its local constraint set, and fi(·) : Rni → R its objective function.

Each agent i, i = 1, . . . ,m, is contributing to the coupling constraint
∑m

i=1 gi(xi) ≤ 0 via

function gi(·) : Rni → Rp. Note that equality linear coupling constraints can be also dealt

with by means of P, by means of double-sided inequalities.

We propose a distributed iterative scheme based on a combination of dual decomposition

and proximal minimization. Under convexity assumptions and suitable connectivity properties

of the communication network, agents reach consensus with respect to the dual variables,

without disclosing information about their optimal decision, local objective and constraint

functions, nor about the function encoding their contribution to the coupling constraint.

The proposed algorithm converges to some optimal dual solution of the centralized problem

counterpart, while for the primal variables, we show convergence to the set of optimal primal

solutions.

Problem P could be solved, in principle, in a centralized fashion. However, if the number m

of agents is large, this may turn out to be computationally prohibitive. In addition, each agent

would be required to share its own information (coded via fi(·), Xi, and gi(·)) either with the

other agents or with a central unit collecting all information, which may be undesirable in

some cases, due to privacy issues.

Remark 2.3 (alternative formulation) Note that the approaches to distributed optimiza-

tion in [17, 22, 25, 29] and also the one presented in Section 2.2 (see [3, 4]) can be applied

to inequality-coupled problems by introducing a common decision vector collecting all local
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decision variables. This, however, immediately leads to the following two main drawbacks:

1. an increased computational and communication effort that scales as the number of agents

in the network since each agent has to generate local copies of the optimization variables

of all the other agents, which then are optimized and exchanged. In the approach in this

section instead agents need to optimize the local variables only and exchange the estimate

of the dual variables, which are as many as the number of coupling constraints. The

required local computational effort is thus much smaller. As for the communication effort,

the proposed approach is particularly appealing when the number of coupling constraints

is low compared to the overall dimensionality of primal decision variables;

2. privacy issues since the agents local information on the primal problem (namely, the

value of the local optimization variables, the local objective function, the local constraints,

and the contribution of the agent to the coupling constraint) should be exchanged and

they may represent sensitive data. In the algorithm proposed in this section, only the

local estimates of the dual variables are exchanged, and this secures maximum privacy

among agents.

We next formulate a distributed strategy that overcomes both the privacy and computa-

tional issues outlined above by resorting to the dual of (5).

Let us consider the Lagrangian function L(x, λ) : Rn × Rp+ → R given by

L(x, λ) =

m∑
i=1

Li(xi, λ) =

m∑
i=1

{
fi(xi) + λ>gi(xi)

}
,

where x = [x1
> · · · xm>]>∈ X = X1 × · · · ×Xm ⊆ Rn, with n =

∑m
i=1 ni, whereas λ ∈ Rp+ is

the vector of Lagrange multipliers (Rp+ denotes the p-th dimensional non-negative orthant; in

the sequel we shall sometimes write λ ≥ 0 in place of λ ∈ Rp+).

Correspondingly, we can define the dual function as

ϕ(λ) = min
x∈X

L(x, λ), (6)

which, due to the separable structure of objective and constraint functions in problem P (see

(5)), can be expressed as

ϕ(λ) =
m∑
i=1

ϕi(λ) =
m∑
i=1

min
xi∈Xi

Li(xi, λ), (7)

where each ϕi(·) is a concave function representing the dual function of agent i.
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Algorithm 2 Distributed algorithm

1: Initialization

2: k = 0.

3: Consider x̂i(0) ∈ Xi, for all i = 1, . . . ,m.

4: Consider λi(0) ∈ Rp+, for all i = 1, . . . ,m.

5: For i = 1, . . . ,m repeat until convergence

6: `i(k) =
∑m

j=1 a
i
j(k)λj(k).

7: xi(k + 1) ∈ arg minxi∈Xi fi(xi) + `i(k)>gi(xi).

8: λi(k + 1) = arg maxλi≥0

{
gi(xi(k + 1))>λi − 1

2c(k)‖λi − `i(k)‖2
}

9: x̂i(k + 1) = x̂i(k) + c(k)∑k
r=0 c(r)

(xi(k + 1)− x̂i(k)).

10: k ← k + 1.

Given these definitions, the dual of problem P in (5) can be expressed as:

D : max
λ≥0

min
x∈X

L(x, λ),

or, equivalently, as

D : max
λ≥0

m∑
i=1

ϕi(λ). (8)

The coupling between agents is given in (8) by the fact that λ is a common decision vector

and the agents should agree on its value.

Algorithm 2 is a distributed iterative scheme that aims at reconstructing the solution to

both the dual problem (8) and the primal problem (5) by exchanging a minimal amount of

information among agents. Its steps are explained hereafter.

Each agent i, i = 1, . . . ,m, initializes the estimate of its local decision vector with

x̂i(0) ∈ Xi (step 3 of Algorithm 2), and the estimate of the common dual variables vector

with a λi(0) ∈ Rp+ that is feasible for problem D (step 4 of Algorithm 2). A sensible choice

is to set x̂i(0) ∈ arg minxi∈Xi fi(xi), and λi(0) = 0, i = 1, . . . ,m, which corresponds to the

solution of problem (5) when coupling constraints are neglected.

At every iteration k, k ≥ 1, each agent i computes a weighted average `i(k) of the dual

variables vector based on the estimates λj(k), j = 1, . . . ,m, of the other agents and its own

estimate (step 6). The weight aij(k) that agent i attributes to the estimate of agent j at

iteration k is set equal to zero if agent i does not communicate with agent j at iteration k.

Then, Algorithm 2 alternates between a primal and a dual update step (step 7 and step 8,

respectively). In particular, step 7 performs an update of the local primal vector xi(k + 1) by

minimizing Li evaluated at λ = `i(k) as in dual decomposition, whereas, differently from dual

decomposition, which would consists of the maximization of Li evaluated at xi = xi(k + 1),

the update of the dual vector in step 8 involves also the proximal term − 1
2c(k)‖λi − `i(k)‖2 to
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foster consensus among the agents.

Steps 7 and 8 can be thought of as an approximation of the following proximal maximization

step

λi(k + 1) = arg max
λi≥0

min
xi∈Xi

{
Li(xi, λi)−

1

2c(k)
‖λi − `i(k)‖2

}
, (9)

which would implement the distributed algorithm of [4] for the dual problem (8). Steps 7 and 8

are however preferred to (9) since the resolution of the max−min program in (9) is very hard

in general. Moreover, it is perhaps worth mentioning at the outset that step 8 in Algorithm 2

is equivalent to a projected subgradient step. Indeed the constrained maximization of a

quadratic function in step 8 can be explicitly solved, leading to

λi(k + 1) = [`i(k) + c(k)gi(xi(k + 1))]+, (10)

where [ · ]+ denotes the projection of its argument onto Rp+. Then, it can be shown that

gi(xi(k + 1)) is a subgradient of the dual function ϕi(·) evaluated at `i(k) (see the proof of

Theorem 2.2 for more details), while c(k) can be thought of as the subgradient step-size. Hence,

steps 7 and 8 can be also seen as an application of the distributed subgradient algorithm

of [17], which was originally developed for primal problems though, to the dual problem (8).

Unfortunately, the local primal vector xi(k) does not converge to the optimal solution x∗i

to (5) in general. Therefore, the auxiliary primal iterates x̂i(k + 1), defined as the weighted

running average of {xi(r + 1)}kr=0

x̂i(k + 1) =

∑k
r=0 c(r)xi(r + 1)∑k

r=0 c(r)
, (11)

is computed in step 9 of Algorithm 2 in a recursive fashion. Such an auxiliary variable shows

better convergence properties as compared to xi(k), and is often constructed in the so-called

primal recovery procedure of dual decomposition methods, [18,30,31].

Note that in Algorithm 2 no local information related to the primal is exchanged between

the agents (as a matter of fact only the estimates of the dual vector are communicated) so

that our algorithm is well suited to account for privacy requirements.

The proposed distributed algorithm shows properties of convergence and optimality, which

hold under the following assumptions on the structure of the problem and on the same

communication features of the time-varying multi-agent network as in Section 2.2.

Assumption 2.7 [Convexity] For each i = 1, . . . ,m, the function fi(·) : Rni → R and each
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component of gi(·) : Rni → Rp are convex; for each i = 1, . . . ,m the set Xi ⊆ Rni is convex.

Assumption 2.8 [Compactness] For each i = 1, . . . ,m, the set Xi ⊆ Rni is compact.

Assumption 2.9 [Interior point] There exists x̃ = [x̃1 · · · x̃m]>∈ relint(X), where relint(X)

is the relative interior of the set X, such that
∑m

i=1 gi(x̃i) ≤ 0 for those components of∑m
i=1 gi(xi) that are linear in x, if any, while

∑m
i=1 gi(x̃i) < 0 for all other components.

The reader should note that as in Section 2.2, we require an interior point to exists, but we

do not need the agents to actually compute it.

As a consequence of Assumptions 2.7-2.9, we have that strong duality holds and an optimal

primal-dual pair (x?, λ?) exists, where x? = [x?1 · · · x?m]>. In the following we will denote by

X? the set of all primal minimizers, and by Λ? the set of all dual maximizers.

The time-varying coefficient c(k) satisfy Assumption 2.4. The communication network is

required to satisfy the connectivity and communications conditions of the previous section,

specified in Assumptions 2.5 and 2.6.

If Assumptions 2.4-2.9 are satisfied, then Algorithm 2 converges and agents agree to a

common vector of Lagrange multipliers. Specifically, their local estimates λi(k) converge

to some optimal vector of Lagrange multipliers, while the vector x̂(k) = [x̂1(k)> · · · x̂m(k)>]>

approaches X?, the set of minimizers of the primal problem.

These results are formally stated in the following theorems, whose proofs can be found

in [6].

Theorem 2.2 [Dual Optimality] Under Assumptions 2.4-2.9, there exists a λ? ∈ Λ? such

that

lim
k→∞

‖λi(k)− λ?‖ = 0, for all i = 1, . . . ,m. (12)

Theorem 2.3 [Primal Optimality] Under Assumptions 2.4-2.9, we have that

lim
k→∞

dist(x̂(k), X?) = 0, (13)

where dist(y, Z) denotes the distance between y and the set Z, i.e., dist(y, Z) = minz∈Z ‖y−z‖.

Remark 2.4 (network breaking into not-connected sub-networks) If communication

failures cause the network to break into not-connected components, then a feasible, though

sub-optimal, solution where each sub-network optimizes its own a-priori assigned share of

resource can be obtained by integrating the distributed algorithm presented in [24] (and recalled

in Remark 2.1) for recomputing the weights in the average `i(k) of the dual variables. Indeed,
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each sub-network will end up solving a problem like the original one in (5) but where the sum

of the objective functions fi(·) and constraint functions gi(·) is confined to the set of agents in

the sub-network.

2.4 Numerical examples

2.4.1 Power control in cellular networks

We now address the problem of power control in cellular networks, which is an energy

management problem like the one addressed in the smart grid use case of work package 5, the

main difference being that here power consumption of different interfering wireless devices is

set so to optimize the transmission quality, whereas in the smart grid context it is set so as to

minimize costs while satisfying the load request.

Consider a wireless cellular network where each cell is associated with a base station, and

base stations exchange data via wired communication (see Figure 1 for a pictorial view).

Figure 1: Example of a cellular network.

Mobile users adopt Code Division Multiple Access (CDMA, [32]) to communicate on the

same channel with the base station in their cell. If the same communication channel is used

in all cells, then, interference occurs among all mobile users in the network, thus causing a

decrease of the quality of transmission as measured by the Signal to Interference plus Noise

Ratio (SINR). Consequently, the throughput of the device can deteriorate, since, as the SINR

decreases, the number of retransmissions increases, with a reduction of the effective data

transmission rate.

An adjustment of the transmission power is then needed to guarantee a certain transmission

rate and throughput. Due to the wireless channel resource sharing, this leads to a network-wide

constrained optimization problem where the transmission powers of all devices in the cellular
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network have to be jointly set so as to maximize the sum of their throughput while not

exceeding the power transmission capabilities of each one of them. The solution is far from

being trivial like, e.g., “use the maximum transmission power per device” because this would

have the positive effect of increasing the signal component but, at the same time, it would

also increase the interference.

Solving the problem in a centralized way can be computationally challenging and also

requires the transmission of much information among base stations, possibly overloading

the wired communication network. Most of the approaches proposed in the literature are

actually based on a distributed scheme and they can be classified into two main categories,

i.e., autonomous and non-autonomous, the distinguishing feature being that, while in the

former communications occur only between base station and mobile users, in the latter base

stations collaborate and exchange information.

The approach described in [33] and further studied in [34], belongs to the first class and

aims at minimizing the total transmission power subject to constraints on the SINR via a

distributed iterative algorithm. At every iteration, each mobile user sets its transmission

power at a certain level, communicates using that power level, and then refines it based on

the information on the SINR provided by its reference base station. Autonomous distributed

approaches to power control based on games involving non-cooperative users are proposed

in [35] and [36]. A further autonomous approach in the literature consists in formulating

power control as an open loop global optimization problem where the SINR is not a constraint

but has to be optimized via a distributed scheme, [37,38].

The solution of the power control problem in a distributed non-autonomous fashion

involves communication among neighboring base stations and information sharing on their

local solutions. The involved additional communication overhead is not an issue though,

since, typically, base stations are connected via a wired backbone. In turn, the exchange of

information between base stations leads to a faster optimization and to a more robust scheme.

We here apply Algorithm 1 as a distributed non-autonomous algorithm for power control

in a single channel wireless cellular network. In [39], the same problem is addressed via

sub-gradient based distributed optimization, which is adapted here to our modeling set-up

where possibly multiple mobile users are linked to the same base station. A comparative

analysis via an extensive simulation study is performed between the two methods, and reveals

the advantage of proximal minimization in the case when the cost function is non-differentiable

and the sub-gradient has to be computed.

We consider a cellular network with m mobile users MUj , j = 1, . . . ,m, served by n base

stations BSi, i = 1, . . . , n. A common wireless channel is used for data exchange between
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mobile users and base stations, so that each mobile user introduces some interference in the

data exchange of the others with their reference base station. The channel is static, and the

number of mobile users is assumed constant in the time scale of interest. We suppose that each

base station, say BSi, has an accurate estimate of the amplitude gains (called also channel

coefficients) hi,j of the links from all mobile users MUj , j = 1, 2, . . .m. In particular, if MUj

is in a cell that is not an immediate neighbor of BSi, then, it causes negligible interference

and hi,j will be close to zero. If MUj is either in cell i or in an immediate neighboring cell,

BSi can estimate the channel coefficient from pilot signals that are sent by the mobile user

MUj . Each mobile user MUj is served by a single base station and exchange data with it via

wireless communication using a transmission power pj .

Let us consider base station BSi. Denote with Ji ⊂ {1, 2, . . . ,m} be the set of indices of

the mobile users that communicate with BSi. We can then compute the SINR of MUj with

j ∈ Ji at its reference base station BSi as follows:

%j(p) =
pjh

2
i,j

σ2
i +

∑
s 6=j psh

2
i,s

, (14)

where p =
[
p1 p2 . . . pm

]>
is the transmission power vector, hi =

[
hi,1 hi,2 . . . hi,m

]>
is the vector containing the channel coefficients of all communication uplinks from MUj ,

j = 1, . . . ,m to BSi, and σ2
i is the receiver noise variance at the base station BSi. Shadow

fading can also be included by introducing a re-scaling lognormal distributed factor in the

channel coefficient along each uplink, [40,41].

The SINR %j in (14) is strongly affecting the quality of the transmission, and, in particular,

the throughput achieved by the mobile user MUj , which can be modeled (see e.g. [42]) as

proportional to Uj(p) = log(1 + η%j(p)) where η is a constant that depends on the modulation

scheme. The expression above further simplifies to Uj(p) ≈ log(η%j(p)) in high SINR regime.

This implies that some minimum transmission power pmin > 0 should be adopted on each link.

From the perspective of base station BSi, a certain quality of transmission should be

guaranteed to all mobile users that BSi serves, while avoiding too costly use of power. This

can be achieved by choosing p so as to maximize the worst performance index

min
j∈Ji
{log(%j(p))− Vj(p)} , (15)

where Vj(·) is a convex and differentiable function that represents the power cost for the

mobile user MUj and is then increasing as a function of pj . The contribution of η to the cost

can be neglected since it does not affect the solution.
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Note that the above performance index depends on the transmission power of all mobile

users in the network and not only on those that are served by BSi. This entails that all base

stations need to cooperate to guarantee the best minimum quality of the transmission for all

users by jointly solving the following constrained optimization problem

max
p

n∑
i=1

min
j∈Ji
{log(%j(p))− Vj(p)} (16)

subject to: pmin ≤ pj ≤ pmax, j = 1, . . . ,m,

where pmax > pmin denotes a maximum transmission power and is assumed to be given.

We next propose a distributed approach to the solution of (16) that does not require the

introduction of any central unit, not for the base stations to share the channel coefficients of

their mobile users, which are kept as a sensitive information. To this purpose, we reformulate

the problem so that it fits the framework of the distributed Algorithm 1 for solving convex

optimization problems with separable cost and local constraints on a global decision vector.

Let us express vector p of the mobile users transmission powers as a function of vector x =[
x1 . . . xm

]>
through the change of variables p = ex, where ex =

[
ex1 ex2 . . . exm

]>
.

We then obtain the following reformulation of (16)

min
x∈X

n∑
i=1

fi(x) (17)

where the cost function fi is given by

fi(x) = max
j∈Ji

Jij(x) (18)

with Jij(x) = log
(
σ2
i h
−2
i,j e
−xj +

∑
s 6=j h

2
i,sh
−2
i,j e

xs−xj
)

+ Vj(ex) and the constraint set is

X = {x : log(pmin) ≤ xj ≤ log(pmax), j = 1, . . . ,m}.

If we let x? denote a solution to (17), then, the optimal transmission power vector p? can be

recovered as p? = log(x?) where log(·) applied to a vector should be interpreted as the log

function applied to each component of the vector, i.e., p? =
[
log(x?1) log(x?2) . . . log(x?m)

]>
.

This finally leads to Algorithm 3.

Remark 2.5 Note that function Jij(x) is convex and differentiable in x since it is the sum of

two terms: the log of the sum of exponentials in x and the convex and differentiable function

Vj(ex). Then, fi(·) is convex since it is the maximum of convex functions. In the case when
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there are multiple mobile users served by the base station i, fi(·) is not guaranteed to be

differentiable. Also, fi(·) is known only to the base station BSi because it depends on the

channel coefficients hi. Note finally that set X is convex, nonempty (pmin < pmax), and also

compact since pmin > 0, which guarantees that the set X? of minimizers of (17) is non-empty

(see the interior point Assuption 2.3).

Algorithm 3 Distributed power control proximal algorithm

1: Initialization
2: k = 0
3: Consider xi(0) ∈ X, for all i = 1, ..., n
4: For i = 1, ..., n repeat until convergence

5: x̂i(k) =
n∑
j=1

aijx
j(k)

6: xi(k + 1)=arg min
xi∈X

{
fi(x

i) +
1

2c(k)
‖xi − x̂i(k)‖2

}
7: pi(k) = log(xi(k))
8: k ← k + 1

The weights aij ≥ 0, j = 1, . . . , n, at step 5 of Algorithm 3 encode the wired network

(directed) communication graph, in that if aij = 0, then, BSi does not receive any information

from BSj . Those base stations BSj such that aij > 0 are the neighbors of BSi.

Initially, each base station BSi, i = 1, . . . , n, makes its own guess on some tentative

value xi(0) for the solution to (17) (step 3, Algorithm 3). One possible choice is xi(0) ∈
arg minxi∈X fi(x

i). At iteration k, each BSi constructs a weighted average x̂i(k) of the

tentative solutions xj(k), j = 1, . . . , n, received by its neighbors and its local one (step 5,

Algorithm 3). Step 6 of Algorithm 3 is a proximal minimization computation, where BSi

solves a local minimization problem, updating its tentative solution with a value within X

that minimizes the sum of its local objective function fi(·) and a weighted quadratic term,

which accounts for the difference of its current tentative solution from the average x̂i(k). The

relative importance of the two terms is determined by c(k) ∈ R+. Note that since fi(·) is

convex (see Remark 2.5) and the quadratic penalty term is strictly convex, the resulting

minimization problem admits a unique solution at each iteration k.

We next present some assumptions that are needed for Algorithm 3 to converge to an

optimal solution p? of the constrained optimization problem (16).

Assumption 2.10 (Connectivity and Communication) Let (V,E) be the directed graph

with nodes V = {1, . . . , n} and edges E = {(j, i) : aij > 0}. We assume that (V ;E) is strongly

connected, i.e., for any two nodes there exists a path of directed edges that connects them.

Coefficients {c(k)}k≥0 in step 6 of Algorithm 3 are chosen so as to satisfy Assumption 2.4,
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which is the same assumption imposed in [39] on the step-size of their subgradient algorithm.

The weights aij , i, j = 1, . . . , n, of the average tentative solution satisfy Assumption 2.5, where

we recall that the last two conditions imply that the matrix with element (i, j) equal to aij is

doubly stochastic.

Theorem 2.4 (Optimality) Consider Assumptions 2.10-2.5 and Algorithm 3. We have

that for some maximizer p? of problem (16), all base stations reach consensus to p?, i.e.,

lim
k→∞

‖pi(k)− p?‖ = 0, i = 1, . . . , n.

Proof 1 Given the convexity of fi(·) and the convexity and compactness of X (see Remark

2.5), by applying Theorem 2.1, we get that for some minimizer x? of problem (17) the following

convergence property holds

lim
k→∞

‖xi(k)− x?‖ = 0, i = 1, . . . , n.

Since the mapping pi(k) = log(xi(k)) from xi to pi is a monotonically increasing bijective

function and the cost that is minimized in (17) is obtained by multiplying by -1 the performance

index that is maximized in (16), by defining p? = log(x?) the statement in the theorem follows

immediately.

Remark 2.6 (Resilience to failures) The optimality result in Theorem 2.4 is preserved

when temporary failure of communication links occurs. This is because the asymptotic optimal-

ity result in Theorem 2.1 holds with time-varying weight coefficients, under suitable long run

connectivity conditions as specified in Assuption 2.6. Also, if one of the base stations definitely

breaks down, its mobile users can be re-assigned to the closest base station, and the system

will automatically adapt to the new configuration, if the distributed algorithm for transmission

power control adjusts the weight coefficients so as to comply with Assumption 2.5.

We next show the performance of the proposed distributed non-autonomous algorithm

for power control in a single channel wireless cellular network, and compare it with the

sub-gradient based alternative proposed in [39], which is here presented in Algorithm 4 to

comply with our notation.

In Algorithm 4, ΠX [·] denotes the projection onto set X (which is straightforward since X

is a box), and ∇fi(·) the sub-gradient of function fi(·), which satisfies

∇fi(x)>(y − x) ≤ fi(y)− fi(x), x, y ∈ X.
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Algorithm 4 Distributed power control sub-gradient algorithm

1: Initialization
2: k = 0
3: Consider xi(0) ∈ X, for all i = 1, ..., n
4: For i = 1, ..., n repeat until convergence

5: x̂i(k) =
n∑
j=1

aijx
j(k)

6: xi(k + 1) = ΠX [x̂i(k)− c(k)∇fi(x̂i(k))]
7: pi(k) = log(xi(k))
8: k ← k + 1

Given that fi(·) in (18) is convex (see Remark 2.5), the sub-gradient at x ∈ X is well-defined.

However, it is not differentiable in the case when the base station is serving multiple users. The

sub-gradient computation involves the choice of the mobile user with the worst throughput at

every iteration, given the current value x of the iterated weighted average x̂i. More specifically,

we have that

∇fi(x) = ∇J̄i(x), (19)

where ∇J̄i(·) is the standard gradient of function

J̄i(·) = Jijx(·) with jx = arg max
j∈Ji

Jij(x), (20)

which is convex and differentiable.

The same result in Theorem 2.4 holds for Algorithm 4 (see [39] for a proof). The two

algorithms work in the same set-up and involve the same communication structure, both

avoiding local information sharing. The main difference is how the tentative solution is

updated at every iteration, and, in particular, the methods used by each base station to solve

its local optimization problem.

A clear advantage of Algorithm 4 compared with Algorithm 3 proposed in this paper is that it

is computationally less demanding since it does not involve any optimization over X. However,

if we consider the multi-user case that is indeed the most common in practice, Algorithm

4 is typically affected by oscillations of the solution before convergence is reached. This is

caused by the non-differentiability of fi(·) and the fact that the sub-gradient calculation in

(19) involves the identification of the mobile user with the worst throughput given the current

average tentative solution (see (20)).

In the simulation results, we consider cellular networks with n base stations that are

located on a regularly gridded square area with grid parameter equal to 5. Each base station
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Algorithm 5 Sinkhorn-Knopp algorithm

1: aij ← 1 if (i, j) ∈ E
2: aij ← 0 if (i, j) /∈ E
3: repeat
4: aij ← aij/

∑m
c=1 a

i
c, ∀i = 1, . . . ,m

5: aij ← aij/
∑m

r=1 a
r
j , ∀j = 1, . . . ,m

6: until Assumption 2.5 is satisfied within a given tolerance

is at the vertex of one or multiple squares and is wired connected to all the base stations that

belong to its same squares, either on the same edge and or on the diagonal. Each mobile user

is served by the closest base station.

The channel coefficient hi,j of the communication link from the mobile user j to the base

station i is set to zero if their distance is larger than or equal to 200, otherwise it decays to

zero as the fourth power of the distance. A shadow fading factor modeled as lognormal with

mean 1.05 and variance 0.1 is introduced along each uplink. The receiver noise variance is set

equal to 10−4 at each base station. We set log(pmin) = 0 and log(pmax) = 7 when defining the

set X. The term penalizing the transmission power cost in (15) is given by Vj(p) = 10−3pj .

Parameter {c(k)}k≥0 appearing in both algorithms is set equal to c(k) = α
(k+1)β

, where

α = n and β = 0.7. The initial value for xi, i = 1, . . . , n, in both algorithms is set equal to

the local optimal solution: xi(0) ∈ arg minxi∈X fi(x
i).

Lastly, we set the weights coefficients so as to satisfy Assumption 2.5. To this end, we

use the procedure described in [43] and formulate Algorithm 5, which is initialized with the

adjacency matrix A of the graph (V,E) (i.e., the matrix which has 1 in position (i, j) if

(i, j) ∈ E and zero otherwise) and returns a matrix with the same sparsity pattern of A.

Note that since we require aii > 0 in Assumption 2.5, then, (i, i) ∈ E. If the communication

graph is undirected, then the adjacency matrix has full support (see [43] for a definition) and

Algorithm 5 is guaranteed to converge to a doubly stochastic matrix.

Given that each base station is in charge of setting the transmission power of the mobile

users that it is serving, when plotting the performance at time k we shall refer to the

transmission power vector p̂(k) that contains as elements the transmission powers computed

at iteration k by the base stations for the mobile users that they are serving.

Performance evaluation and comparative analysis of the distributed Algorithms 3 and 4

are performed in terms of either the cost

n∑
i=1

fi(log(p̂(k))), k = 0, 1, . . . ,
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or the normalized relative error cost

n∑
i=1

fi(log(p̂(k)))−min
x∈X

n∑
i=1

fi(x)

min
x∈X

n∑
i=1

fi(x)

, k = 0, 1, . . . .

All the numerical simulations were run using Matlab with CVX, [44], as optimization

interface and Mosek�, [45], as solver. In the first simulation study, we consider a cellular

network with n = 16 base stations on a 4 by 4 squared grid and m = 16 mobile users, one per

base station.

We performed 100 runs of both Algorithms 3 and 4, where the position of each mobile

user is extracted at random in a square of size 5 by 5 centered in a base station. The resulting

histograms of the normalized relative costs at iterations k = 10, 50, 100, and 200, are plotted

in Figure 2. The relative error decreases progressively for both, after an initial transient phase

Algorithm 4 performs slightly better than Algorithm 3. This is also apparent from Figure 3

where the plots of the cost obtained with the two algorithms are reported for one of the

extracted configurations. Note that both plots are smooth curves. As for the overshoot in the

cost for Algorithm 4, c(k) is large initially and makes the algorithm take a large step in the

wrong direction, thus increasing the cost.

Figure 2: Histograms of the normalized relative cost for the cellular network with 16 base stations
and 16 mobile users at iterations k = 10, 50, 100, and 200, of Algorithms 3 (in blue) and 4 (in red).
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Figure 3: Cost function for a cellular network with 16 base stations and 16 mobile users for Algorithms
3 (in blue) and 4 (in red).

If we now consider the multi-user set-up, with n = 16 base stations but m = 20 mobile

users, and perform the same kind of experiments, we get the histograms of the normalized

relative cost and the plots for the cost in Figures 4 and 5, respectively. Convergence is slower

and oscillations deteriorate the performance of the solution obtained by Algorithm 4.

Figure 4: Histograms of the normalized relative cost for the cellular network with 16 base stations
and 20 mobile users at iterations k = 10, 50, 100, and 200, of Algorithms 3 (in blue) and 4 (in red).
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Figure 5: Cost function for a cellular network with 16 base stations and 20 mobile users for Algorithms
3 (in blue) and 4 (in red). The dotted constant line is the optimal cost.

In Figure 6, we report the time needed to run 100 iterations of both algorithms for different

instances of 5 different single-user cellular networks. As expected Algorithm 4 is less time

consuming.

Figure 6: Simulation time for running 100 iterations of Algorithms 3 (in blue) and 4 (in red) in 100
tests.

In summary, we proposed a distributed transmission power control algorithm for a wireless

cellular network. The algorithm is based on proximal minimization and represents an alterna-

tive to a gradient-based distributed algorithm that works in the same set-up, with the same

guarantees on convergence and optimality. The two approaches show similar performance in

the case when each base station serves a single mobile user in the cellular network. Admittedly,

the proposed approach is computationally more demanding. However, in the relevant case of

Deliverable D2.2 – Report on Distributed Model Predictive Control for CPSs 28 of 104



2 DISTRIBUTED OPTIMIZATION

multiple mobile users per base station, it shows better performance than the gradient-based

approach since, as an effect of the cost being non-differentiable, using a sub-gradient induces

an oscillatory behavior.

2.4.2 Building energy management

We now present an example that is part of the case study on smart grids of work package 5.

Consider a network of m buildings, each of them equipped with a different chiller plant,

that share a common storage so as to avoid usage inefficiencies and increase the return on

investment of the storage resource, which might be expensive to afford at an individual

level (see Figure 7). Our objective is to minimize the total electric energy cost for the m

building network, across a horizon of nt steps of duration ∆. To this purpose, we need first to

discrete-time dynamic model of the system that includes the building cooling energy request,

the chiller plant, and the storage unit. As explained in the introduction of this section, by

piling up in a vector the values of the variables of interest along the control horizon and

expressing them as a function of the control input along that time horizon, we finally get

a static description of the dynamical system evolution that fits our (static) optimization

framework.

Figure 7: Example of a building network with a shared storage. The district is connected to the
main grid that provides electrical energy.

Building cooling energy request: Consider a building composed of nz thermally con-

ditioned zones. For all t = 1, . . . , nt, z = 1, . . . , nz, let EB,z(t) ∈ R be the cooling energy

request of building zone z during time slot t. Denote then by EB(t) =
∑nz

z=1EB,z(t) the

energy request of the building over the time slot t, and by

EB =

nt∑
t=1

EB(t) =

nt∑
t=1

nz∑
z=1

EB,z(t), (21)
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the energy request of the building over the entire horizon. For all t = 1, . . . , nt,, z = 1, . . . , nz,

EB,z(t) constitutes of four energy contributions, namely

EB,z(t) = Ewalls,z(t) + Epeople,z(t) + Einternal,z(t) + Einertia,z(t), (22)

where Ewalls,z(t) ∈ R is the amount of thermal energy exchanged between walls and zone z

over the time slot t, Epeople,z(t) ∈ R and Einternal,z(t) ∈ R is the thermal energy produced

by people and by other internal sources of heat in zone z, respectively, and Einertia,z(t) ∈ R

is the energy contribution of the thermal inertia of zone z, over the time slot t. A detailed

description of each of these terms can be found in Deliverable 5.1. Derivation of the first

contribution involves modeling walls as the composition of vertical layers (‘slices’) that may

differ in width and material composition. The resulting model is dynamic with the slice and

wall temperatures as state variable.

Chiller plant: A chiller plant converts electric energy into cooling energy. The cooling energy

is then transferred to the building via, e.g., the chilled water circuit. Denote by Echiller,e(t) ∈ R

the electric energy absorbed by the chiller to provide cooling energy Echiller,c ∈ R over a time

slot of duration t, t = 1, . . . , nt.

To facilitate the solution to the optimal energy management of the building district, we

employ the following convex approximation of the Ng-Gordon model in [46], which relates the

electric and the cooling energy (see Deliverable 5.1 for more details):

Echiller,e(t) = c2(To(t∆))E4
chiller,c(t) + c1(To(t∆))E2

chiller,c(t) + c0(To(t∆)), (23)

where, for each t = 1, . . . , nt, the functions c0(·), c1(·), c2(·) : R→ R depend on the ambient

temperature To(t∆).

Energy storage: Thermal energy storage is becoming widely used since it represents the

most effective way, and often the only way, to take advantage of renewable energy sources.

There are many different technical solutions to store thermal energy; the most widely used

are fluid tanks. In buildings, and more generally in a smart grid context, they can be used

as energy buffers for unbinding energy production from energy consumption. In particular,

thermal energy storage for cooling energy can shift the production of cooling energy to off-peak

hours of electrical energy consumption, make chillers operate in high-efficiency conditions,

and smoothen peaks of electrical energy request with benefits both for power production and

distribution network systems.
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As discuss in Deliverable 5.1, we can adopt the following first order AutoRegressive

eXogenous (ARX) model:

Estorage(t+ 1) = aEstorage(t)−
m∑
i=1

eis(t), (24)

where Estorage(t) ∈ R is the amount of cooling energy stored. In view of the multi-building

problem considered in the next section we assume that the storage device is shared among

m buildings, and denote by eis(t) ∈ R the cooling energy exchanged (eis(t) > 0 if the storage

is discharged, and eis(t) < 0 if it is charged), with building i, i = 1, . . . ,m, in time slot t,

t = 1, . . . , nt. The coefficient a ∈ (0, 1) is introduced to model energy losses. Note that (24)

can be thought of as a discrete-time integrator, where the stored energy Estorage(t+ 1) at time

t+ 1 is computed by accumulating the cooling energy exchanged with all buildings up to time

t, i.e.,
∑m

i=1 e
i
s(t
′) for all t′ ≤ t.

Optimal Energy management of a building district: We are now in a position to

formulate the optimal energy management problem for a district of m buildings, each of them

equipped with a different chiller plant, that share a common storage and are cooperatively

aiming at minimize the electrical energy cost across a horizon of nt steps.

To this end, append to all quantities introduced in the previous section the superscript i,

to denote that they correspond to building i, i = 1, . . . ,m, e.g., Eichiller,e(t) denotes the cooling

energy of the chiller at building i at time slot t, T̃ i denotes the vector of zone temperatures at

building i, etc. For each i = 1, . . . ,m, t = 1, . . . , nt, the electric energy request of building i

over the time slot t is given by the chiller electric energy request Eichiller,e(t). The latter is in

turn related to the cooling energy exchange terms via (23).

For each building i, i = 1, . . . ,m, we will schedule the zone temperature set-points T̃ i(t∆),

the energy exchange eis(t) with the storage, and the initial conditions for the temperature

vector T i(∆) (including slice and wall temperatures), and the storage level Estorage(1) by

solving the following minimization problem:

min{{
T̃ i(t∆)∈Rnz ,eis(t)∈R

}nt
t=1

}m
i=1

,{
T i(∆)∈Rnsnw

}m
i=1

,Estorage(1)∈R

m∑
i=1

nt∑
t=1

ψi(t)Eichiller,e(t), (25)

where ψi(t) ∈ R is the electric energy price for building i, i = 1, . . . ,m, over the time slot t,

t = 1, . . . , nt. This minimization is subject to the following constraints.

1. Electric energy request: For each t = 1, . . . , nt, the electric energy request Eichiller,e(t)
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of building i, i = 1, . . . ,m, is given by (23) as a function of the chiller cooling energy

request Eichiller,c(t). The latter denotes the net cooling energy request, and is given by

the difference between the total energy requested by the building minus the energy

exchanged with the storage, i.e.,

Eichiller,c(t) = EiB(t)− eis(t), (26)

where EiB(t) is as shown in (21), and eis(t) is the energy exchange between building i

and the storage.

2. Electric energy limits: For each i = 1, . . . ,m, t = 1, . . . , nt, the electric energy drawn

from the network is limited to Eimax ∈ R, as an effect of the chiller unit size and

maximum capability, thus giving rise to

Echiller,e(t) ≤ Eimax. (27)

3. Cooling energy limits: For each i = 1, . . . ,m, t = 1, . . . , nt, the cooling energy request

EiB(t) of building i over time-slot t, as given by (21), is non-negative, i.e.,

EiB(t) ≥ 0, (28)

4. Comfort constraints: For each i = 1, . . . ,m, t = 1, . . . , nt, the zone temperature set-

points is within certain limits, i.e.,

T̃ i(t∆) ∈ [T̃ imin(t∆), T̃ imax(t∆)], (29)

where T̃ imin(t∆) ∈ Rnz , T̃ imax(t∆) ∈ Rnz denote the minimum and maximum, respectively,

temperature limits, so that comfort is maintained. These limits may differ according to

the type of each building.

5. Storage energy limits: For each t = 1, . . . , nt, the amount of cooling energy stored at time

slot t should be non-negative and within a prescribed energy storage limit Es,max ∈ R,

i.e.,

Estorage(t) ∈ [0, Es,max]. (30)

6. Storage energy exchange limits: For each i = 1, . . . ,m, t = 1, . . . , nt, the energy
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exchanged with the storage is subject to

eis(t) ∈ [−eis,max, e
i
s,max], (31)

where eis,max ∈ R denotes the maximum value of energy that can be exchanged with the

storage for building i. Notice that we use symmetric limits for positive and negative

energy exchanges.

7. Final value constraints: For each i = 1, . . . ,m, the zone temperature, and the wall-slice

temperature, at the beginning and at the end of the planning horizon should be equal:

T̃ i(nt∆) = T̃ i(∆),

T i(nt∆) = T i(∆). (32)

To ensure that at the end of the horizon the storage is sufficiently charged we impose

the constraint

Estorage(nt) ≥ Estorage(1), (33)

where we optimize with respect to Estorage(1) (see (36)). Constraint (33) is of particular

importance in case of a receding horizon implementation of the proposed scheme.

Note that, even though it is not shown explicitly to ease notation, Eichiller,e(t) in (25) is a

function of the decision variables
{{
T̃ i(t∆), eis(t)

}nt
t=1

}m
i=1
,
{
T i(∆)

}m
i=1
, Estorage(1); this can

be verified by tracing the representation of Eichiller,e(t) via (23), (26), (21), where the energy

terms in the latter equation depend on the decision variables according to the analysis of all

contributions to the building cooling energy request.

For each i = 1, . . . ,m, denote by

ui =
[
T̃ i(∆), . . . , T̃ i(nt∆), T i(∆)

]> ∈ Rntnz+nsnw , (34)

all temperature related decision variables that correspond to building i.

Let ēis =
[
eis(1), . . . , eis(nt), Estorage(1)

]> ∈ Rnt+1, and denote by

x =
[
ē1
s, . . . , ē

m
s

]> ∈ Rm(nt+1), (35)

the vector including all decision variables related to the energy exchange between the buildings

and the storage, and the initial energy storage value. Note that ui is indexed by i, i = 1, . . . ,m,
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Algorithm 6 Distributed algorithm

1: Initialization
2: k = 0.
3: Consider xi(0), ui(0),

such that (xi(0), ui(0)) ∈ Vi for all i = 1, . . . ,m.
4: For i = 1, . . . ,m repeat until convergence
5: x̄i(k) =

∑m
j=1 a

i
j(k)xj(k).

6: (xi(k + 1), ui(k + 1))
∈ arg min(xi,ui)∈Vi fi(xi, ui) + 1

2c(k) ||x̄i(k)− xi||2.
7: k ← k + 1.

and can be thus thought of as a local decision vector related to the comfort and actuation

constraints of each chiller plant, that can be enforced locally. On the other hand, x is treated

as a global decision vector which is related to the energy exchange of the building network

with the common storage device. Under the variable assignment in (34), (35), the energy

management in (25)-(33) can be represented in a more compact notation by

P : min
x∈Rn,{ui∈Rni}mi=1

m∑
i=1

fi(x, ui) (36)

subject to

(x, ui) ∈ Vi, for all i = 1, . . . ,m, (37)

where fi(·, ·) : Rn × Rni → R and Vi ⊆ Rn+ni , for all i = 1, . . . ,m. Note that x couples the

individual decision vectors ui via the objective in (36) and the constraints in (37).

In the part to follow we will occasionally refer to buildings as agents. We provide a

distributed iterative procedure to solve P, where, at every iteration, each agent i solves an

appropriate local optimization problem and then exchanges information with other agents

only regarding the temporarily obtained value for the common decision vector x. In this way,

one can account for information privacy, because agents are not required to share the objective

function fi, the constraint set Vi, and their local decision vector ui, i = 1, . . . ,m. In a building

energy management context, this specifically means that each building does not need to reveal

constraints that are related to its local consumption patterns or to occupants’ preferences,

nor to reveal information about its individual utility function, which may constitute private

information in case buildings participate in a demand response program. Moreover, even

though all the necessary information could be exchanged, solving P in a centralized fashion

may result computationally intensive and our distributed algorithm is also a means to alleviate

this issue. The pseudo-code of the proposed distributed procedure is given in Algorithm 6.

Initially, each agent i, i = 1, . . . ,m, starts with some tentative values ui(0) and xi(0) for
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its local decision vector and the global decision vector, respectively. The latter constitutes

an estimate of agent i (this justifies the subscript i in xi) of what the value of the global

decision vector might be. Those tentative values are chosen arbitrarily from the set of feasible

solutions, i.e., (xi(0), ui(0)) ∈ Vi (step 3). One sensible choice for (xi(0), ui(0)) is to set it such

that (xi(0), ui(0)) ∈ arg min(xi,ui)∈Vi, fi(xi, ui). At iteration k + 1, each agent i constructs a

weighted average x̄i(k) of the solutions xj(k), j = 1, . . . ,m communicated by the other agents

and its own one (step 5). Coefficient aij(k) ≥ 0, indicates how agent i weights the solution

received by agent j at iteration k, and aij(k) = 0 encodes the fact that agent i does not receive

any information from agent j at iteration k (i.e. the communication link between agents i

and j is not active at iteration k). Agent i solves then a local minimization problem, seeking

the optimal solution pair (xi, ui) within Vi that minimizes a performance criterion, which is

defined as a linear combination of the local objective function fi(xi, ui) and a quadratic term,

penalizing the difference from x̄i(k) (step 6). The relative importance of these two terms is

dictated by c(k) > 0. Since multiple minimizers may exist, we assume that at every iteration

the same deterministic tie-break rule (as e.g. that implemented by a deterministic numerical

solver) is used.

Algorithm 6 is closely related to the distributed Algorithm 1. However, in Algorithm 6

neighboring agents need to exchange at every iteration their tentative estimates for the value

of the global decision vector only, while the distributed Algorithm 1 requires to exchange both

the global and the local decision vectors. When the dimension of the local decision vector is

high compared to the global one, as it is the case in the building energy management problem,

this would unnecessarily increase the amount of information that needs to be exchanged.

Algorithm 6 alleviates this issue by exploiting the particular structure of P , where the objective

functions and the constraint sets are coupled only by means of x. This requires some further

extension of the theory to prove that Algorithm 6 converges, and agents reach consensus to a

common value for the global decision vector x that, together with the converged values for

the local decision vectors ui, i = 1, . . . ,m, forms an optimal solution of P. The interested

reader is referred to [47].

Case study: Consider a network of m = 3, identical, three-storey buildings, each one with

a 20m by 20m base, a total height of 9m, flat rooftop and half glazed lateral surfaces. Each

building is divided into nz = 3 thermal zones (one per floor) and is equipped with its own

chiller, namely, building 1 has a medium-size chiller, building 2 a small one, and building 3 a

large one.

The structure of the buildings is schematically illustrated in Figure 8 and the COP curves

Deliverable D2.2 – Report on Distributed Model Predictive Control for CPSs 35 of 104



2 DISTRIBUTED OPTIMIZATION

Figure 8: Structure of each building.
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Figure 9: Chiller COP curves for each building.

i Size ci2 ci1 ci0 Eimax [MJ]

1 Medium 3.79 · 10−5 2.77 · 10−2 2.46 30
2 Small 2.49 · 10−4 4.98 · 10−2 1.26 18
3 Large 3.56 · 10−6 1.58 · 10−2 5.11 40

Table 1: Chiller coefficients and maximal cooling energy.

as a function of the cooling energy request Echiller,c are shown in Figure 9. The parameters

of the biquadratic approximations are assumed to be constant for simplicity. Their value is

reported in Table 1 together with the maximal admissible cooling energy request. Index i,

i = 1, . . . , 3, in Table 1 is used to denote the building.

The external disturbances affecting the buildings are reported in Figure 10. Longwave

and shortwave solar radiation are depicted with square and circle markers respectively. The

outside temperature and the occupancy are plotted with triangles and diamonds respectively.

Note that the three buildings are supposed to be subject to the same disturbance profiles, and

the occupancy shall be intended per building and equally partitioned among the zones. The
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Figure 10: Disturbance profiles: Longwave (LW) and shortwave (SW) solar radiation, outdoor
temperature and occupancy.
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Figure 11: Communication structure: Fixed (left panel) and time-varying (right panel).

period in which the occupancy is greater than zero is referred to as “occupancy period” and

it is within the “working hours” range 7AM to 6PM. In all buildings, temperature constraints

are set to T̃ imin = 20◦C and T̃ imax = 24◦C during working hours and to T̃ imin = 16◦C and

T̃ imax = 30◦C otherwise.

For the control problem, we considered a time horizon of 24 hours discretized in nt = 144

time slots of ∆ = 10min each. We tested the proposed algorithm with two different types of

bi-directional communication topologies. The first one (Figure 11, left panel) is a connected

topology, in which buildings 1 and 3 exchange information only with building 2 but not

with each other, and the communication scheme is kept fixed across iterations. The second

one (Figure 11, right panel) is a time-varying periodic topology in which, at each iteration

k, only two buildings communicate. The order in which the links are activated within the

period is the following: (1, 2) (blue straight), (2, 3) (red wavy), and (1, 3) (green spring). In

Figure 11 we also report the coefficients aij(k) for j 6= i near the corresponding edge (i, j).

The aii(k) coefficients, i = 1, . . . ,m, are not reported but they can be easily retrieved so that

Assumption 2.5 is satisfied.

We applied Algorithm 6 to the two communication structures and in both cases the

proposed distributed approach was able to retrieve the optimal solution.
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Figure 12: Optimal zone temperature profiles of building 1. The temperature of zone 2 (at the
middle) is always lower than the other two, since it acts as a passive thermal storage to drain the heat
of the other zones through floor and ceiling.

Figure 12 shows the optimal temperature profiles for the three zones of building 1. It can be

observed that, while the profiles of zones 1 and 2 are kept close to the maximum temperature

bound of the working hours comfort range (outside the grey area), the temperature of zone 2

is always lower than the other two. Zone 2 is indeed subject to a pre-cooling phase before the

occupancy period so as to cool down the building, acting as an additional passive thermal

storage to drain the heat of the other zones through floor and ceiling. The temperature

profiles of the other two buildings are very similar to that of building 1, and hence are not

reported here.

In Figures 13 and 14 we report the storage profiles of building 1 at iteration k = 1 and

at consensus (when Algorithm 6 converges), respectively. From Figure 13 it is clear that, at

the beginning, building 1 acts in a “selfish” manner and its optimal strategy is to constantly

withdraw cooling energy from the storage (e1
s > 0, solid line), thus forcing buildings 2 and 3 to

charge the storage (e2
s < 0 and e3

s < 0, dashed and dot-dashed lines, respectively). The stored

energy is shown with the black dotted line. The consensus solution depicted in Figure 14 is

instead cooperative. Building 3, which has the biggest chiller, is constantly providing cooling

energy (e3
s < 0) to the shared storage; building 2, which has the smallest chiller, is constantly

withdrawing energy (e2
s > 0) from it; and building 1 provides/retrieves energy to/from the

storage depending on the time slot. In this way, differences in the chiller sizes are compensated

through the storage.

Figure 15 and 16 show the COP coefficient of the chillers of the three buildings (resulting

from the optimization of building 1) at k = 1 and at consensus, respectively. In Figure 15

building 1 is clearly optimizing the efficiency of its own chiller disregarding completely the
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Figure 13: Storage profiles at iteration k = 1. Building 1 acts in a “selfish”manner and its optimal
strategy is to constantly withdraw cooling energy from the storage (e1

s > 0, solid line), thus forcing
buildings 2 and 3 to charge the storage (e2

s < 0 and e3
s < 0, dashed and dot-dashed lines, respectively).

The stored energy is shown with the black dotted line.
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Figure 14: Storage profiles at consensus. Cooperative solution, with building 3, which has the biggest
chiller, is constantly providing cooling energy (e3

s < 0) to the shared storage; building 2, which has the
smallest chiller, is constantly withdrawing energy (e2

s > 0) from it; and building 1 provides/retrieves
energy to/from the storage depending on the time slot. The stored energy is shown with the black
dotted line.

efficiency of the other two, whereas the consensus solution reported in Figure 16 shows that

the efficiency of the two other chillers is increased significantly at the expense of a slight

deterioration in the one of building 1, thus resulting in an overall benefit for the building

district.

The number of iterations needed to achieve consensus are 278 for the fixed topology and

1032 for the time-varying topology, where we considered the solution to be at consensus if

either the absolute or the relative difference between the solutions of the agents across two

consecutive iterations was less than a given threshold, which was taken to be 10−3.
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Figure 15: COP profiles at iteration k = 1. Building 1 is clearly optimizing the efficiency of its own
chiller disregarding completely the efficiency of the other two.

0 2 4 6 8 10 12 14 16 18 20 22 24

Time [h]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

C
O

P

 Medium
 Small
 Large

Figure 16: COP profiles at consensus. The efficiency of the chillers of buildings 2 and 3 is increased
significantly at the expense of a slight deterioration in the one of building 1, thus resulting in an overall
benefit for the building district.

2.4.3 Electric vehicles charging control

In this section we demonstrate the efficacy of the approach in Section 2.3 on an energy

management system application that is part of the smart grid case study in work package 5

and involves electric vehicles. More specifically, we shall consider a modified version of the

Plug-in Electric Vehicles (PEVs) charging problem described in [48]. This problem consists

in finding an optimal overnight charging schedule for a fleet of m vehicles, which has to be

compatible with local requirements and limitations (e.g., desired final state of charge and

maximum charging power for each vehicle), and must satisfy some network-wide constraints

(e.g., maximum power that the network can deliver).

Specifically, we hereby consider a slight modification of the “only charging” problem in [48],

in that we allow for the optimization of the vehicles charging rate at each time slot, instead
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Figure 17: Network of m = 100 agents.

of deciding whether to charge or not to charge the vehicle at some fixed charging rate. The

overall charging problem can be formalized as the following optimization program

min
{xi∈Xi}mi=1

m∑
i=1

ci
>xi

subject to:

m∑
i=1

(
Aixi −

b

m

)
≤ 0

(38)

which is a linear program (Xi are indeed bounded convex polytopic sets) having the same

structure of (5) and satisfying the assumptions for Theorems 2.2 and 2.3 to hold. In (38)

the components of the optimization vector xi represent the charging rate for vehicle i in

given time slots, vector ci gives the costs for charging vehicle i with unitary charging rate,

Xi expresses local requirements and limitations for vehicle i such as desired final state of

charge and battery rated capacity, while
∑m

i=1 (Aixi − b/m) ≤ 0 encodes network-wide power

constraints. We refer the reader to [48] for the precise formulation of all quantities in (38).

In our simulation we considered a fleet of m = 100 vehicles. According to the “only

charging” set-up in [48], each vehicles has ni = 24 decision variables and a local constraint set

defined by 197 inequalities. There are p = 48 coupling inequalities, and therefore we have 48

Lagrange multipliers to optimize for the dual problem.

The communication network is depicted in Figure 17 and corresponds to a connected

graph, whose edges are divided into two groups: the blue and the red ones, which are activated

alternatively; this way Assumption 2.6 is satisfied with a period of T = 2. For each set of

edges we created a doubly stochastic matrix so as to satisfy Assumption 2.5. Finally, we
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selected c(k) = 1
k+1 .

We ran Algorithm 2 for 1000 iterations. Figure 18 shows the evolution of the agents’

estimates λi(k), i = 1, . . . ,m across iterations. As expected, all agents gradually reach

consensus on the optimal Lagrange multipliers of (38) (red triangles). Note that, for the

Iteration

0 200 400 600 800 1000

×10
-3

0

0.5

1

1.5

2

Figure 18: Evolution of the agents’ estimates λi(k), i = 1, . . . ,m. Red triangles represent the optimal
dual solution.

problem at hand, only 3 multipliers are positive, while all the remaining 45 are equal to zero

(in the figure, there are 45 red triangles in 0 each one on top of the other). Figure 19 instead

shows the evolution of the primal objective value
∑m

i=1 ci
>xi (upper plot), and constraint

violation in terms of max{∑m
i=1(Aixi − b/m), 0} (lower plot), where xi is replaced by two

different sequences: x̂i(k) (dashed lines), and x̃i(k) (solid lines), x̃i(k) being defined as

x̃i(k + 1) =


x̂i(k + 1) k < ks,i∑k

r=ks,i
c(r)xi(r + 1)∑k
r=ks,i

c(r)
k ≥ ks,i

(39)

where ks,i ∈ N+ is the iteration index related to a specific event, namely, the “practical”

convergence of the Lagrange multipliers, as detected by agent i. Specifically, in the proposed

example ks,i is the first iteration step at which the quantity ‖λi(k + 1) − `i(k)‖2 has kept

below a certain threshold (10−5 in our simulation) for m = 100 consecutive iterations. Given

that x̃i(k) is a refresh of x̂i(k), it is easy to show via the same argument used for x̂i(k) that

Theorem 2.3 holds also for {x̃i(k)}k≥0, i = 1, . . . ,m.

As can be seen from Figure 19, the rate of convergence of the cost and the constraints
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Figure 19: Evolution of primal objective
∑m

i=1 ci
>xi (upper plot) and constraint violation

max{∑m
i=1(Aixi − b/m), 0} (lower plot) as a function of x̂i(k) (dashed lines), and x̃i(k) (solid lines).

violation computed with the {x̂i(k)}k≥0 sequence appears to be slow. In comparison with the

rate of O(1/k) in [49], a lower bound for our auxiliary sequence to converge is in fact given by

1/
∑∞

i=0 c(k) ∼ O(1/ log(k)) (see the discussion in [6] on the rate of convergence for the dual

objective value). We therefore believe that the difference in the convergence rate between

Algorithm 2 and [49] might be primarily due to the constant vs. vanishing step-size. Having

a vanishing step-size, however, allows us to provide optimality guarantees, while in [49] only

convergence to a neighbourhood of the optimal solution is guaranteed. The motivation for

introducing the modified auxiliary sequence (which has the same asymptotic convergence

rate of the original one) is mainly to counteract the fact that the convergence of x̂i(k) is also

adversely affected by the bad estimates of the Lagrange multipliers obtained at the early

stages of the algorithm. By the re-initialization mechanism, x̃i(k) for k ≥ ks,i depends only

on estimates of the Lagrange multipliers that are very close to λ? and, as such, it presents a

much better numerical behavior than x̂i(k).

2.5 Extension to the stochastic case

Of particular interest is the case where agents cooperate seeking a solution to an optimization

program where constraints depend on an uncertain parameter and should be robustly satisfied

for all values that this parameter may take. This poses additional challenges when devising a

distributed solution methodology. Here, we extend the approach in Section 2.2 (which can be

applied also to solve problem (5) in Section 2.3, see Remark 2.3) to the case where the agents’
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constraint sets are affected by a possibly common uncertainty vector by exploiting results on

scenario-based optimization [50–55].

In particular, we assume that each agent is provided with a given set of uncertainty

realizations (scenarios) and enforces the constraints only on these scenarios. We then show

that the distributed algorithm presented in Section 2.2 is applicable and that the converged

solution is feasible in a probabilistic sense for the constraints of the centralized problem,

i.e., it satisfies with high probability all agents’ constraints when an unseen uncertainty

instance is realized. To achieve this we rely on the novel contribution of [56], which leads to

a sharper result compared to the one that would be obtained by a direct application of the

basic scenario theory [51]. Our approach can be thought of as the data-driven counterpart of

robust or worst-case optimization paradigms, enabling us to provide a priori guarantees on

the probability of constraint satisfaction without imposing any assumptions on the underlying

distribution of the uncertainty and its moments, and/or the geometry of the uncertainty sets

(e.g., [57, Chapters 6, 7]); however, providing the overall feasibility statement with a certain

confidence. A key feature of our work is that we provide a distributed implementation of the

scenario approach, which is typically performed in a centralized fashion, allowing agents to

consider a different set of scenarios in their local minimization problems. This reduces the

communication effort and, at the same time, allow to preserve privacy of local information.

Let us consider problem P in (1) in the more general case where the constraint set Xi

of each agent i = 1, . . . ,m, depends on an uncertain parameter δ ∈ ∆. This leads to the

following optimization problem Pδ, where the subscript δ is introduced to emphasize the

dependency with respect to the uncertainty:

Pδ : min
x∈Rn

m∑
i=1

fi(x)

subject to x ∈
⋂
δ∈∆

m⋂
i=1

Xi(δ). (40)

Note that problem Pδ in (40) differs from problem P in (1) in that the constraint sets

depend on the uncertainty δ, which allows to model the presence of disturbances affecting

the system performance. The fact that uncertainty appears only in the constraints and not

in the objective functions is without loss of generality; in the opposite case, an epigraphic

reformulation would recast the problem in the form of Pδ.
Problem (40) is a robust program, in that any feasible solution x should belong to⋂m

i=1Xi(δ) for all realizations δ ∈ ∆ of the uncertainty.

The following modifications to Assumptions 2.1-2.3 are imposed:
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Assumption 2.11 1) For each i = 1, . . . ,m, Xi(δ) is a convex set for any δ ∈ ∆; 2) For

each i = 1, . . . ,m, and for any finite set S of values for δ,
⋂
δ∈S Xi(δ) is compact; and 3) For

any finite set S of values for δ,
⋂m
i=1

⋂
δ∈S Xi(δ) has a non-empty interior.

Given that it is generally difficult to solve problem (40) when ∆ is a continuous set,

and motivated by data-driven considerations, we assume that each agent i, i = 1, . . . ,m, is

provided with a fixed number of realizations of δ, referred to as scenarios, extracted according

to the underlying probability measure P with which δ takes values in ∆. According to the

information about the scenarios that agents possess, two cases are distinguished in the sequel

and the properties of the corresponding scenario programs are analyzed.

Scenarios as a common resource

We first consider the case where all agents are provided with the same scenarios of δ, i.e.,

scenarios can be thought of as a common resource for the agents. This is the case if all agents

have access to the same set of historical data for δ, or if agents communicate the scenarios

with each other. The latter case, however, increases the communication requirements.

Let N̄ ∈ N+ denote the number of scenarios, and S̄ = {δ(1), . . . , δ(N̄)} ⊂ ∆ be a set of

scenarios available to all agents. The scenarios are independently and identically distributed

(i.i.d.) according to P. Consider then the following optimization program PN̄ , where the

subscript N̄ is introduced to emphasize the dependency with respect to the uncertainty

scenarios.

PN̄ : min
x∈Rn

m∑
i=1

fi(x)

subject to x ∈
⋂
δ∈S̄

m⋂
i=1

Xi(δ). (41)

Clearly, x ∈ ⋂δ∈S̄
⋂m
i=1Xi(δ) is equivalent to x ∈ ⋂m

i=1

⋂
δ∈S̄ Xi(δ), and PN̄ is amenable to be

solved via the distributed Algorithm 1 with
⋂
δ∈S̄ Xi(δ) in place of Xi, for all i = 1, . . . ,m. Let

X∗
N̄
⊆ ⋂m

i=1

⋂
δ∈S̄ Xi(δ) be the set of minimizers of PN̄ . We then have the following corollary

of Theorem 2.1.

Corollary 2.1 Consider Assumptions 2.1-2.6 and the additional conditions in Assumption

2.11. We have that, for some x∗
N̄
∈ X∗

N̄
,

lim
k→∞

‖xi,N̄ (k)− x∗N̄‖ = 0, for all i = 1, . . . ,m, (42)
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where xi,N̄ (k) denotes the solution generated at iteration k, step 8 of Algorithm 1, when Xi is

replaced by
⋂
δ∈S̄ Xi(δ).

We address the problem of quantifying the robustness of the minimizer x∗
N̄

of PN̄ to

which our iterative scheme converges according to Corollary 2.1. In the current set-up a

complete answer is given by the scenario approach theory [50, 51], which shows that x∗
N̄

is

feasible for Pδ up to a quantifiable level ε̄. This result is based on the notion of support

constraints (see also Definition 4 in [50]), and in particular on the notion of support set [56]

(also referred to as compression scheme in [55]). Given an optimization program, we say

that a subset of the constraints constitutes a support set, if it is the minimal cardinality

subset of the constraints such that by solving the optimization problem considering only this

set of constraints, we obtain the same solution with the original problem that includes all

constraints. As a consequence, all constraints that do not belong to the support set are in a

sense redundant since their removal leaves the optimal solution unaffected.

By Theorem 3 of [50], for any convex optimization program the cardinality of the support

set is at most equal to the number of decision variables n, whereas in [58] a refined bound

is provided. The subsequent result is valid for any given bound on the cardinality of the

support set. Therefore, and since PN̄ is convex, let d ∈ N+ be a known upper-bound for the

cardinality of its support set. A direct application of the scenario approach theory in [50]

leads then to the following result.

Theorem 2.5 Fix β ∈ (0, 1) and let

ε̄ = 1− N̄−d

√
β(
N̄
d

) . (43)

We then have that

PN̄
{
S̄ ∈ ∆N̄ : P

{
δ ∈ ∆ : x∗N̄ /∈

m⋂
i=1

Xi(δ)
}
≤ ε̄
}
≥ 1− β. (44)

In words, Theorem 2.5 implies that with confidence at least 1− β, x∗
N̄

is feasible for Pδ
apart from a set of uncertainty instances with measure at most ε̄. Notice that ε̄ is in fact a

function of N̄ , β and d. We suppress this dependency though to simplify notation. Note that

even though PN̄ does not necessarily have a unique solution, Theorem 2.5 still holds for the

solution returned by Algorithm 1 (assuming convergence), since it is a deterministic algorithm

and hence serves as a tie-break rule to select among the possibly multiple minimizers.

Following [51], (43) could be replaced with an improved ε̄, obtained as the solution of
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∑d−1
k=0

(
N̄
k

)
ε̄k
(
1 − ε̄

)N̄−k
= β. However, we often use (43) since it gives an explicit relation

expression for ε̄, and also renders (44) directly comparable with the results provided in the

next subsection.

In case ε̄ exceeds one, the result becomes trivial. However, note that Theorem 2.5 can be

also reversed (as in experiment design) to compute the number N̄ of scenarios that is required

for (44) to hold for given ε̄, β ∈ (0, 1). This can be determined by solving (43) with respect to

N̄ with the chosen ε̄ fixed (e.g., using numerical inversion). The reader is referred to Theorem

1 of [50] for an explicit expression of N̄ .

Scenarios as a private resource

We now consider the case where the information carried by the scenarios is distributed, that is,

each agent has its own set of scenarios, which constitute agents’ private information. Assume

that each agent i, i = 1, . . . ,m, is provided with a set Si = {δ(1)
i , . . . , δ

(Ni)
i } ⊂ ∆ of Ni ∈ N+

i.i.d. scenarios of δ, extracted according to the underlying probability measure P. Here, δ
(j)
i

denotes scenario j of agent i, j = 1, . . . , Ni, i = 1, . . . ,m. The scenarios across the different

sets Si, i = 1, . . . ,m, are independent from each other. The total number of scenarios is

N =
∑m

i=1Ni. Consider then the following optimization program PN , where each agent has

its own scenario set.

PN : min
x∈Rn

m∑
i=1

fi(x)

subject to x ∈
m⋂
i=1

⋂
δ∈Si

Xi(δ). (45)

Program PN can be solved via the distributed Algorithm 1, so that a solution is obtained

without exchanging any private information regarding the scenarios. In fact, one can apply

Algorithm 1 with
⋂
δ∈Si Xi(δ) in place of Xi, for all i = 1, . . . ,m.

Similarly to Corollary 2.1, letting X∗N ⊆
⋂m
i=1

⋂
δ∈Si Xi(δ) be the set of minimizers of PN ,

we have the following corollary of Theorem 2.1.

Corollary 2.2 Consider Assumptions 2.1-2.6 and the additional conditions in Assumption

2.11. We have that, for some x∗N ∈ X∗N ,

lim
k→∞

‖xi,N (k)− x∗N‖ = 0, for all i = 1, . . . ,m, (46)

where xi,N (k) denotes the solution generated at iteration k, step 8 of Algorithm 1, when Xi is

replaced by
⋂
δ∈Si Xi(δ).
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As in the previous section, we show that the minimizer x∗N of PN to which our iterative

scheme converges according to Corollary 2.2 is feasible in a probabilistic sense for Pδ. Here, a

difficulty arises, since we seek to quantify the probability that x∗N satisfies the global constraint⋂m
i=1Xi(δ), where δ is a common parameter to all Xi(δ), i = 1, . . . ,m, while x∗N has been

computed considering Xi(δ) for uncertainty scenarios that are independent from those of

Xj(δ), j 6= i, i = 1, . . . ,m.

Let S = {Si}mi=1 be a collection of the scenarios of all agents. Similarly to the previous

case, we denote by d ∈ N+ a known upper-bound for the cardinality of the support set of

PN . However, the way the constraints of this set are split among the agents depends on the

specific scenarios S employed. Therefore, for each set of scenarios S, denote by di,N (S) ∈ N

(possibly equal to zero) the number of constraints that belong to the support set of PN and

correspond to Si, i = 1, . . . ,m, i.e., that belong to the constraints of agent i. We then have

that
∑m

i=1 di,N (S) ≤ d, for any S ∈ ∆N . For short we will write di,N instead of di,N (S) and

make the dependency on S explicit only when necessary.

For any collection of agents’ scenarios, it clearly holds that di,N ≤ d for all i = 1, . . . ,m,

for any scenario set. Thus, for each i = 1, . . . ,m, Theorem 2.5 can be applied conditionally

to the scenarios of all other agents to obtain a local, in the sense that it holds only for the

constraints of agent i, feasibility characterization. Fix βi ∈ (0, 1) and let

ε̃i = 1− Ni−d

√
βi(
Ni
d

) . (47)

We then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
≤ ε̃i

}
≥ 1− βi. (48)

By the subadditivity of PN and P, (48) can be used to quantify the probabilistic feasibility

of x∗N with respect to the global constraint
⋂m
i=1Xi(δ). Following the proof of Corollary 1

in [59], where a similar argument is provided, in [4] the following proposition is proven.

Proposition 2.1 Fix β ∈ (0, 1) and choose βi, i = 1, . . . ,m, such that
∑m

i=1 βi = β. For

each i = 1, . . . ,m, let ε̃i be as in (47) and set ε̃ =
∑m

i=1 ε̃i. We then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈

m⋂
i=1

Xi(δ)
}
≤ ε̃
}
≥ 1− β. (49)

Proposition 2.1 implies that with confidence at least 1 − β, x∗N is feasible for Pδ apart

from a set with measure at most ε̃. This result, however, tends to be very conservative thus
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prohibiting its applicability to problems with a high number of agents. This can be seen by

comparing ε̃ with ε̄, where the latter corresponds to the case where scenarios are treated as a

common resource. To this end, consider the particular set-up where Ni = N̄ and βi = β/m, for

all i = 1, . . . ,m. By (43) and (47), it follows that ε̃ = mε̃i ≈ mε̄, thus growing approximately

(we do not have exact equality since βi = β/m) linearly with the number of agents. The

issue with Proposition 2.1 is that it accounts for a worst-case setting, where di,N = d for all

i = 1, . . . ,m; however, this can not occur, since
∑m

i=1 di,N ≤ d implies that if di,N = d for

some i, then dj,N = 0, for all j 6= i, i = 1, . . . ,m.

To alleviate the conservatism of Proposition 2.1, and exploit the fact that
∑m

i=1 di,N ≤ d,

we apply the following reasoning, which strongly depends on the recent results of [56].

For each i = 1, . . . ,m, fix βi ∈ (0, 1) and consider a function εi(·) defined as follows:

εi(k) = 1− Ni−k

√
βi

(d+ 1)
(
Ni
k

) , for all k = 0, . . . , d. (50)

Notice that εi(·) is also a function of Ni, βi and d, but this dependency is suppressed to

simplify notation. For each i = 1, . . . ,m, working conditionally with respect to the scenarios

S \ Si of all other agents, Theorem 1 of [56] entails that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
≤ εi(di,N )

∣∣∣ {S \ Si ∈ ∆N−Ni
}}
≥ 1− βi. (51)

Integrating (51) with respect to the probability of realizing the scenarios S \ Si, if εi(·) is set

according to (50), we have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈ Xi(δ)

}
≤ εi(di,N )

}
≥ 1− βi. (52)

The statement in (52) implies that for each agent i = 1, . . . ,m, with confidence at least 1− βi,
the probability that x∗N does not belong to the constraint set Xi(δ) of agent i is at most equal

to εi(di,N ).

Note, however, that (52) is very different from (48), which is obtained by means of the

basic scenario approach theory, since di,N is not known a-priori but depends on the extracted

scenarios. Using (52) in place of (48), by the subadditivity of PN and P in [4] it is proven that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈

m⋂
i=1

Xi(δ)
}
≤

m∑
i=1

εi(di,N )
}
≥ 1−

m∑
i=1

βi. (53)

Unlike (44) and (49), (53) is an a-posteriori statement due to the dependency of εi(di,N ) on

the extracted scenarios. However, the sought a-priori result can be obtained by considering
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the worst-case value for
∑m

i=1 εi(di,N ), with respect to the different combinations of di,N ,

i = 1, . . . ,m, satisfying
∑m

i=1 di,N ≤ d. This can be achieved by means of the following

maximization problem:

ε = max
{di∈N+}mi=1

m∑
i=1

εi(di) (54)

subject to
m∑
i=1

di ≤ d,

Problem (54) is an integer optimization program. It can be solved numerically to obtain ε.

The optimal value ε of the problem above depends on {Ni, βi}mi=1 and d, but this dependency

is suppressed to simplify notation. Notice the slight abuse of notation, since {di}mi=1 in (54)

are integer decision variables and should not be related to {di,N}mi=1.

Theorem 2.6 Fix β ∈ (0, 1) and choose βi, i = 1, . . . ,m, such that
∑m

i=1 βi = β. Set ε

according to (54). We then have that

PN
{
S ∈ ∆N : P

{
δ ∈ ∆ : x∗N /∈

m⋂
i=1

Xi(δ)
}
≤ ε
}
≥ 1− β. (55)

The result of Theorem 2.6 can be significantly less conservative compared to that of

Proposition 2.1, since we explicitly account for the fact that
∑m

i=1 di,N ≤ d in the maximization

problem in (54). This can be also observed by means of the numerical example of Fig. 20,

where we investigate how ε̄, ε̃ and ε change as a function of the number of agents m. We

consider a particular case where d = 50, β = 10−6, Ni = N̄ = 4500 and βi = β/m, for all

i = 1, . . . ,m. For this set-up, where β is split evenly among agents and all agents have the

same number of scenarios, it turned out that the maximum value ε in (54) is achieved for

di = d/m, i = 1, . . . ,m.

In certain cases (e.g., when the number of agents is high) ε may still exceed one and

hence the result of Theorem 2.6 becomes trivial (the same for Proposition 2.1 in such cases).

Theorem 2.6 can be reversed to compute the number of scenarios Ni that need to be extracted

by agent i, i = 1, . . . ,m, for a given value of ε, β ∈ (0, 1). This can be achieved by numerically

seeking for values of Ni, i = 1, . . . ,m, that lead to a solution of (54) that attains the desired

ε.

2.6 Concluding remarks

We developed distributed optimization approaches for a large scale system composed of many

subsystems (agents) whose decisions are coupled. The proposed approaches can cope with i)
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Figure 20: Probability of constraint violation as a function of the number of agents m, for the case
where d = 50, β = 10−6, Ni = N̄ = 4500 and βi = β/m, for all i = 1, . . . ,m. Comparison among the
probability of violation ε̄ (green dashed line) in (43), ε̃ (red dotted-dashed line) in (47), and ε (blue
solid line) obtained by solving problem (54).

heterogeneity of the subsystems by allowing different local objectives and constraints coding

physical and/or technological limits, ii) locality of information and privacy, in that each agent

communicates with its neighbors and shares with them only its tentative value for some global

optimization variable that needs to be agree upon, and iii) uncertainty affecting each agent

dynamics. We hence capture the compositional nature of cyber-physical systems sharing some

common resource.

Inspired by [60], we are currently addressing decentralized optimization for solving Mixed

Integer Linear Program (MILP). This is useful for control of switched linear systems with

discrete and continuous inputs modeling smart grids in the energy management applications

described in Deliverable 5.1 and [61], which are part of the case studies of work package 5.

Companies involved in smart grid energy management can then benefit from the results of

work package 2.

Note that the proposed methods can solve problems involving a discrete-time dynamics

by reformulating them as static problems where the dynamics is propagated in time and the

system state is expressed as a function of the initial condition and the decision variables/inputs.

In such a case, one can adopt a receding horizon implementation of the distributed optimization

strategy, by re-initializing at each step the system at the current state and re-running the

distributed optimization algorithm. This would lead to a distributed MPC approach to the

optimal constrained control of a networked discrete-time system. However, it will also bring

in challenges related to real-time computability, as discussed in Section 4 of this deliverable.
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3 Distributed Model Predictive Control (DMPC)

The present section and Section 4 consider settings of distributed model predictive control

(DMPC), in which the local optimization problems are carried out in a decentralized fashion,

while information on planned trajectories (including costs) and/or on the interaction of the

subsystem dynamics is communicated through the network. A number of variants of DMPC

have been proposed in the past, mainly focussing on linear dynamics, see. e.g. [62–67]. Aspects

which have been hardly considered in research of DMPC so far, but which are particularly

important in the context of cyber-physical systems are the following:

� to account for heterogenous dynamics in the sense that the state evolution depends on the

specific mode of operation (which changes over time), thus requiring the consideration

of hybrid dynamics,

� to model that the constraints imposed by the environment on the evolution of the

subsystem state may vary over time,

� and that the optimization problems to be solved within the DMPC require sufficiently

small computation times to allow online execution.

These are the challenges which are addresses in work package 2 of UnCoVerCPS, and which

determine the content of this section and Section 4 of this report. Accordingly, we start from

a method for DMPC of piecewise-affine systems as described in [68] in an initial form, and

extend the method to cover time-varying constraints, to include discrete inputs, and to embed

mechanisms for reducing computation times, and thus to enhance the scalability. The method

described in the following is the first one to propose a DMPC scheme for switching affine

system such that stabilization is ensured.

3.1 Problem Setup

According to [68], consider Nl dynamically decoupled hybrid subsystems Σi, i ∈ {1, . . . , Nl} =:

N with discrete-time affine dynamics on a polyhedral partition of the continuous state space:

xik+1 = Aipix
i
k +Bi

piu
i
k + f ipi , if xik ∈ P ipi︸ ︷︷ ︸

=:gi(xik+l,u
i
k+l)

, (56)

where xik ∈ Rni and uik ∈ Ui ⊆ Rmi are the local states and inputs of Σi; P ipi is a convex

polyhedral region of the partitioned state-space of Σi, and the affine dynamics parametrized by

Ai
pi

, Bi
pi

and f i
pi

is valid on the region with index pi ∈ {1, . . . , N i
p}. The global state and input
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vectors are given by xk = [(x1
k)
T , . . . , (xNlk )T ]T ∈ Rn and uk = [(u1

k)
T , . . . , (uNlk )T ]T ∈ Rm.

Coupling is induced by a global cost function for a finite horizon of N ≥ 2 time steps:

J(xk,uk) = ‖xk+N |k‖P +
N−1∑
l=0

‖xk+l|k‖Q + ‖uk+l|k‖R,

where xk+l|k denotes the state at time k + l predicted at time k and uik = [(uik|k)
T , . . . ,

(uik|k+N−1)T ]T ∈ RNmi and xik = [(xik|k)T , . . . , (xik|k+N )T ]T ∈ R(N+1)ni denote the sequence of

inputs and states of the subsystem Σi over the horizon. The global state and input vector

over the horizon are given by xk = [(x1
k)
T , . . . , (xNlk )T ]T and uk = [(u1

k)
T , . . . , (uNlk )T ]T . Let

‖xk+N |k‖P = xTk+N |kPxk+N |k, and the weighting matrices satisfy Q = QT > 0, R = RT > 0,

and P = P T > 0. Further coupling is induced by interconnected state constraints xk ∈ X ⊆ Rn.

The polyhedral regions of the state space are defined by:

P ipi := {xik ∈ Rn
i |Cipixik ≤ bipi}, (57)

with Ci
pi
∈ Rc

i
pi
×ni

, bi
pi
∈ Rc

i
pi . The input constraints are given by:

Ui := {uik ∈ Rm|F iuik ≤ hi}, (58)

where H i ∈ Rnih×mi , hi ∈ Rnih and U := Ui× . . .×UNl . In order to define the state constraints,

let X := {xk ∈ Rn|Exk ≤ o}, with E ∈ Rne×n and o ∈ Rne denote coupled convex state

constraints. Furthermore, let X̃j := {xk ∈ Rn|Ẽjxk ≤ õj}, with Ẽj ∈ Rnẽj×n and õj ∈ Rnẽj

denote regions which are excluded from the feasible set. Then, the overall state constraint is

given by:

X := (∪N
1
p

p1=1
P1
p1 × . . .× ∪N

Nl
p

pNl=1
PNl
pNl

) ∩ (X \ ∪jX̃j). (59)

Notice, that this formulation allows to approximate arbitrary non-convex constraints.

The following assumptions are made in order to establish feasibility and stability of the

scheme:

Assumption 3.1 It is assumed that:

1. Let Bnr denote a closed ball of dimension n with radius r > 0 and center 0. Bmε ⊆ U,

Bnε ⊆ X, and Bniε ⊆ P i1, ∀i ∈ N .

2. The pair (Ai1, B
i
1) is stabilizable for all i ∈ N .
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3. There exists a terminal control law:

uk = K1xk, (60)

with K1 = blkdiag(K1
1 , . . . ,K

Nl
1 ), Ki

1 ∈ Rmi×ni, and a decoupled terminal set Xf = X1
f ×

. . .× XNlf :

Xf ⊆ (P1
1 × . . .× PNl1 ) ∩ (X \ ∪jX̃j), (61)

and P = blkdiag(P 1, . . . , PNl), such that the following holds for all xk ∈ Xf :

(i) ‖xk‖P − ‖(A1 +B1K1)xk‖P ≥ ‖xk‖Q + ‖K1xk‖R,

(ii) (A1 +B1K1)xk ∈ Xf , K1xk ∈ U.

A1.1 and A1.2 ensure that the problem is well posed, and they ensure that a terminal control

law and constraint satisfying A1.3 can be constructed.

The centralized MPC Problem is given by:

(x∗k,u
∗
k) = argminxk,uk

J(xk,uk) (62)

s.t. xik+l+1|k=gi(xik+l|k, u
i
k+l|k), ∀i∈N , ∀l∈{0, . . . , N−1},

uk+l|k ∈ U, xk+l|k ∈ X, ∀l∈{0, . . . , N−1},

xk+N |k ∈ Xf .

By introducing N
∑

i∈N N
i
p binary variables, which encode the dependancy of the dynamics

gi(xik, u
i
k) on the condition xik ∈ P ipi , problem (62) can be formulated as a mixed-integer

quadratic program (MIQP). While the resulting MIQP can be solved by techniques such as

branch and bound, the computational complexity is high due to a large number of binary

variables arising from the combinatorial nature of the dynamics (56). Thus, in order to apply

MPC to distributed PWA systems, both the number of binary variables and the number of

continuous variables have to be reduced by decomposing (62) into a set of smaller subproblems.

3.2 Scheme using decentralized optimization and communication

In a typical sequential scheme, subsystem Σi solves (62) for its own inputs uik|k while keeping

the inputs and states of the interconnected subsystems Σj , ∀j ∈ N 0
i \ i constant. Then Σi

communicates the resulting input sequence to all subsystems Σj , ∀j ∈ N 0
i \i. Subsequently, the

next subsystem in the sequence repeats the procedure (still in time k). Let τs denote an upper
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bound on the computation time of one subsystem and τc an upper bound on the communication

delay. Assuming that data can be communicated to all interconnected subsystems at once,

the time required to optimize over the whole sequence is Nl(τs + τc). Thus, one has to choose

a sampling time T > Nl(τs + τc), i.e. if a large number of subsystems is considered, the

overall computation time may be problematic. In the scheme proposed by [69], some groups

of subsystems may update their control inputs in parallel if the interconnections are sparse.

However, each subsystem needs to send four messages to neighboring subsystems per time step

in this scheme. Furthermore, it is not clear how to efficiently use the communication network

and avoid simultaneous access to a shared network. For instance, in a wireless multi-hop

network communication frequencies / channels are shared by the nodes / subsystems and

collisions may arise if multiple subsystems access the network at the same time. These

collisions can be avoided by suitable scheduling or arbitration protocols, which ensure that

only one subsystem can access the network at a time. In the following, we will consider an

arbitration protocol which grants network access to the subsystem with the largest decrease

in the cost function.

Let N 0
i ⊆ N denote an index set containing the indices of the subsystem Σi and of all

subsystems with which Σi is directly interconnected with, either by costs or constraints.

In the distributed scheme, each subsystem Σi optimizes over its own inputs and that of

directly interconnected subsystems, i.e. Σi optimizes over ujk for j ∈ N 0
i . Hence, the resulting

problem also depends on the state and input sequences of the subsystems Σs, s ∈ N 1
i \ N 0

i

for N 1
i := ∪j∈N 0

i
N 0
j . These sequences are held constant during the local optimization. Thus,

each subsystem needs to assume values for the inputs and states of other subsystems. For this

purpose, we introduce local variables ui,jk+l|k and vi,jk+l|k, where e.g. ui,jk+l|k is the local value

that Σi uses for ujk+l|k, v
i,j
k+l|k denotes an optimized candidate input sequence, and we write

uik+l|k = ui,ik+l|k. The main idea is to solve the local problems in parallel and to synchronize

the assumed and actual inputs of the subsystems by communication. Consider the following

local optimization problem of subsystem Σi, which leads to a candidate solution (zi
∗
k ,v

i∗
k ),

containing a locally optimized state and input sequence:

(zi
∗
k ,v

i∗
k ) = argminzik,v

i
k
J(zk,vk) (63)

s.t. zi,jk+l+1|k=gi(zi,jk+l|k, v
i,j
k+l|k),∀j∈N

0
i ,∀l∈{0, . . . , N−1},

vik+l|k ∈ U, zik+l|k ∈ Xi, ∀l∈{0, . . . , N−1},

zi,sk+l|k = xi,sk+l|k, v
i,s
k+l|k = ui,sk+l|k, ∀s ∈ N 1

i \ N 0
i , ∀l∈{0, . . . , N−1},

zi,qk+l|k = 0, vi,qk+l|k = 0, ∀q /∈ N 1
i , ∀l∈{0, . . . , N−1},
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zk+N |k ∈ Xf , vi,jk|k = ui,jk|k, ∀j ∈ N 0
i ,

Here, Xi collects all constraints from X which involve xjk, ∀j ∈ N 0
i . In this problem,

inputs and states of Σs, s ∈ N 1
i are fixed to the previous solution. Because only the

hybrid dynamics gi(xik, u
i
k), i ∈ N 0

j have to be considered the number of binary variables is

reduced to N
∑

j∈N 0
j
N j
p . This results in a large reduction of computational complexity, if

the interactions are sparse. Furthermore, the optimizer (zi
∗
k ,v

i∗
k ) does not depend on states

and inputs of Σζ , ζ /∈ N 1
i . Thus, these states and inputs are set to 0 (which is feasible

by Assumption 3.1.1 and the construction of Xi) and do not need to be communicated to

subsystem Σi. Let vi,jk := [(vi,jk+l|k)T , . . . , (vi,jk+N−1|k)T ]T and zi,jk := [(zi,jk+l|k)T , . . . , (zi,jk+N |k)T ]T

again denote sequences over the prediction horizon, and define vi := [(vi,1k )T , . . . , (vi,Nlk )T ]T

and zi := [(zi,1k )T , . . . , (zi,Nlk )T ]T . In order to compensate for computation and communication

delays, the last constraint fixes the current input to the initial solution, i.e. the current input

is not optimized. After the optimization is performed in parallel, each subsystem Σi computes

whether the cost decrease by the local candidate solution is larger than a threshold γ > 0, and

which subsystem offers the largest decrease. Note that γ can be used to establish a trade-off

between communication and closed-loop performance, since updates which improve the cost

by less than γ are not communicated and are discarded. The cost before a communication

event by Σi is given by J(x̄ik, ū
i
k), where x̄ik and ūik are defined the same way as vi and zi,

and the components are given by:

x̄i,sk+l|k = xi,sk+l|k, ūi,sk+l|k = ui,sk+l|k, ∀s ∈ N 1
i , (64)

x̄i,ζk+l|k = 0, ūj,ζk+l|k = 0, ∀ζ /∈ N 1
i .

The cost after a communication event by Σi is given by J(x̂ik, û
i
k), and the components of x̂ik

and ûik are:

x̂i,jk+l|k = zi,jk+l|k, ûi,jk+l|k = vi,jk+l|k, ∀j ∈ N 0
i , (65)

x̂i,sk+l|k = xi,sk+l|k, ûi,sk+l|k = ui,sk+l|k, ∀s ∈ N 1
i \ N 0

i ,

x̂i,ζk+l|k = 0, ûi,ζk+l|k = 0, ∀ζ /∈ N 1
i .

These costs are compared according to:

J id =


J(x̄ik, ū

i
k)− J(x̂ik, û

i
k) if x̂ik ∈ Xi × . . .× Xi,

−∞ otherwise,

(66)
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Algorithm 7 DMPC Algorithm

1: Initialization: ui0, xi0, for all i ∈ N .
2: while k ≥ 0 do
3: Each subsystem Σi applies ui,ik|k.

4: Solve (63) in parallel for all i ∈ N , and set Ωk := N .
5: while t < (k + 1)T − τc and stop = 0 do
6: Each Σi computes J id according to (66) and arbitration leads to i∗ based on (67).
7: if i∗ = ∅ then
8: stop = 1
9: else

10: Σi∗ sends (zi
∗

k|k,v
i∗

k|k) to all Σj , j ∈ N 1
i∗ .

11: for j ∈ N and all r ∈ N do
12: uj,rk+l|k+1 := vi

∗,r
k+l|k, ∀l ∈ {1, . . . , N−1},

xj,rk+l|k+1 := zi
∗,r
k+l|k, ∀l ∈ {2, . . . , N−2}.

13: end for
14: Set Ωk := Ωk \ i∗.
15: end if
16: end while
17: Each Σi computes for all r∈N 1

i :

ui,rk+l|k+1 := ui,rk+l|k, ∀l ∈ {1, . . . , N−2}
xi,rk+l|k+1 := xi,rk+l|k, ∀l ∈ {1, . . . , N−1}

ui,rk+N−1|k+1 := Kr
1x

i,r
k+N−1|k+1,

xi,rk+N |k+1 := (Ar1 +Br
1K

r
1)xi,rk+N−1|k,

and sets k := k + 1.
18: end while

i.e. an infeasible update results in infinite costs. Subsequently, the subsystem Σi∗ with

i∗ := argmax
i∈Ωk,J

i
d≥γ

J id, (67)

is granted access to the network. The set Ωk is the index set of subsystems which have not

yet communicated in time k. This procedure may be repeated, if enough time is left before

the next sampling instant.

The overall scheme is given by Algorithm 7, where t denotes the current time, and k the

current time step. If i∗ is not unique, a given priority may be used for arbitration. The

subsystem Σi∗ communicates its optimized input and state sequence to Σj , j ∈ N 1
i∗ , which

update the local input and state sequences ui,jk+l|k and xi,jk+l|k and repeat the arbitration scheme.

Note that this scheme is similar to the well known try-once-discard (TOD) protocol and can

be implemented in a wide range of shared and distributed communication networks. For

instance, [70] proposed a method to implement such an arbitration scheme in multi-hop
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Figure 21: Steps from Algorithm 7 (dashed) and communication (dotted, shown for Σ1).

wireless networks with shared communication channels.

Note that the set Ωk is not required to actually implement the scheme; it is only used

to specify that a system Σi does not participate in the arbitration phase, if it already

communicated its candidate solution. The scheme is illustrated in Figure 21. Similarly to

sequential schemes, a feasible initialization for all Σj , j ∈ N 1
i has to be assigned to each

subsystem Σi. Within the scheme, feasibility of a combination of the current state and input

sequences and local candidate solutions is checked and combinations which are either not

feasible or do not lead to a cost reduction are discarded (similar to ( [69])). It should be noted,

that two subsystems Σi and Σj with N 1
i ∩ N 1

j = ∅ could update at the same time without

causing infeasibility. In particular, this implies that Σi may communicate a feasible update as

long as N 1
i ∩N 1

j = ∅ for all j ∈ Ωk.

Theorem 1 Suppose that Assumption 3.1 is satisfied and a feasible initialization exists. Then,

Algorithm 7 ensures feasibility for all times, and the overall system is asymptotically stable in

closed loop with the DMPC-Scheme.

The reader is referred to [68] for the proof of this result.

3.3 Numerical Example

As an example, consider the problem of controlling a platoon of Nl = 7 identical vehicles, a

version of the automotive use case in UnCoVerCPS. The vehicles are modeled by switched

second order dynamics with three regions P i
pi

, modeling approximately changes of the dynamics

due to shifting gears and nonlinear effects. The states are given by xik=
[
νi−Sd(i− 1) ν̇i

]T
,

where νi is the position, ν̇i the velocity, and Sd the desired spacing between vehicles. Thus,

νi+1
k −νik=Sd is equal to xi+1

k −xik=0. We choose Sd= 5 which corresponds to a constant spacing

of 5m. The cost is formulated such that the distance of the first vehicle from the desired
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position and the spacing between each vehicle and its follower are penalized. Furthermore, the

problems are interconnected by collision avoidance constraints between subsequent vehicles,

i.e. xi+1
k −xik > −5. The coupling structure is given by e.g. N 0

1 := {1, 2}, N 0
2 := {1, 2, 3},

N 0
3 := {2, 3, 4}, etc. The dynamics is parametrized by:

Ai1 =

1 1

0 0.95

 , Bi
1 =

0.5

1

 , f i1 =

0

0

 ,
Ai2 =

1 1

0 0.75

 , Bi
2 =

0.4

0.8

 , f i2 =

 0

1.11

 ,
Ai3 =

1 1

0 0.75

 , Bi
3 =

0.25

0.5

 , f i3 =

0

0

 ,
with P i1 = {xik ∈ Rni | − 0.278 ≤ [0 1]xik ≤ 5.55}, P i2 = {xik ∈ Rni |5.55 ≤ [0 1]xik ≤ 27.78}, and

P i3 = {xik ∈ Rni | − 5.55 ≤ [0 1]xik ≤ −0.278} for all Σi, i ∈ N . Simulation results for N = 30

and γ = 1 are shown in Figure 22, where the subplots show the position, velocity, and input of

each vehicle. The threshold γ = 1 was chosen to closely emulate the behavior of time-triggered

communication and the scheme is initialized with a suboptimal centralized solution. The last

plot shows the number of communication events per time step, which was limited to three. It

can be seen that the vehicles cooperate to reach the desired spacing. For example, Σ1 (blue)

does not accelerate strongly until ca. k = 7, thereby allowing Σ2 (green) to reach the desired

spacing. For k ≤ 11 the subsystems communicate frequently, but for k > 11 the local solutions

do not sufficiently improve the overall cost and are no longer communicated. Nonetheless, the

vehicles reach the desired position and no collisions between vehicles occur. Using CPLEX

12 on an AMD Phenom II X4 920 with 4 GB RAM, the computation times for the local

problems (63) range from 0.1s to 3s, the sum of local computation times is between 1s and

10s, and a comparable centralized problem typically required between 3s and 100s. In order

to allow for real-time operation, shorter prediction horizons, or longer sampling intervals of

the subproblems may be used.

Note that, in comparison to other existing techniques for vehicle platooning, the consid-

eration of switching dynamics as well as the distributed online optimization of the driving

behavior are new contributions. Two aspects should be observed, however, in the modeling

of this example (and the method illustrated before): firstly, the change of gears is bound

to the partitioning of the state space, i.e. the system switches autonomously between the

different affine dynamics. An interesting question is, how the switching can be handled if it

constitutes a degree of freedom of the system evolution and thus needs to be determined by
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Figure 22: Simulation results for a platoon of vehicles.

a controller. Secondly, the partitioning of the state space and hence the state constraints

are time-invariant. Particularly for CPS which operate in uncertain environments, the state

constraints will arise from current measurements, i.e. they will be modeled as time-varying

constraints. These two extensions were developed within work package 2 and are investigated

in the following section.
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4 Enhancing Real Time Computability

4.1 Introduction

The effectiveness of a Model Predictive Control (MPC) scheme for online control design is

inherently bound to the question whether the optimization in each MPC iteration can be

completed timely. This question is particularly relevant to distributed MPC for cyber-physical

systems. The idea is therefore to explore different techniques to enhance the computational

efficiency in determining suboptimal and approximated solutions. While a certain (small)

loss of performance seems acceptable in favor of an enhanced real-time computability, the

requirement of maintaining stability obviously has to be kept.

For those variants of CPS, in which the switching of the dynamics exists as a degree

of freedom of the controller and/or the state constraints are varying over time, the control

task is obviously more challenging than the instance of DMPC for switching systems, as

covered in the previous section. This, in turn, makes the provision of techniques that provide

the control inputs with low computational effort (and thus timely in a real-time setting)

even more important. The next section, addresses this problem for a DMPC setting, in

which the subsystem dynamics comprises discrete and continuous degrees of freedom. The

optimization within the local MPC of any subsystem fixes these degrees of freedom (subject

to constraints imposed / communicated by other subsystems) such that the optimal solution

is approximated by relatively low effort. Thus, this approach extends existing variants of

DMPC with coupling over constraints (as the method presented in the previous section) to

mixed inputs, while at the same time a solution to the problem of increased complexity is

proposed. With respect applications, the use of mixed inputs is valuable for any system in

which actuators coexist that partly operate on continuous ranges, and partly on a discrete set

of choices. An example for this case is a platoon of vehicles for which acceleration and gear

can be controlled simultaneously (as described in the following part).

Section 4.3 then presents an alternative method tailored to low computation times specifi-

cally for time-varying state constraints (while focussing on continuous controls only). The

main idea there is to determine in very short time for the local subsystem control an optimized

state trajectory that stays feasible with respect to the changing constraints. This technique

is based on the concept of homotopic functions, and it derives suitable trajectories online

from optimal solutions computed prior to start of system operation. The method is suitable

for applications in which the space available for trajectory planning may change rapidly. An

example (related to the robotic use case of the project) is the control of a robotic manipulator
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which operates in the same space as a human, such that collision avoidance is mandatory

implying that the controller has to adapt fastly to the motion of the human.

4.2 Fast DMPC for Switched Systems with Mixed Inputs

As in any constrained optimization problem, the complexity of the local optimization of

a subsystem in a DMPC scheme (as the one in Section 3) is determined by the number

and type of the degrees of freedom, the number of constraints, and the properties of the

functions occuring in the cost functional and the constraints. For CPS with hybrid dynamics,

the combinatorics arising from the discrete-event part often has a dominating effect on the

complexity and thus the computational effort. If the local dynamics of the subsystems are

specified by switched dynamic systems, optimization problems of the class mixed-integer

(non)linear programming (MINLP) are typically obtained, which are known to be NP hard,

see e.g. [71,72]. The use of relaxations (i.e. temporarily treating an integer variable v ∈ {0, 1}
as a continuous one v ∈ [0, 1]) is an established method to generate lower cost bounds when

exploring and pruning the tree of integer variables, and it has been used in a number of

approaches for solving control problems for switched systems [73–76]. While for some problem

instances relaxations may lead to satisfactory results (in terms of efficiently pruning the

search tree), the opposite effect can occur for switched systems in some cases: using v ∈ [0, 1]

instead of v ∈ {0, 1} may mean to average between two distinct dynamics, leading to a system

evolution which is not possible for the switched system. A gross under-estimation of a bound

may result, i.e. many nodes of the search tree may be explored which later turn out to be

infeasible. If the solution is approached by existing solvers for MINLP problems, such as

’BONMIN’ [77] or ’BNB’ [78], it can be observed that typically the computation times increase

quickly with a growing number of integer variables, and, in addition, there is no guarantee that

global optima are determined. These shortcomings motivate the investigation of techniques

that do not not rely on relaxations of binary variables.

In this work, local online predictive controllers for switched systems are synthesized. The

finite horizon optimal control problems consider time-varying state constaints, which stem

from the predicted and communicated trajectories of interacting subsystems. In addition,

input constraints are considered, and the method aims at a suitable compromise between

control performance and computational effort. Several examples illustrate that by applying the

proposed technique, real-time computability is significantly enhanced compared to standard

mixed-integer solutions.
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4.2.1 Problem Formulation

The class of models studied in this section are switched systems as, e.g., defined in [79]. For

k ∈ N≥0, consider the discrete-time model:

xk+1 = Avkxk +Bvkuk

xk ∈ Xk, uk ∈ U, vk ∈ V
(68)

where xk ∈ Rnx×1 is the continuous state bound to time-varying constraints Xk, The vector

uk ∈ Rnu×1 denotes the continuous input selected from an invariant input space U , and

vk is the discrete input determining the parametrization of the continuous dynamics. The

latter is chosen from the set V = {1, . . . , nv}, and any vk ∈ V corresponds to a pair of

matrices (Avk , Bvk). For a finite N ∈ N, a given xk ∈ Xk, let a sequence of state constraints

(Xk, Xk+1, . . . , Xk+N ) be given. Let sequences of continuous inputs φuk,N = (uk, . . . , uk+N−1)

and discrete inputs φvk,N = (vk, . . . , vk+N−1) be selected, for which a resulting sequence of

continuous states is φxk,N = (xk+1, · · · , xk+N ) satisfies for j ∈ {0, · · · , N − 1}:

x(k+j+1) =
j∏
l=0

Av(k+l)
· xk +

j∑
l=0

[(
j−l−1∏
t=0

Av(k+j−t)) ·Bv(k+l+1)
· u(k+l)].

(69)

The control objective is to drive xk into a target state xf ∈ XT = XN within the N steps,

while minimizing the cost function:

Ω(xk, xf , φ
v
k,N , φ

u
k,N ) := (xk+N − xf )T

NQf (xk+N − xf )

+
N−1∑
j=0

(xk+j − xf )TQ1(xk+j − xf ) + uT
k+jQ2uk+j︸ ︷︷ ︸

Step cost L(xk+j ,uk+j)

subject to: (69), uk+j ∈ U, vk+j ∈ V, xk+j+1 ∈ Xk+j+1 ∀j ∈ {0, . . . , N − 1},

(70)

with weighting matrices Q1 = Q1
T ≥ 0, Q2 = Q2

T > 0 and Qf = Qf
T > 0. If N has to be

chosen large in order to enable xf ∈ XN , a large combinatorial complexity arises from the

discrete inputs (nv
N ). If, in addition, the state constraints Xk can only be measured online

and predicted a few time steps ahead, the solution on a moving and comparatively short

horizon (as in MPC), is a self-evident option.

The substitute problem to be solved for any k ≥ 0 until xk ∈ XT and for a prediction horizon
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H ∈ N, H < N is then:

minφ
v
k+j,H

φuk+j,H


Ω(xk, xf , φ

v
k,k+H , φ

u
k,k+H)

s.t.: (69), xk+j|k ∈ Xk+j|k, j ∈ {1, . . . ,H}

uk+j|k ∈ U, vk+j|k ∈ V, j ∈ {0, . . . ,H − 1}, (71)

where uk+j|k, vk+j|k denote the continuous/discrete input computed at time k for time k + j.

Note that the predicted state constraint Xk+j|k may be different to Xk+j in the original

problem. As the predicted horizon is selected to be shorter than in the original problem, a

terminal weighting matrix QH = QH
T > 0, QH > Qf with larger entries (compared to Qf in

(71)) is applied, in order to guarantee the following stability condition to hold:

Ω∗(xk, xf , φ
v,∗
k,H , φ

u,∗
k,H) ≥ Ω∗(xk+1, xf , φ

v,∗
k+1,H , φ

u,∗
k+1,H). (72)

As the continuous dynamics can be selected in any time step of the horizon, the set of choices

exponentially increase with H, i.e., a total number of nv
H sequences φv are possible. Clearly,

while complete enumeration would lead to the optimal solution, it renders the online solution

infeasible in most cases. The optimization of φv (in conjunction to φu) can be treated by

MINLP solvers. These provide locally optimal result, but the solution is typically not feasible

in real-time for large H – solutions with small H may, however, violate the stability condition

(72).

Hence, as an alternative, a tree search algorithm is proposed here to solve (71). It will be

shown that the procedure limits the suboptimality and that it incurs computation times that

are sufficiently low for many applications. The structure of the search algorithm is motivated

by the one in [80], which operates on a tree in which a layer with index j represents the states

reachable at time step k + j. For a node representing state xk+j|k, one outgoing edge each for

any vk+j|k ∈ V is introduced, leading to a successor node on the next layer. The following

sections describe methods to reduce the share of the tree to be explored by pruning over cost

bounds and by using dynamic programming.

4.2.2 Lower and Upper Cost Bounds for Pruning a Search Tree

Lower Bound Identification A lower cost bound for a given state can be obtained by

ignoring the constraints on the continuous states and the continuous inputs of (71). With
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this assumption, the following variant of the optimization problem (71) is obtained:

min
φu,φv

Ωun(H,φu, φv, xk, xf )

s. t. (69), v(k+j|k) ∈ V, j ∈ {0, · · · , H − 1}.
(73)

As Ωun has the same form as Ω in (71), (73) can be seen as an extension of (71) to a larger

feasible set, providing a lower bound:

Ωun,∗(xk) ≤ Ω∗(xk). (74)

The difference between Ωun,∗(xk) and Ω∗(xk) depends on the effects of the constraints. The

focus of the rest of this subsection is on computing Ωun,∗(xk) efficiently.

As proposed in [73,74], difference riccati equation are used to handle problem (73). Specifically,

the H-step value function V(x(k+j|k)) = (x(k+j|k)−xf )TP∗j (x(k+j|k)−xf ) for ∀j ∈ {0, · · · , H}
is defined first to formulate the cost-to-go from step j to step H in (73) . A set of positive-

definite symmetric matrices P∗j for j ∈ {0, · · · , H} are introduced, satisfying the property:

V∗(x(k+j|k)) = (xun,∗(k+j|k) − xf )TP∗j (xun,∗(k+j|k) − xf )

= min
φju,φ

j
v

{
H−1∑
i=j
L(x(k+i|k), u(k+i|k))

+(x(k+H|k) − xf )TQH(x(k+H|k) − xf )}
s. t. (69), v(k+i|k) ∈ V, i ∈ {j, · · · , H − 1}.

(75)

Here, φju = (u(k+j|k), · · · , u(k+H−1|k)), φ
j
v = (v(k+j|k), · · · , v(k+H−1|k)), and xun,∗(k+j|k) ∈ φun,∗x

denotes the optimal continuous state at step k + j in (73). Similar to the above, there also

exists an H-step value function V∗,c(x(k+j|k)) in problem (71) to denote the cost-to-go from j

to H, where for j ∈ {0, · · · , H}:

V∗,c(x(k+j|k)) = min
φju,φ

j
v

{
H−1∑
i=j
L(x(k+i|k), u(k+i|k)) + (x(k+H|k) − xf )TQH(x(k+H|k) − xf )}

s. t. (69), v(k+i|k) ∈ V ;u(k+i|k) ∈ U, i ∈ {j, · · · , H − 1}
x(k+i|k) ∈ X(k+i|k), x(k+H|k) ∈ Xk+H|k

f .

(76)

Since (75) always provides a larger feasible set than (76) for the same state x(k+j|k), the

relation V∗,c(x(k+j|k)) ≥ V∗(x(k+j|k)) always holds. Moreover, as proved in [74], the following

relation between P∗H and QH exists:
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� by substituting j = H into (75):

V∗(x(k+H|k)) = (xun,∗(k+H|k) − xf )TP∗H(xun,∗(k+H|k) − xf )

= min
x(k+H|k)∈φunx

(x(k+H|k) − xf )TQH(x(k+H|k) − xf )}

= (xun,∗(k+H|k) − xf )TQH(xun,∗(k+H|k) − xf )}
and thus:

P∗H = QH .

(77)

� by substituting j = 0 into (75):

V∗(xk) = (xun,∗k − xf )TP∗0 (xun,∗k − xf )

= min
φu,φv
{
H−1∑
i=0
L(x(k+i|k), u(k+i|k))

+(x(k+H|k) − xf )TQH(x(k+H|k) − xf )}
= Ωun,∗(xk).

(78)

Since xk is known from measurements, (78) indicates that Ωun,∗(xk) of (73) can be determined

by determining P∗0 . Following [74], the computation of P∗0 can traced by iterative enumeration

of the difference Riccati equation: starting from H, for each v(k+H−1|k) = vq ∈ V the value of

PH−1 follows from:

PH−1 = Q1 +AT
vqPHAvq + 2KT

q B
T
vqPHAvq

+KT
H−1(BT

vqPHBvq +Q2)KH−1

KH−1 = −(BT
vqPHBvq +Q2)−1BT

vqPHAvq .

(79)

Since Q2 and PH are defined positive-definite and only real-valued entries exist in Bvq , it

applies that BT
vqPHBvq +Q2 > 0, and the matrix is invertible. As P∗H = QH is given in (77),

we can substitute each v(k+H−1|k) = vq ∈ V into (79), and thus a number of nv different

matrices PH−1 are obtained in step k +H − 1. We use the symbol PH−1 to denote the set

of these matrices. By continuing the backward computation, a set P0 is finally obtained for

step k, containing the nv
H matrices P0, as shown in Fig. 23. Since the optimal value P∗0 is

contained in P0, it can be identified by:

P∗0 = argmin
P0,q∈P0

(xk − xf )TP0,q(xk − xf ), , (80)

and thus Ωun,∗(xk) is obtained, and provides a lower bound of Ω∗(xk). However, the explicit

enumeration induces exponential complexity, and thus rapidly becomes intractable. As
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Figure 23: An explicit backward enumeration procedure

countermeasure, [73,74] proposed to multiply the step cost L with a relaxation factor, leading

to an efficient reduction of the set Pj . However, selecting the relaxation factor is diffcult, and

no constructive rule seems to exist. The pruning of the set seems to extremely sensitive to the

factor, as indicated in [74], where increasing the factor from 1.0 to 1.0001, reduces |P0| from

386 to 22. While problem (73) is very similar to the one in [73,74], the objective is not exactly

the same: while the reference aims at an explicit and efficient approximation of Ωun,∗(xk),

we go for approximating the minimum of Ω∗(xk) instead of Ωun,∗(xk), where Ωun,∗(xk) only

provides a lower bound of the original variant. Thus, computing a lower bound of Ωun,∗(xk)

is just an intermediate step, i.e. approximating Ωun,∗(xk) should not incur significant effort.

Recalling (80) and Fig. 23, the reason for using the explicit enumeration up to the first

step is the missing information of φun,∗x : only after P∗0 is identified, one is able to forwardly

apply (79) to calculate φun,∗x . As a work-around, [81,82] assumes that for all j ∈ {1, · · · , H},
the deviation from the final state (xun,∗(k+j|k)−xf ) follows a Gaussian distribution with expected

value E((xun,∗(k+j|k)−xf )) = 0 and covariance matrix E((xun,∗(k+j|k)−xf )T(xun,∗(k+j|k)−xf )) = I. Then,

the trace of Pj can be used to represent the expected value of (xun,∗(k+j|k)−xf )TPj(xun,∗(k+j|k)−xf ).

By employing this assumption and the fact that xf is given, the following algorithm 8 is

proposed, which is executed at step k + j:

This algorithm provides a ’Best-First’ like method in which the trace of each Pj ∈ Pj is

compared only to the the matrix with the minimal trace found so far. Thus, Pj constantly

contains one element over all steps. Finally, a sequence φapxP = (Papx0 ,Papx1 , · · · ,PapxH ) is

obtained and used as approximation of φ∗P = (P∗0 ,P∗1 , · · · ,P∗H). Meanwhile, as each Papxj

relates to a certain vq, a discrete input sequence φapxv = (vapx0 , vapx1 , · · · , vapxH−1) is also obtained.
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Algorithm 8 Pruning Procedure in step k + j

1: Given: Pj ;
2: for m = 1 : |Pj | do
3: for n = 1 : |Pj | do
4: if m 6= n then
5: if trace(Pj,m) < trace(Pj,n) then
6: Pj,n is pruned from the tree
7: end if
8: end if
9: end for

10: end for

In comparison with full enumeration, the search reduces from
H∑
j=1

nv
j to H ·nv. Moreover, the

tuning procedure for a relaxation factor is not necessary, and numeric studies for examples

show that the obtained lower bounds to Ω∗(xk) are suitable for pruning the search tree. The

obtained lower bound Ωapx(xk) of Ω∗(xk) takes the following form:

Ωapx(xk) = (xk − xf )TPapx0 (xk − xf )

≈ (xk − xf )TP∗0 (xk − xf ) ≤ Ω∗(xk).
(81)

Furthermore, based on (75) and (76), the relation (81) can be extended to a more general

case (∀j ∈ {0, · · · , H}):

V∗(x(k+j|k)) = (x(k+j|k) − xf )TPapxj (x(k+j|k) − xf )

≈ (x(k+j|k) − xf )TP∗j (x(k+j|k) − xf ) ≤ V∗,c(x(k+j|k)).
(82)

Here, V∗(x(k+j|k)) denotes the obtained lower bound. Relation (82) suggests that, once x(k+j|k)

and Papxj are known, the lower bound of the cost-to-go starts from state x(k+j|k) and can be

immediately computed.

Upper Bound Identification Referencing again problem (71), the state sequence φx =

Fc(φv, φu, xk) obtained for φ∗v, φ
∗
u should obviously satisfy the relation Ω∗(H,φ∗u, φ

∗
v, xk, xf )

≤ Ω(H,φu, φv, xk, xf ). By using the obtained sequence φapxv in problem (71), the evolution

of state x(k+j|k) in (69) only depends on φu. Thus, in the original MINLP problem (71) the

binary variables will be fixed and a simple QP results, which can be solved efficiently.

Assume that φapx,∗u and φapx,∗x determine the solution for φapxv to be obtained from:

φapx,∗u = argmin
φu

Ω(H,φu, φ
apx
v , xk, xf ) (83)

s. t.: (69), v(k+j|k) := vapxj , u(k+j|k) ∈ U, x(k+j|k) ∈ X(k+j|k), j ∈ {0, · · · , H − 1}
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x(k+H|k) ∈ Xk+H|k
f

Then, the following relation holds:

Ω∗(H,φ∗u, φ
∗
v, xk, xf ) ≤ Ω∗(H,φapx,∗u , φapxv , xk, xf ). (84)

If no feasible solution exists to (83), the value of Ω∗(H,φapx,∗u , φapxv , xk, xf ) is infinite. Similarly

as in (81), the above criteria can also be used for the upper bound V∗,c(x(k+j|k)) ≤ V∗(x(k+j|k))

for ∀j ∈ {0, · · · , H}:

V∗(x(k+j|k)) := min
φju,φ

j
v :=φapx,jv

{
H−1∑
i=j

L(x(k+i|k), u(k+i|k)) + (x(k+H|k) − xf )TQH(x(k+H|k) − xf )}

(85)

s. t.: (69), u(k+i|k) ∈ U ; x(k+i|k) ∈ X(k+i|k), x(k+H|k) ∈ Xk+H|k
f , i ∈ {j, · · · , H − 1} (86)

φapx,jv = (vapxj , · · · , vapxH−1) ⊆ φapxv . (87)

Now, the value of V∗,c(x(k+j|k) for j ∈ {0, · · · , H} is bound to the range:

V∗(x(k+j|k)) ≤ V∗,c(x(k+j|k) ≤ V∗(x(k+j|k)). (88)

The determination of the bounds of V∗,c(x(k+j|k)) according to the procedures described before

can be accomplished with the following complexity:

� for the lower bound, the computation of φapxP only involves H · nv matrix trace com-

putations; In addition, as the computation of φapxP in (81) does not involve the initial

state xk, the same φapxP is applicable for any initial state in the MPC procedure, as long

as the other parameters like the prediction horizon, and the weighting matrices do not

change;

� for the upper bound, the optimization problem (85) has to be solved; such QP problems

can be solved in negligible time compared to the other steps.

Graph Search Procedure In order to determine an approximation of problem (71) by

using the bounds, a graph search procedure is used. The root node represents xk, and one

edge originates from a node for each vq ∈ V and leads to a new state on the next layer. The

condition for pruning a branch is established by comparing the costs for the new states to

corresponding cost bounds. To this end, consider the following fact resulting from (88):
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Lemma 4.1 Starting from a state x(k+j|k), let the pair of states xm, xn (xm 6= xn) by reachable

at step k + j + 1. If then V∗(xm) > V∗(xn) applies, the relation V∗,c(xm) > V∗,c(xn) holds.

The implication of this fact is that xm can not be part of the optimal input sequence, and the

node representing xm need not to be explored further.

As a further means to reduce the search graph, we employ the concept of adjacency of

states, as introduced in [80]. The two states xm and xn (both again reachable in step k+j+1),

are said to be adjacent if:

‖xm − xn‖≤ γ, γ > 0, (89)

holds for an appropriate small choice of γ. Only that state of an adjacent pair is further

explored, for which the corresponding cost-to-go (V∗,c(xm), or V∗,c(xn)) is smaller.

Now, in order to evaluate the cost of a node x(k+j|k) of the graph, we can turn to the

problem:

V∗,c(x(k+j|k)) :=

min
u(k+j|k),v(k+j|k)

{L(xk+j|k, u(k+j|k))︸ ︷︷ ︸
Step cost

+V∗,c(x(k+j+1|k)))︸ ︷︷ ︸
Cost to go

}

s. t.: (69), x(k+j+1|k) ∈ X(k+j+1|k), u(k+j|k) ∈ U, v(k+j|k) ∈ V.

(90)

Equation (90) is based on the principle of Dynamic Programming and if j = 0, the relation

V∗,c(xk) = Ω∗(xk) exists. If the mixed input u(k+j|k) ∈ U , v(k+j|k) ∈ V are leading to the states

xm and xn, where xm, xn ∈ X(k+j+1|k), then the step cost for both cases can be identified,

and the suboptimal costs Vc(x(k+j|k)) (as obtained when reaching xm and xn at step k+ j+ 1)

are:

V∗,c,xj+1=xm
(xj)

= L(x(k+j|k), u
m
(k+j|k))︸ ︷︷ ︸

Known

+V∗,c(xm)︸ ︷︷ ︸
Unknown

,
(91)

and

V∗,c,xj+1=xn
(xj)

= L(x(k+j|k), u
n
(k+j|k))︸ ︷︷ ︸

Known

+V∗,c(xn)︸ ︷︷ ︸
Unknown

.
(92)

Here, V∗,c,xj+1=xm
(xj)

denotes the optimal cost of Vc(x(k+j|k)) by reaching xm at step k + j + 1.

For the unknown parts V∗,c(xm) and V∗,c(xn), a range is determined by (88):

L+ V∗(xm)︸ ︷︷ ︸
Known

≤ V∗,xj+1=xm
(xj)

≤ L+ V∗(xm)︸ ︷︷ ︸
Known

, (93)

and

L+ V∗(xn)︸ ︷︷ ︸
Known

≤ V∗,xj+1=xn
(xj)

≤ L+ V∗(xn)︸ ︷︷ ︸
Known

. (94)
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In these equations, L is a short notation for the step cost. Now, if the lower cost bound

for reaching xn is higher than the upper cost bound for reaching xm, choosing xm ensures a

better performance than xn. In the cases in which this relation does not apply, the adjacency

condition (89) is checked. If satisfied, only one node (the one with better performance) is

further considered.

The graph search procedure starts from node xk, and in order to select v(k|k) = vq ∈ V
(and thus to determine the successor x(k+1|k)), the following subproblem is solved for any

vq ∈ V :

u∗(k|k) := argmin
u(k|k)∈U

{L(xk, u(k|k)) + V∗(x(k+1|k))︸ ︷︷ ︸
Lower Bound

+L(xk, u(k|k)) + V∗(x(k+1|k))︸ ︷︷ ︸
Upper Bound

} (95)

s.t.: (69), (82), (85). (96)

Then, the new node for each v(k|k) = vq ∈ V is obtained from:

x
∗,vq
(k+1|k) = Avqxk +Bvqu

∗
(k|k). (97)

With respect to the optimality condition (90) with j = 0, the optimal cost value V∗,c(xk)
should satisfy:

V∗,c(xk) = min
u(k|k),v(k|k)

{L(xk, u(k|k))︸ ︷︷ ︸
Step cost

+V∗,c(x(k+1|k)))︸ ︷︷ ︸
Cost to go

}

s.t.: (69), x(k+1|k) ∈ X(k+1|k), u(k|k) ∈ U, v(k|k) ∈ V.
(98)

As neither the lower nor upper bound represents the truly optimal value V∗,c(x(k+1|k)),

problem (95) minimizes the upper/lower-bound of V∗,c(x(k+1|k)) simultaneously, and is an

approximation to (98). Notice that solving (95) is relative easy, since it represents a QP

problem only. After executing the above procedure, at most nv successor states x
∗,vq
(k+1|k) are

obtained – let X(k+1|k) denot this set. Overall, Alg. 9 determines the candidate state sequence

φX = (X(k+0|k), · · · ,X(k+H|k)) of all H steps.

Let φV = (V(k|k), · · · , V(k+H−1|k)) denote the set of discrete input sequences generating φX .

The optimal discrete input sequence φ∗,sv from this set is obtained as the one leading to

Ω∗(H,φ∗,su , φsv, xk, xf ), and which approximates the solution to the original problem (71) best.
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Algorithm 9 Determination of φX

1: Given: X(k+0|k) = {xk}, U , V ;
2: for j = 0 : H − 1 do
3: for m = 1 : |X(k+j|k)| do
4: for q = 1 : nv do
5: Compute u∗(k+j|k), x

∗,vq
(k+j+1|k) under given vq ∈ V and xm(k+j|k) ∈ X(k+j|k) by solving

(95) and record V∗(x∗,vq(k+j+1|k)) and V∗(x∗,vq(k+j+1|k))
6: end for
7: end for
8: eliminate x

∗,vq
(k+j+1|k) ∈ X(k+j+1|k) if its lower cost bound is higher than the upper bound

of any other state in X(k+j+1|k)

9: check pairwise adjacency of the remaining states and only keep the one with lowest
costs

10: update X(k+j+1|k) to the remaining states
11: end for

4.2.3 Numerical Example

Numerical Comparison The first numerical evaluation evaluates the proposed technique

for 30 randomly generated switched systems. The results are compared exemplarily to the

solvers bnb.solver&fmincon, which exist in Matlab and are able to solve the underlying

MINLP problems. The comparison comprises systems with nx = 10, nu = 8, nv = 4 and

H = 8. For an adjacency parameter γ = 5, Fig. 24 shows the relative deviation of the

optimization results for the two approaches – while the proposed method is better in this

respect in most cases, it is stressed that the average computation time is 0.0651s with the new

method, compared to 8.0467s for bnb.solver&fmincon, i.e. a drastic reduction in computation

time is obtained.

The comparison to globally optimal solution (obtained from full enumeration) is shown in

Fig. 25. The figures 26 and 27 show the average computation as well as the average deviation

from the global optimum for varying values of H.

Vehicle Platoon The second part of the numerical evaluation refers to the control of a

vehicle platoon - compared to the version considered in Sec. 3 it is extended to mixed inputs:

each of the M = 4 vehicles is here modeled by a different switched system with a discrete input

(modeling the gear), which changes the mode of continuous dynamics (acceleration). The local

constraints of each vehicle models different ranges for velocity and acceleration. Furthermore,

a coupling constraint between neighbored vehicles is used to model that the distance must not

decrease below d = 25 to avoid collision. In addition, the local cost functions of each vehicle

are differently parametrized by the weighting matrices.

A number of 36 subsystem combinations over all vehicles would be possible in a single
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Figure 24: Relative deviation ∆r = Ωbf−Ω∗,sub

Ω∗,sub % between the optimization result Ω∗,sub for the

proposed method and the Ωbf obtained by bnb.solver&fmincon; the abscissa refers to the experiment
index.
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Figure 25: Relative deviation ∆̄r = Ω∗,sub−Ω∗

Ω∗ % of the costs Ω∗,sub obtained with the proposed
method compared to the globally optimal solution Ω∗; the abscissa is again the experiment index. The
average deviation for γ = 5 is 1.10%, while for γ = 2 an average deviation of 1.16% and an average
computation time of 0.08020s is obtained.

decision step of a centralized controller. The prediction horizon H is selected to be 15,

which would lead to 540 integer variables if mixed-integer programming were used, leading to

3615 ≈ 2.2107× 1023 possible discrete input sequences in any k. For a chosen parametrization

and initialization, the proposed method provides a solution in which the vehicles reach their

target after 17 time steps, and the compuation takes in average 1.22s per time step k. The

following figures show the courses of position, gear, velocity, and acceleration of each vehicle

(s4 in black, s3 in magenta, s2 in blue, s1 in red). It can be seen that the vehicles reached their

target while satisfying all constraints and the computation time in each step is acceptable for
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Figure 26: Average computation time Tc over the
prediction horizon H.
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Figure 27: Average deviation ∆̄r over the predic-
tion horizon H.

real-time computation.

4.3 Online Adaption of Motion Paths to Time-Varying Constraints Using

Homotopic Functions

While the method described before is applicable also to CPS with time-varying state-constraints

in principle, this subsection focusses on handling such constraints by an alternative procedure.

Again, the underlying understanding is that the state constaints result either from the

communicated planning of another subsystem, or from the monitoring of an obstacle (or

non-cooperative subsystem). To make the notation simpler, we here refer to subsystem

dynamics which is purely continuous. More specifically, this part addresses the problem of

controlling a linear discrete time system from an initial to a final state, while minimizing a cost

function and considering input constraints as well as non-convex time-varying state constraints.

A practical instance of such a problem is human-robot-cooperation, in which the robot has to

avoid collisions with a human worker while maintaining the nominal operation close to optimal.

Another example from the field of automated driving is to prevent accidents with pedestrians

or other cars. A difficulty of solving such problems is the large online computational effort,

rendering standard formulations of optimal or predictive control often not applicable. The

goal of this work is to derive a method which provides optimized and efficient solutions for

Figure 28: Platoon of 4 vehicles with switched dynamics driving in one lane.
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Figure 29: Position of each vehicle over time. Figure 30: Gear of each vehicle over time.

Figure 31: Velocity (left plot) and acceleration (right plot) of each vehicle over time.

such scenarios.

Different MPC methods were proposed in the literature to optimized point-to-point

transition with constraints while reducing the online effort, like move-blocking strategies [83],

soft-constrained formulations by penalty terms or barrier functions [84], [85], and direct

multiple shooting [86]. While for convex problems, the computation times typically are

sufficiently low for online operation, the situation for non-convex problems is different. MPC

with mixed-integer-programming (MIP) as discussed in [87] or [88] for a human-robot scenario,

suffers from large amounts of binary variables for encoding convex partitioned regions over

which a suitable sequence can be determined by tree search. Even for small problems, the

combinatorial complexity limits the real-time applicability. Therefore, also methods like

explicit MPC [89], were developed.

In the field of human-robot-interaction potential field methods [90], cell-decomposition

based on graph search [91], and sampling-based methods like rapidly exploring random trees

(RRT), and RRT* [92] were developed. Most of them do not consider the system dynamics, are
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not applicable for higher dimensions, or do not treat prediction informations of the obstacle/

other subsystems.

Here, we describe an approach that adopts homotopic trajectories to determine optimized

point-to-point trajectories in the presence of input constraints and state constraints given by

time-varying moving obstacles. The proposed method identifies time steps at which collisions

with a moving obstacle may occur. These are used in a collision avoidance scheme based on

tree-search. The homotopic trajectories are computed offline, which avoids time-consuming

online computation of complete trajectories and makes the online implementation efficient.

The main advantage is that the homotopy control algorithm performs its computations over

an entire trajectory (which is coded by the homotopy parameter) and not as usually done

in trajectory optimization for each time step. This reduces the optimization problem to a

low-dimensional problem. Furthermore, due to the homotopic space spanned by the base

trajectories, a subset of time steps is identified which contains time steps which are relevant

for collision avoidance. By considering only these in the optimization, the efficiency of the

proposed method increases significantly. The simulations show that the proposed method

computes close to optimal trajectories with significantly lower computational effort than

standard MPC. This work has been extend to time-varying final states and to nonlinear

systems, as given for a nonlinear robotic manipulator with the abstraction techniques described

in Deliverable 1.2.

4.3.1 Homotopic Functions

Let a linear discrete-time system be given by:

xk+1 = Axk +Buk, (99)

with time k ∈ N0, state vector xk ∈ Rnx , and inputs from the feasible set uk ∈ U ⊆ Rnu .

(Compared to (68), here we do not consider switched dynamics for simplicity.)

Definition 4.1 Given the system dynamics (99), a system is said to be r-step controllable, if

there exists a control input uk ∈ Rnu such that for any initial state x0, the state can be driven

to a final state xf in at least r time-steps.

This is fulfilled if the controllability matrix R = (B,AB,A2B, ..., Anx−1B) ∈ Rnx×nunx has

full row rank i.e. rank(R) = nx. Constraints on inputs or states are irrelevant for this

property.
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Let so-called base trajectories of (99) be given by x̂i = (xi0, ..., x
i
N ) and ûi = (ui0, ..., u

i
N−1),

where i ∈ M := {0, 1, ..., nc} is indexing the i-th base trajectory of nc + 1 many. They are

chosen to span a region, in which the online circumvention of an obstacle is possible. All

base trajectories are defined in the same time domain, i.e. the same number of time steps

with final time N ∈ N, and the same initial and final states xi0 = xs, x
i
N = xf , i ∈M. They

are designed in such a way, that sufficient reserves in the input space are available, to later

transition from one to another. Let the set X := {x̂0, ..., x̂nc} contain all base trajectories,

which are computed offline and are thus known in the online procedure. When choosing the

base trajectories, knowledge about possible position occurrence of the obstacles should be

considered.

A trajectory x̂i can be interpreted as the image of a function: x̂i = F i(ûi). The following

definition introduces homotopic trajectories which are in between the trajectories x̂i:

Definition 4.2 For a set of nc + 1 continuous functions F i : Rnu×T → Rnx×T , i ∈ M, a

vectorized homotopy is defined by: H :
(
Rnu×T

)nc × [0, 1]nc → Rnx×T . The second argument

is a vector of homotopy parameters λ = (λ1, ..., λnc)T with:

λi ∈ [0, 1],

nc∑
i=1

λi ≤ 1. (100)

With F = (F 1(û1)−F 0(û0), ..., Fnc(ûnc)−F 0(û0))T and λ0 := 1−∑nc
i=1 λ

i, the linear vectorized

homotopy function is given by:

H(û0, . . . , ûnc ,λ) =

nc∑
i=0

λi · F i(ûi)

= F 0(û0) +

nc∑
i=1

(F i(ûi)− F 0(û0)) · λi = F 0(û0) + F · λ (101)

This definition states that the homotopic functions are linear interpolations of the base

trajectories, see Fig. 32 for illustration. Since the dynamics of (99) is also linear, the

homotopic trajectories share the same characteristics and satisfy the same convex input or

state constraints as the base trajectories. Since (101) relates to complete trajectories, a

homotopic state xk(λk) for a single point of time k lies in between the states xik, i ∈M, and

is identified by the homotopy value λk. This leads to the following formulation of a homotopic

state and input at time k:

xk(λk) := x0
k +Dxkλk, uk(λk) := u0

k +Dukλk, (102)
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Start
Goal

base trajectories

homotopic trajectory

λ = 0

λ = 0.5

λ = 1

Obstacle

Figure 32: Illustration of two base trajectories (black), and a homotopic trajectory (green), given by
λ = 0.5, which circumvents the obstacle

with the homotopy vector λk := (λ1
k, ..., λ

nc
k )T ∈ Rnc at time k, matrices Dxk = (x1

k −
x0
k, ..., x

nc
k − x0

k) ∈ Rnx×nc , and Duk = (u1
k − u0

k, ..., u
nc
k − u0

k) ∈ Rnu×nc for k ∈ K : {0, ..., N}.
A trajectory with constant homotopy vector λ̄ is denoted by x̂(λ̄), and û(λ̄) respectively.

Since for an r-step controllable system (see Def. 4.1) only every r-th time k = t · r, with

t ∈ T = {0, ..., bN/rc} ⊆ N0, can satisfy the homotopic state equation (102), new state

notations are introduced. The notation is required since in Section 4.3.3, an auxiliary system

is introduced which describes the transitioning behavior between homotopic trajectories

depending on this timeline. Each state xtr for t ∈ T corresponds to the new notation zt =̂ xtr,

zt+1 =̂ x(t+1)r etc. Consequently, the homotopy state equation (102) can be rewritten to:

zt(λtr) = z0
t +Dztλtr, (103)

which satisfies (102) for every r-th time step. Simultaneously, a new homotopy state notation

µ ∈ Rnc describing every r-th homotopy state λtr is introduced. The new homotopy state

notation µ is connected as follows with the homotopy state λ: µt =̂ λtr, µt+1 =̂ λ(t+1)r.

Thus (103) can be described by:

zt(µt) = z0
t +Dztµt. (104)

Definition 4.3 Let the set L contain all base trajectories x̂i ∈ X described by their homotopy

values µ̄i ∈ L := {µ̄0, ..., µ̄nc}, with µ̄i ∈ {0, 1}nc and let the sum over all components of µi

be
∑nc

i=1 µ
i ≤ 1.
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4.3.2 Problem Definition

The task is to bring the system (99) from an initial state xk0 = xs at time k = k0 to a final state

xf , while avoiding collisions with a moving obstacle Pxk in the state space and satisfying input

constraints uk ∈ U ⊂ Rnu . The obstacle is considered to be known for a prediction horizon

of H steps, and is defined as a polytopic region Pxk+j
:= {xk+j | Ck+jxk+j ≤ dk+j} ⊆ Rnx ,

with j ∈ J := {0, ...,H}, C ∈ Rc×nx , and d ∈ Rc. The position prediction maybe obtained

from estimation using an appropriate model or for communicated information on the planned

motion of Pxk+j
. The goal is to find a feasible and optimized trajectory x̂∗, û∗ by solving the

optimization problem:

min
xk0+j , uk0+j

J(xk0+j , uk0+j)

= min
xk0+j , uk0+j

H∑
j=0

(xk0+j − xf )TQ(xk0+j − xf ) + (uk0+j − uf )TR(uk0+j − uf ) (105)

s.t. (99), uk+j ∈ U , xk0+j /∈ Pxk0+j
, ∀j ∈ J , xk0 = xs,

for the prediction horizon H. The performance function is quadratic with positive-definite

weighting matrices Q ∈ Rnx×nx , and R ∈ Rnu×nu . The control problem is implemented in

a receding horizon fashion. Within this implementation, only the first step of the control

strategy is applied, and the calculation is repeated for an incremented initial time k0 := k0 + 1.

The initial state for the next iteration is then given by the actual measured state. Due to the

non-convex obstacle avoidance constraint, a possible approach to solve the considered problem

is by MIP, or specifically mixed-integer quadratic programming (MIQP). This leads typically

to a large number of binary variables used to formulate, whether xk0+j lies outside of any

bounding plane of P§‖′+| for each point of time k0 + j, j ∈ J . Even if the obstacle and xk0+j

are far away from each other in the considered time horizon, the problem must nevertheless

be formulated as a MIQP, leading to a large share of unnecessary computations.

The method presented here is based on computing offline trajectories to build a homotopy

function, which spans a region for circumventing the obstacle. This enables a fast online

procedure to bring the system to a homotopic trajectory which passes the moving obstacle.

In order to enable that a solution of the problem can be found by this method, the following

assumption is introduced:

Assumption 4.1 Let the set of trajectories X contain at least one trajectory x̂i, i ∈M, such

that for any x̂ik ∈ x̂i a collision with the obstacle can be avoided: xik /∈ Pxk , ∀k ∈ {0, ..., N}.
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While the violation of this assumption implies an ill-posed problem, the assumption alone is

not sufficient to guarantee a trajectory free of collision , since the transition from the current

trajectory to a homotopic feasible one must be also realized without collisions.

4.3.3 Transitions between Homotopic Trajectories

Consider the task of steering (99) from a state zt0 =̂ xk0 satisfying (104) to a future state on

a homotopic trajectory. Let zt0 be identified by µt0 , and the new trajectory (i.e. the goal of

the transition) be referenced by µ̄. While the inputs for the currently executed trajectory

and the targeted one are known from the homotopy function (102), the transition from the

actually executed trajectory to the final one requires additional inputs δuk, leading to the

overall input:

ũk(λk) := uk(λk) + δuk. (106)

To restrict the speed of changing between homotopic trajectories, constraints on δuk are

formulated:

δumin ≤ δuk ≤ δumax, (107)

for all k ∈ K, with δumin, δumax ∈ Rnu .

Now since every r-th state xtr =̂ zt is reachable according to Def. 4.1 (with rank(R) = nx),

an auxiliary linear time-varying (LTV) system is defined, which describes the change of the

homotopy state µt, t ∈ T to a final value denoted by µ̄ as follows:

µt+1 = Ãt(µt − µ̄) + µ̄. (108)

Since the transitioning behavior is freely parameterizable, the matrix Ãt is chosen to be

time-varying and diagonal Ãt = diag(ai,t) ∈ Rnc×nc with elements ai,t, where index i denotes

the i-th element, and t specifies the point of time. Additionally the variables ai,t have to

satisfy |ai,t| ≤ 1 for all i ∈ {1, ..., nc} and t ∈ T , for reasons of stability. Thus, (108) describes

how the homotopy values µt (or respectively every r-th value λtr) evolves from its current

value to µ̄ in terms of the matrices Ãt.

Lemma 4.2 The input constraints (107) hold for every time step k ∈ K, if the following

inequality holds for all t ∈ T :

∆Umin ≤ (B,AB, ..., Ar−1B)−1Dzt+1(Ãt(µt − µ̄) + µ̄− µt) ≤ ∆Umax,
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with ∆Umin = (δuTmin, ..., δu
T
min)T ∈ Rnur, and ∆Umax = (δuTmax, ..., δu

T
max)T ∈ Rnur.

Proof 2 Starting from an initial state zt0(µt0), the state vector zt(µt) can be described by

the following equation:

zt(µt) = Atr−t0rzt0(µt0) +
tr−1∑
l=t0r

Atr−l−1Bũl(λl). (109)

Starting from time t− 1, (109) determines zt(µt) by:

zt(µt) = Arzt−1(µt−1) +
tr−1∑
l=tr−r

Atr−l−1Bũl(λl). (110)

The value λtr−r in (110) corresponds to λtr−r =̂ µt−1. The other intermediate values of

λl for l ∈ {tr − r + 1, ..., tr − 1} are located in between µt−1 and µt =̂ λtr. Since this

intermediate values are not existing for an r-step controllable system, these values are set to:

µt−1, corresponding to a zero-order hold of µt−1. Furthermore, the states zt−1(µt−1) on the

right side and zt(µt) on the left are replaced according to (104), one gets:

z0
t +Dztµt = Ar(z0

t−1 +Dzt−1µt−1)+

(B,AB, ..., Ar−1B)


u0
tr−1 +Dutr−1µt−1 + δutr−1

u0
tr−2 +Dutr−2µt−1 + δutr−2

...

u0
tr−r +Dutr−rµt−1 + δutr−r

 .

Replacing µt on the left side according to (108) and rewriting the terms leads to:

z0
t +Dzt (Ãt−1(µt−1 − µ̄) + µ̄) = Arz0

t−1 + (B,AB, ..., Ar−1B)


u0
tr−1

u0
tr−2

...

u0
tr−r


︸ ︷︷ ︸

z0t

+

A
rDzt−1 + (B,AB, ..., Ar−1B)


Dutr−1

Dutr−2

...

Dutr−r




︸ ︷︷ ︸

Dzt

µt−1 + (B,AB, ..., Ar−1B)


δutr−1

δutr−2

...

δutr−r

 . (111)

Incrementing t := t+ 1, solving (111) for the vector of the additional inputs, and constraining
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it from the left and right side yields:

∆Umin ≤


δutr+r−1

δutr+r−2

...

δutr

 ≤ ∆Umax, (112)

which equals (4.2) and therefore satisfies (107).

For the scenario as described in Sec. 4.3.2, it is assumed that the system should transition as

fast as possible to a collision-free and optimized trajectory (described by the transition from

µt to µ̄) after detection of the obstacle Px. Selecting a suitable candidate µ̄ is discussed in

the next section. In order to make the best possible use of the constrained input signal (4.2),

the matrices Ãt, are chosen to be time-varying, since Dzt+1 in (4.2) is also changing over time.

For fast transitioning between homotopic trajectories, the eigenvalues of the matrices

Ãt must be minimized subject to the input constraints. As given in ( [93]), the eigenvalue

problem (EVP) is to minimize the maximum eigenvalue of Ãt. The matrix Ãt depends affinely

on the variables ai,t, such that Ãt = W0,t +
∑nc

i=1 ai,tWi,t is a linear matrix. This allows to

formulate the convex EVP with the input constraints as a semi-definite program (SDP):

min
ai,t,γ

γ (113)

s.t. Ãt − γI ≤ 0, ∀t ∈ T (114)

(4.2), ∀{µt, µ̄} ∈ {0, 1}nc , ∀t ∈ T . (115)

The constraint (4.2) has to be satisfied for all possible combinations resulting from µt ∈ {0, 1}nc

and µ̄ ∈ {0, 1}nc , and for all times t ∈ T . Because Ãt is chosen to be diagonal, (113)-

(115) reduces to a general linear programming problem. The dynamics (108) specifies the

transitioning behavior between homotopic trajectories such that the transition is as fast as

possible with respect to the input constraints.

4.3.4 Online collision avoidance

The online procedure starts by determining the cost optimal homotopic goal trajectory encoded

by µ̄∗ for a given prediction horizon H, while first neglecting the obstacle. If the resulting

trajectory fails to be free of collision, a fast online procedure is initiated, which determines

an optimized value for µ̄ with respect to the performance function in (105), such that the

system passes the obstacle. The advantage of restricting the problem of collision avoidance
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to homotopic trajectories is that time steps with collisions in the homotopy space can be

identified quickly, and that only these time steps are relevant for the circumvention procedure.

Determining the Best Homotopic Trajectory If for a certain time no obstacles are

present, the obvious choice of the controller is to select the best homotopic trajectory, i.e. the

task is to find an optimal value of µ̄. It can be shown that the cost function (105) can be

reformulated from J(xk+j , uk+j) to J(µ̄), j ∈ J . This essentially reduces the search space of

the problem from (H+1) ·nu ·nx to nc variables. The initial homotopy vector is µt0 = µinit at

time t = t0, and the corresponding state xk0 is known with k0 = t0 · r according to (104). The

prediction of up to H time steps leads to a considered time span k ∈ KH = {k0, ..., k0 +H},
beginning from k0, or respectively t ∈ TH = {t0, ..., t0 + bH/rc}. The optimization problem

can be reformulated to:

min
µ̄

H∑
j=0

(xt0r+j − xf )TQ(xt0r+j − xf )

+ (ut0r+j − uf )TR(ut0r+j − uf ) (116)

s.t. :

xk+1 = Axk +Bũk, ∀k ∈ {tr, ..., tr + r − 1} (117)

ũk = u0
k +Dukµt + δuk, ∀k ∈ {tr, ..., tr + r − 1} (118)

(B,AB, ..., Ar−1B)−1Dzt+1
(Ãt(µt − µ̄) + µ̄− µt) =


δutr+r−1

δutr+r−2

...

δutr

 (119)

µt+1 = Ãt(µt − µ̄) + µ̄ (120)

zt(µt) = z0
t +Dztµt t ∈ TH (121)

The values of Ãt are determined according to Sec. 4.3.3. As noticed, the optimization problem

contains no constraints on the input signal, while these have already been integrated in the

matrices Ãt by the solution of (113)-(115). The optimal solution of the homotopy value, based

on the initial time t0, is given by µ̄∗|t0 . The index denotes that the optimal homotopy value

is computed based on time t0 and is constant for the future times of the prediction horizon.

The resulting optimal state trajectory is denoted by x∗t0r+j|t0r, j ∈ J . The computation

of (116)-(121) can be performed very fast because the quadratic optimization problem is

low-dimensional, and only subject to equality constrains.
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Transforming the Moving Obstacle into the Homotopy Space Now, the resulting

state trajectory is checked against collision, i.e. x∗t0r+j|t0r /∈ Pxt0r+j is evaluated ∀j ∈ J . If

collisions are found, the state space obstacle Pxt0r+j is transformed for each j into the homotopy

space, denoted by Pλt0r+j . Since it was shown that an r-step controllable system conforms only

every r-th time step to the homotopy function (102), a collision check may only be allowed to

any r-th step. The related polytope is Pxt0r+sr := {xt0r+sr| Ct0r+sr xt0r+sr ≤ dt0r+sr} ⊆ Rnx ,

or respectively with s ∈ {0, ..., bH/rc}:

Pzt := {zt| Ctr zt ≤ dtr}, t ∈ TH . (122)

The polytope Pzt mapped into the homotopy space is denoted by Pµt and determined by

inserting (104) into (122):

Ctr(z
0
t +Dztµt) ≤ dtr (123)

CtrDzt︸ ︷︷ ︸
Cµt

µt ≤ dtr − Ctrz0
t︸ ︷︷ ︸

dµt

(124)

⇒ Pµt := {µt|Cµt µt ≤ dµt}. (125)

The polytope Pµt exists for time t if the intersection:

Pµt ∩ zt(µt) 6= ∅ (126)

is non-empty. This can be easily checked if the following linear optimization problem has a

feasible solution:

min
µt

bT µt (127)

s.t. Cµt µt ≤ dµt (128)

µt ∈ [0, 1]nc ,

nc∑
i=1

µit ≤ 1, (129)

where b 6= 0 ∈ Rnc can be chosen arbitrarily. The set of all times t for which (127)-(129) is

satisfied, is denoted by:

TI := {t|(127)− (129) satisfied} ⊆ TH . (130)

If TI = ∅, no collision of the moving obstacle and the system occurs for t ∈ TH .
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The transformation of Pzt into Pµt may lead to redundant half-planes in Pµt , which can

be removed by linear programming, as described in [94]. Let the w-th row of Cµt be denoted

by Cwµt , and the w-th component of dµt by dwµt . Further, let Wt := {1, ..., ct} be the set of all

inequalities at time t. The w-th row is redundant, iff the linear program:

max
µt

Cwµt µt (131)

s.t. Ciµt µt ≤ d
i
µt
, ∀i ∈ Wt\{w} (132)

has an optimal value less or equal to dwµt . Solving the problem ct-times yields for t ∈ TI , the

simplified polytope P̃µt := {µt|C̃µtµt ≤ d̃µt} with C̃µt ∈ Rc̃t×nc , d̃µt ∈ Rc̃t , and w-th rows

C̃wµt and d̃wµt , w ∈ W̃t := {1, ..., c̃t}.

Homotopy Control Algorithm (HCA) If a collision is possible, the goal is to select an

optimized homotopy value µ̄∗·|t0 , with initial state zt0 =̂ xk0 and corresponding µt0 for which

the resulting trajectory satisfies x∗t0r+j|t0r /∈ Pxt0r+j , j ∈ J . The for computing µ̄∗·|t0 , see

Alg. 10 can be separated into four parts.

1. Optimal trajectory, without obstacle (Alg. 10: line 0)

The algorithm 10 computes the optimal value µ̄∗·|t0 for the prediction horizon H by solving

the optimization problem (116)-(121). The optimal homotopy value µ̄∗·|t0 defines the optimal

state sequence x∗t0r+j|t0r, j ∈ J . The resulting trajectory is checked for collisions with Pxt0r+j
(line 1). If no collisions are found, the algorithm terminates successfully. If the trajectory

collides with Pxt0r+j , the following collision avoidance procedure starts.

2. Best Free Base Trajectory (Alg. 10: line 2) First, the costs for all µ̄i ∈ L are

computed according to (116)-(121), and the transitions from the actually executed trajectory

towards the base trajectories (encoded by µ̄i) are checked for collisions. The least costly

solution µ̄i
∗

within the set L is selected, leading to the best free resulting trajectory when

transitioning to a base trajectory. This step prevents the following step from running into an

infeasible branch, since the selected base trajectory is always feasible.

3. Tree-Search (Alg. 10: line 3-15) A best-first strategy is executed to decide how

the moving obstacle should be passed, and to guarantee that the resulting trajectory of zt(µt)

determined from (108), for all t ∈ TI is free of collisions. A node of the tree models an element

gp ∈ TI , with p indexing the tree level starting with p := 1. The node gp is said to be explored,

if all successors wgp ∈ W̃gp are visited. If a node gp is explored, the node is removed from the
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set TI :

TI := TI \ gp, (133)

The best node based on gp is denoted by w∗gp and is stored in the set:

O := O ∪ w∗gp . (134)

The best-first search selects for node p one polytope P̃µgp with gp ∈ TI . Then, each successor

wgp ∈ W̃gp is determined by solving the optimization problem (116)-(121) with the additional

constraints:

C̃
wgp
µgp
µ̄ ≥ d̃wgpµgp

(135)

C̃
wgp
µgp
µgp ≥ d̃

wgp
µgp

(136)

C̃
wgp
µgp
µ̄i
∗ ≥ d̃wgpµgp

. (137)

Constraint (135) requires to select a goal trajectory µ̄, which generally passes the obstacle

P̃µgp along the wgp-th half-space. Since this does not ensure that the transient behavior

during the change of the trajectories is also free of collision, constraint (136) is introduced,

which prevents the system to collide at time gp with P̃µgp . The homotopy state µgp can be

computed recursively from (108):

µgp =

t0∏
i=gp−1

Ãi(µt0 − µ̄) + µ̄. (138)

The last constraint (137) guarantees, that the wgp-th half-space also contains the previously

selected homotopy value of the best base trajectory µ̄i
∗

from part (2.). This guarantees that a

feasible solution of the tree-search can always be found. After the exploration of all successors

wgp ∈ W̃gp at time gp, the one producing the lowest costs is denoted by w∗gp and stored in the

set (134). The set TI is updated according to (133).

The procedure is repeated by selecting a new gp ∈ TI and computing the successors

wgp ∈ W̃gp according to (116)-(121) with the constraints (135)-(137), and additionally (135)-

(137) for all wgp ∈ O.

The tree-search terminates immediately if no more collisions between zt(µt) and Pzt , for

all t ∈ TI can be found (line 9-13), or if the set TI is empty. The best-first search terminates

with optimized homotopy value µ̄∗·|t0 .
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Algorithm 10 Homotopy Control Algorithm (HCA)

Given: (99), x̂i ∈ X , Ãt, t0, k0 = t0r, H, Pxt0r+j , TH
Define: O := ∅
0. compute µ̄∗·|t0 according to (116)-(121)
1. if ∃j ∈ J : xt0r+j ∈ Pxt0r+j do

2. compute the best free base trajectory µ̄i
∗

3. transform state obstacles Pxt0r+j into the homotopy space

P̃µt as described in Sec. 4.3.4 and determine intersection
times t ∈ TI .

4. while TI 6= ∅ do
5. select qp ∈ TI
6. compute for each each successor wqp ∈ W̃gp the

corresponding optimal µ̄∗gp acc. (116)-(121) and (135)-(137),
and additionally (135)-(137) for all elements of O

7. store best successor w∗qp into O := O ∪ w∗qp
8. compute zt(µt) with the obtained µ̄∗gp and (108)
9. if ∃t ∈ TH : zt(µt) ∈ Pzt do
10. update TI acc. to (133)
11. else
12. break while
13. end if
14. end while
15. optimal homotopy value µ̄∗·|t0 , and corresponding

optimal trajectory x∗t0r+j|t0r, with j ∈ J
16. if ∃j ∈ J : xt0r+j ∈ Pxt0r+j do

17. push µ̄∗·|t0 towards base trajectory µ̄i
∗

acc. to (139)
18. end if
19. t0 := t0 + 1
20. end if
Return (µ̄∗·|t0 , x

∗
t0r+j|t0r) obtained from executing u∗t0r+j|t0r
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4. Pushing (Alg. 10: line 16-18) The pushing procedure is executed if a collision

is detected for the intermediate states xt0r+j , j ∈ J . Hence, for time steps which are not

considered during the collision avoidance in Step 3.. This part then pushes the trajectory

out of the obstacle. Therefore, the solution of the optimized homotopy value µ̄∗·|t0 is changed

piecewise towards the known collision free trajectory encoded by µ̄i
∗

of step 2., according to:

µ̄∗·|t0 := µ̄∗·|t0 + α(µ̄i
∗ − µ̄∗·|t0), (139)

by iteratively increasing α ∈ [0, 1].

The complete procedure is shown in Alg. 10. After computation according to Alg. 10, the

first step of the control strategy is applied to the system, the prediction horizon is shifted one

step forward, and the computation is repeated.

4.3.5 Example

The proposed homotopy control method is applied to an abstracted version of the robotic

use case: assume that the motion of the robotic end-effector is represented as a point mass

moving in a 3-D space, which must not collide with a moving obstacle represented by an

over-approximating box. The dynamic model of the point mass is specified as:

ẍ(t) = − c

m
ẋ(t) +

1

m
Fx(t) (140)

ÿ(t) = − c

m
ẏ(t) +

1

m
Fy(t) (141)

z̈(t) = − c

m
ż(t) +

1

m
Fz(t), (142)

with an input vector u(t) = (Fx(t), Fy(t), Fz(t)), the mass m, and a friction constant c. The

variables x, y, z describe the cartesian coordinates of the 3-D space in this example. The state

vector of system (140)-(142) is given by x(t) = (x(t), ẋ(t), y(t), ẏ(t), z(t), ż(t))T . The system

is discretized (ZOH) with discretization time T = 0.1 seconds (s). Using parameters m = 2

and c = 1, the discrete-time system ẋk+1 = Axk +Buk has the following matrices:

A =



1 0.0975 0 0 0 0

0 0.9512 0 0 0 0

0 0 1 0.0975 0 0

0 0 0 0.9512 0 0

0 0 0 0 1 0.0975

0 0 0 0 0.9512


, B = 1e−2



0.25 0 0

4.88 0 0

0 0.25 0

0 4.88 0

0 0 0.25

0 0 4.88


. (143)
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The system is 2-step controllable according to Def. 4.1. Totally three pairs of base trajectories

(x̂i, ûi) are chosen to span a region for circumvention, i.e. nc = 2. The final time for all i ∈M,

is N = 60. All state trajectories start at the common state xi0 = xs = [0, 0, 0, 0, 0, 0]T , and end

in the final state xiN = xs = [5, 0, 5, 0, 5, 0]T . The base trajectories are shown in Fig. 33 by the

three black dotted lines. The upper and lower bound on the additional input δuk, which limit

the speed of motion between the homotopic trajectories, is given by δumax = [100, 100, 100]T

and δumin = [−100,−100,−100]T . The obstacle Px starts at time k = 0 at the upper right

area in the state space (x, y, z), shown by the transparent polytope with dashed edges in

Fig. 33. It moves towards the lower left region until time k = 10, where it remains for the rest

of the time. The final position is shown by the green polytope. For better illustration, the

cost function (116) is parametrized by Q ∈ R3×3 chosen as the identity matrix and R ∈ R2×2

as diagonal matrix with values 1e−3, implying that trajectories with lower costs reach the

final state along a straighter trajectory.

The computation is performed in Matlab using a PC with an Intel Core i7 (3.4GHz). The

blue trajectory (see Fig. 33) is determined by the homotopy approach starting at initial time

k0 = 0 with a prediction horizon of H = 10. It can be seen that the trajectory first follows an

optimal homotopic trajectory, and from k = 5 reacts to the moving polytope by transitioning

to another homotopic trajectory. This can also be seen in Fig. 34 by the yellow colored bars,

which show the computation times for the homotopy control method with receding horizon.

It can be identified that during the first steps the computation time is very low, with approx.

3 milliseconds (ms). When the obstacle becomes relevant during the prediction horizon, the

computation time raises up to 18 ms, and finally falls again when the obstacle is passed. Since

the system is 2-step controllable in r = 2 steps, the computation has to be performed only in

every second time step, which results in a total amount of 30 time steps of computation, as

shown in Fig. 34.

For the same scenario, but with a prediction horizon of H = 60, the solution of the

homotopy control method is given by the red trajectory in Fig. 33. Here, it can be seen

that the system reacts at the very beginning to the moving obstacle, and finds a solution

which is 2% better in costs, compared to the first case with smaller prediction horizon. The

computation time (see Fig. 34 blue bars) is approx. 35 ms at the beginning. Compared to the

smaller prediction horizon, the computational load for the entire time is larger. However, for

comparison, the computation times of a standard MPC based on MIP solved with CPLEX

yields solver times of approx. 800 ms at each iteration (while the costs are 37% better for the

second scenario).

Thus, the computation times are drastically reduced by approx. 96% overall, when using
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Figure 33: Simulation of the base trajectories x̂1, x̂2, x̂3 (black stars), the obtained trajectory (blue
stars) by the homotopy control method with H = 10, and the trajectory (red crosses) for H = 60. The
obstacle Pxk

moves from initial position (transparent dashed polytope) to the final position (green
polytope).
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Figure 34: Comparison between computation times of Alg. 10 with prediction horizon H = 10 (yellow
bars), and H = 60 (blue bars). The computation times are shown for the entire simulation of the
receding horizon scheme.

the proposed scheme.
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5 Concluding Remarks and Transfer to Applications

In this report, we described the developments under work package 2 of the UnCoVerCPS

project regarding distributed optimization and MPC solutions with enhanced real time

computability. We showed their performance in various simulation examples, most of which

refer to the application domains studied within the UnCoVerCPS project. The plan is now to

transfer these techniques to the case studies in work package 5, dealing with the realization of

cyber-physical systems. This is expected to require some modeling effort, and some adaptation

of the techniques described in this report.

We next outline briefly what the foreseen applications are, with reference to the case

studies on smart grid, automated driving, and human-robot interaction.

Smart grid

Scalability of the methods in Sections 2.2 and 2.3 for smart grid energy management of

a district network will be tested. To this purpose the compositional modeling framework

described in Deliverable 5.1 and further developed in [95] will be used. We shall then implement

the stochastic extension in Section 2.5 of the distributed optimization scheme in Section

2.2 to achieve probabilistic robustness for a smart grid energy management problem, where

renewable power generators like solar plants are present.

Automated driving

The method proposed in Section 4.2 for DMPC of systems with mixed inputs will be applied

to and evaluated for the case study of cooperative automated driving, as investigated in

Task 5.3 of work package 5. The planning of a driving path of a single automated vehicle

(under consideration of the motion of other neighbored cars) can be cast into the MPC setting

addressed in Section 4.2: if within the planning at time k, the vehicles first communicate their

driving plans as computed in the previous step, the constraints for the local optimization

problems can be derived, leading to the problem formulation as specified in Section 4.2. The

solution according to the proposed procedure will determine a feasible driving path over the

prediction horizon, including corresponding trajectories of continuous (e.g. steering angle) and

discrete inputs (e.g. selection of the gear, or a driving decision such as changing lane). Future

work will evaluate the DMPC scheme for different driving maneuvers, as e.g. overtaking

procedures, and it will investigate how cooperative behavior can be obtained by appropriate

choice of the local cost functions.
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Figure 35: Architecture framework for automated Driving in Simulink

Dynacar simulator

We shall test the real time capabilities of the MPC method proposed in Section 4.2 for

the design of a driving path for a single automated vehicle in the simulation tool Dynacar

developed by Tecnalia. Dynacar focuses on vehicle dynamics and provides a high-fidelity

vehicle physics simulation, which is combined with a Pacejka tyre model and sub-models for

elements like the engine, transmission, steering system, braking system, aerodynamics, among

other. Moreover, it enables to integrate components and subsystems of the Electric-Electronic

architecture of the vehicle, such es ECUs (electronic control units) and power propulsion

elements.

Figure 36: Example of the double lane change maneuvers in three phases, with Dynacar

Dynacar allows real-time and accelerated-time simulations. The real-time capability is very

valuable, as, combined with its notable modularity and interfacing options, it permits to

execute tests with driver-in-the-loop (DiL) and hardware-in-the-loop (HiL) setups, for instance

for ECU (Electronic Control Unit) development, integrated into Simulink blocks (see Figure

35). A testing methodology for the validation of control algorithms for automated vehicles is

available, which is modular and can be adapted to a general control architecture for automated

driving. It enables a good trajectory definition, cooperative maneuvers and virtual validation

with different kinds of vehicles and scenarios. It can be adapted to test cooperative maneuvers

where vehicles communicate their driving plans. The MPC solution in Section 4.2 for a double

lane change maneuver can be implemented in Matlab-Simulink, which permits to integrate
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C-code functions and provide convenient interfacing capabilities. The double lane change

maneuver is defined by a series of constrains and conditions given by the perception systems,

as detection of the environment and obstacles, trajectory considerations and communication

with another vehicles. Figure 36 shows the three phases of an overtaking with another vehicle

coming in front.

Extension to lane changing and merging of multiple vehicles

We shall consider a multi-lane scenario with a mixture of communicating automated vehicles

and non-communicating manually driven vehicles as depicted in Figure 37. The automated

vehicles in the given scenario have to communicate in order to cooperatively control the

longitudinal motion of the cars along their lane. In this way gaps can be cooperatively opened

and the alignment to gaps and other cars can be regulated in preparation to, as well as during

execution of a lane-change. Optimal control inputs are calculated in a distributed manner.

Each vehicle computes its own current and future control inputs in such a way that constraints

imposed by other vehicles are satisfied.

Figure 37: Cooperative lane-changing in mixed traffic

There are two possible ways to integrate the DMPC method into the overall safety concept

for automated driving, which is developed in Task 5.3 of work package 5.

The first possibility is as a stand-alone application: in this case, the DMPC method would be

supplied with an environment-model and ego-vehicle state derived from the vehicle sensors. It

then directly calculates control inputs, which are sent to the actuators. In this case, it would

have to guarantee invariant safety of the selected control inputs at all points of time. This

could require guarantees for termination in a fixed time-frame from the employed optimization

algorithm. Additionally, the DMPC module would have to control longitudinal and lateral

motion of a vehicle and make discrete decisions, such as which gap to merge into.

The second possible deployment strategy is to integrate the DMPC approach into a hier-

archical control architecture such as described in [96] or a different approach in [97]. This

would allow other components to provide lateral control, maneuver switching and invariant

safety guarantees. The robust, cooperative lane-changing in mixed traffic scenario has been

investigated and demonstrated in simulation in [97] for two cooperating, automated vehicles
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and four un-cooperative, simulated vehicles on a high-resolution map of the ring-road of

Braunschweig, see Figure 38.

Figure 38: Demonstration of use case without DMPC and with focus only on safety

The architecture of the approach is visualized in Figure 39: Each vehicle is equipped with four

layers. The High-Level Behaviors at the top-most layer compute reference set points, which

enable the vehicle to follow lanes and to execute lane-changes in normal driving situations.

The Supervisor layer guarantees invariant safety, by switching from the desired reference set

points to emergency reference set points, if the execution of the desired reference set points

would endanger invariant safety. Car-to-car communication is initiated by the High-level

Behaviors and is passed through the Supervisor layer, as negotiations between cars can be

safety-critical. The Low-level Control layer stabilizes the dynamics of the Physical Vehicle

according to the requested set points and is considered in a closed-loop vehicle model by the

Supervisor and the High-Level Behaviors.

The previous demonstration and the investigations in Task 5.3 of work package 5 are focused

on guaranteeing invariant safety and do not consider optimality of the cooperative control.

For example the High-Level Behavior layer was realized as a simple, linear, hybrid automaton.

Figure 39: Hierarchical control architecture for safe, cooperative control
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The automated driving application could therefore gain significantly by replacing parts of the

existing High-Level Behavior by DMPC techniques described in this report. As a first step, a

preliminary study should evaluate whether execution time constraints and communication

bandwidth constraints can be satisfied for realistic problem-sizes. The next step could be an

integration into the previously employed, sub-microscopic traffic simulation and a subsequent

analysis of robustness and impact on individual and global objectives.

Human-robot interaction

The technique described in Section 4.3 appears to be particularly amenable to (and is motivated

by) the use case of human-robot interaction as investigated in Task 5.4 of work package 5: the

optimized trajectories established offline in the technique refer to the nominal operation of

the robot, i.e. the behavior to be established in free operating space. If a human is monitored

to be within this space during online operation, its position is mapped into the polytopic

obstacle region. The online control procedure then identifies a feasible homotopic trajectory

of the robotic end-effector, i.e. one which is free of collision with the moving human. It will be

investigated for different scenarios up to which speed of human motion the control procedure

will reliably provide suitable motion paths for the robot.
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