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1 Introduction and Motivation

The main goal of UnCoVerCPS is to create control design techniques for cyber-physical

systems (CPS) such that the satisfaction of safety properties is guaranteed, while at the same

time controller adaption in response to changes of the CPS or its environment is enabled.

If all conceivable changes can be foreseen and modeled before the CPS gets into operation,

the natural solution is to design the controller a-priori as satisfying the system specifications

robustly against the set of changes – this corresponds to the procedure established in the field

of robust control. A possible approach is to determine all effects imposed on the systems by

disturbances or the environment in terms of reachable sets, and to compute controllers that

are robustly stabilizing for the complete reachable set. For this procedure, it can, however,

occurr that the conservatism implies low control performance. In this case, or if it is not

possible to determine the complete set of behaviors before operation, an alternative approach

is commendable: The adaptation of a control law or the computation of a control strategy

fitting to the momentary situation is necessary, as investigated in the established fields of

adaptive control and predictive control. Since UnCoVerCPS targets systems, which are

embedded in a changing environment, model predictive controllers (MPC) are a natural choice,

as these solve online optimization problems subject to constraints. While several aspects of

MPC have been investigated before (as, e.g., real-time efficiency and the robustness with

respect to parametric uncertainty of the system to be controlled), the ensurance of safety

properties was barely paid attention to so far.

For this purpose, one thread of research within UnCoVerCPS was to combine and

intertwine model predictive control with reachability analysis. The objective is to use

reachability computations either to compute the constraints imposed on the system over a

prediction horizon starting from the current point of time, or to ensure that control inputs

applied to the system can only lead to behaviors within the given specifications. Corresponding

techniques for cyber-physical systems have to consider criteria for complexity of computation

(thus leading to meet real-time requirements), as well as availability of information on

interacting subsystems of the CPS. Along this line, this report describes three methods:

� A method called reachset model predictive control is proposed which embeds reachable

set computations into standard MPC of nonlinear systems with disturbances and

measurement disturbances to ensure that a terminal region is safely reached.

� For linear discrete-time systems with additive stochastic disturbances (with possibly

unbounded support), an approach of stochastic MPC is proposed which considers input
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and probabilistic state constraints, i.e. a scenario-based technique with constraint

relaxation scheme determines the controlled reach set such that the state constraints

are satisfied with a given high probability.

� For distributed CPS, an MPC approach is proposed in which the local controller of any

subsystem takes into account the hybrid dynamics of the subsystems as well as state

constraints obtained from reach set computation of interacting subsystems.

The following three sections describe the aforementioned techniques including numerical

examples and discussions of the properties, before the deliverable closes with summarizing

conclusions in Sec. 1. While the examples used for illustration in the sections 2 to 4 differ

from the use cases investigated in WP5 of UnCoVerCPS, the techniques reported here

have been applied for different instances of these use cases, in particular the case studies on

autonomous driving and human-robot interaction.
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2 Using Reachability Analysis in Model Predictive Control

In this section, we present a reachset model predictive control (MPC) approach: We combine

reachability analysis with regular MPC in order to obtain provably safe controllers for disturbed

nonlinear systems with constraints on states and inputs. The interested reader is referred to

[70], where the following text was originally published.

2.1 Problem Formulation

We consider a continuous-time system with disturbed, nonlinear dynamics of the form

ẋ(t) = f
(
x(t), u(t), w(t)

)
, (1)

with states x(t) ∈ Rn, inputs u(t) ∈ Rm, and disturbances w(t) ∈ W ⊂ Rd (W is compact, i.e.,

closed and bounded). We do not require any stochastic properties for w(·); we only assume

that any possible disturbance trajectory is bounded at any point in time in the compact set

W. We denote this by w(·) ∈ W, which is shorthand for w(t) ∈ W, ∀t ∈ R+
0 . We use the same

shorthand later for state and input constraints. We denote the solution of (1) with initial

state x(0), input u(·), and disturbance w(·) at time t as ξ(x(0), u(·), w(·), t). The measurement

of the system is modeled by a function h, returning the measured state x̂(t) subject to a

compact set of measurement errors V ⊂ Ro:

x̂(t) ∈ X̂ (t) = {h(x(t), η(t)) | η(t) ∈ V}.

If not all states are measurable, X̂ (t) can also be obtained by a set-based observer [28, 46].

The goal is to find an MPC controller which steers the system from an initial state

x(0) ∈ X in finite time into a goal set Xf while minimizing some cost function. At the same

time, the controlled system must satisfy state and input constraints despite disturbances and

measurement noise, i.e.,

ξ
(
x(0), u(·), wt, ·

)
∈ X , (2)

u(·) ∈ U , (3)

where X and U are both convex sets in Rn and Rm, respectively.

2.2 Reachset Model Predictive Control

In this subsection, we present our reachset model predictive control approach. After an

overview, we provide required definitions and further detail our approach. In the end, we

show all properties in the main theorem.
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Overview

The basic idea of our reachset MPC is shown in Fig. 1. Starting from the solution of the

previous step (Fig. 1(a)), we obtain a measurement x̂(t) at time t (Fig. 1(b)). As there might

be measurement noise, we only know that we are in some uncertain set X̂ (t), which is a

singleton when the state can be precisely measured. Based on this measurement, we are

looking for the optimal controller which steers the system to the goal set Xf . Since we cannot

optimize for an infinite time horizon, we use a dual-mode MPC [53]. This means we consider

a final prediction horizon of length tN and require that the prediction ends in a terminal

region Ω (defined formally later in Def. 4), for which we know a safe and stabilizing controller.

Based on the obtained measurement, we optimize a new reference trajectory xref (·|t),
which is tracked with a fixed feedback controller. To solve the optimization problem and to

compute the reachable set, we need some time tc, and we apply the controller from the previous

prediction to the system during this time. Using reachability analysis, we predict where we

end after the optimization and computation of the reachable set and use this set X̂ (t+ tc|t)
as the initial set for our optimization problem (Fig. 1(c)). We use the notation (t+ tc|t) to

refer to the prediction for time t + tc made at time t. For efficiency reasons, we solve the

optimization problem for the center trajectory only, but with tightened constraints (Fig. 1(d)).

We then use reachability analysis to check if all possible solutions X̂ (·|t) are guaranteed to

satisfy all constraints (Fig. 1(e)). Only if this is the case, and if the computations finish in

the allocated time tc, we apply the new, guaranteed-safe solution. If not, we use a feasible

solution which consists of the solution from the previous step, extended by the safe controller

from the terminal region (Fig. 1(f)). Therefore, under the common assumption that we know

a feasible trajectory at the initial time, we always know a feasible solution, which we can use

as a backup if we cannot find a better feasible solution in the available time. We then apply

the solution for time ∆t before we start the next optimization problem based on the new

measurement. The feasible solution is defined as:

Definition 1. The feasible solution is a possible non-optimal input trajectory, which leads

to trajectories ξ
(
x(t), u(·), w(·), ·

)
satisfying the constraints (2)-(3) and ends in the terminal

region Ω after time tN : ξ
(
x(t), u(·), w(·), t+ tN

)
∈ Ω.

After defining reachable sets, we explain all steps of our approach in detail and discuss

the guarantees at the end of this subsection.
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Ω

(a) old solution X̂ (·|t−∆t)

X̂ (t)

(b) new measurement X̂ (t)

(c) reachable set after compuations X̂ (t + tc|t) (d) new reference trajectory xref (·|t)

(e) new reachable set X̂ (·|t) (f) fallback: feasible solution X̂ (·|t)

Figure 1: Illustration of our reachset MPC approach: Beginning with a feasible solution set X̂ (·|t−∆t)

from the previous time step (a), we obtain the measurement of the (possibly uncertain) state at time t

(b). Based on this set of possible states, we compute the reachable set X̂ (t+ tc|t) (blue) for the time tc

which we need to solve the optimization problem (c). Starting with the center of this reachable set, we

optimize the reference trajectory xref (·|t) (green) for the time horizon tN (d). After the optimization,

we compute the corresponding reachable set X̂ (·|t) (green) (e). If all constraints are satisfied for the

reachable set, we use the new reference trajectory and continue with the next iteration at time t+ ∆t.

If the solution is not feasible or is not computed in time, we follow the feasible solution (red) from the

previous time step, which is extended by the auxiliary controller in the terminal region Ω (f).
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Reachability Analysis

To ensure the satisfaction of constraints despite disturbances and measurement noise, we use

reachable sets:

Definition 2. For a system (1), the reachable set Rt,U ,W(S) ⊂ Rn for a time t, inputs

u(·) ∈ U ⊂ Rm, disturbances w(·) ∈ W ⊂ Rd, and a set of initial states S ⊂ Rn is the set of

end states of trajectories starting in S after time t, i.e.,

Rt,U ,W(S) =
{
x(t) ∈ Rn|∃x(0) ∈ S, u(·) ∈ U , w(·) ∈ W : ξ

(
x(0), u(·), w(·), t

)
= x(t)

}
.

The reachable set over a time interval [t1, t2] is the union of all reachable sets for these time

points, i.e.,

R[t1,t2],U ,W(S) =
⋃

t∈[t1,t2]

Rt,U ,W(S).

If we consider the reachable set for a system with feedback ufb(x̂(t)), then we denote

by Rt,ufb,W(S) the reachable set obtained if we consider the closed-loop dynamics ẋ(t) =

f(x(t), ufb(x̂(t)), w(t)) subject to disturbances and measurement errors. Since it is not possible

to compute exact reachable sets for most systems [57], we compute over-approximations instead.

We represents sets by zonotopes due to their favorable properties for reachability analysis

[4]:

Definition 3. A set is called a zonotope if it can be written as

Z =
{
x ∈ Rn

∣∣∣x = c+

p∑
i=1

Gλ, λ ∈ [−1, 1]p
}
.

Here, c ∈ Rn defines the center of the zonotope, and G ∈ Rn×p its generator matrix. We use

〈c,G〉 as a more concise notation of Z.

Dual Mode MPC

As is common in MPC, we use dual mode MPC [53] to limit the prediction horizon. We use

the control law

uΩ(x̂(t)) = KΩx̂(t) (4)

to stabilize a terminal region Ω and the control law

uMPC(x̂(t)) = v(t) +K(x̂(t)− xref (t)) (5)
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which controls the system into the terminal region. Here, v(t) denotes the reference input,

which is optimized online, and xref refers to the corresponding state trajectory. The feedback

matrices K ∈ Rm×n and KΩ ∈ Rm×n can be different from each other, and K can even be

time-varying as discussed at the end of this subsection. We use linear controllers for faster

computation times; however, all concepts presented also work for nonlinear controllers. The

terminal region Ω is defined as a region of attraction in which the state and input constraints

are satisfied:

Definition 4. Given a dynamical system of the form (1) and a terminal control law (4). The

terminal region Ω, Xf ⊆ Ω ⊆ X , is defined as

Ω =
{
x
∣∣∣∀η ∈ V : h(x, η) ∈ Ω̄

}
,

with

Ω̄ =
{
x
∣∣∣∀t ∈ R+

0 ,∀x̂(t) ∈ X̂ (t), ∀w(t) ∈ W, ∃tf ∈ R+
0 :

ξ(x, uΩ(x̂(·)), w(·), tf ) ∈ Xf ,

ξ(x, uΩ(x̂(·)), w(·), t) ∈ X ,

uΩ

(
ξ(x, uΩ(x̂(·)), w(·), t)

)
∈ U

}
.

Using a terminal region is standard in many MPC approaches and is required to provide

guarantees beyond the finite prediction horizon [53]. It is computed before the controller is

applied online. There exist different ways to compute an approximation of an invariant set of

a controller; many of them use Lyapunov functions, which might be hard to find in practice.

While a region of attraction can also be computed using Lyapunov functions, there also exist

methods to compute them automatically and in many cases more efficiently using reachable

sets [33]. The region of attraction is usually much larger than a positive invariant set, which

provides more flexibility to our approach. In addition, by checking the satisfaction of the

constraints during the execution of the algorithm from [33], we can automatically compute a

safe region of attraction, i.e., a region of attraction for which the state and input constraints

are satisfied despite disturbances.

As is common in dual mode MPC, we also use this terminal region to obtain the feasible

solution as a backup plan by using the remainder of the previous solution:

vf (τ |t+ ∆t) = v(τ |t) for τ = [t+ ∆t+ tc, t+ tN ]. (6)

Once we reach the terminal region at time t+ tN , we switch to the terminal controller (4).

During operation, we compute future reachable sets X̂ (t + ∆t|t) = R∆t,uMPC ,W(X̂ (t))

based on the current input trajectory v(·|t), with X̂ (t) composed of the measured state x̂(t)
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plus measurement uncertainty. Note that even though X̂ (t) might be partly outside of the

reachable set, we know from the over-approximative nature of the reachability analysis that the

real state x(t) must lie inside the reachable set from the previous step, i.e., x(t) ∈ X̂ (t|t−∆t).

Therefore, we only have to consider the intersection X̂ (t) ∩ X̂ (t|t−∆t) as the initial set for

the next optimization. This is a common approach used in set-based observers[28, 46].

Considering the Computation Time

When starting the optimization for a new measurement, we consider its computation time tc.

To be safe, we need to know the reachable set after tc due to uncertainties and disturbances:

X̂ (t+ tc|t) = Rtc,uMPC ,W(X̂ (t)).

By applying the reference trajectory plus feedback controller from the previous optimization,

we know that the reachable set after the optimization time is inside the reachable set from

the previous optimization.

The allowed computation time tc for the optimization and reachability analysis is a user-

defined design parameter. Note that tc can be estimated quite well by restricting the iterations

of the optimization algorithm and by considering the fact that the computation time for the

reachability analysis scales approximately linear with the considered time horizon. However,

inappropriate values of tc do not impede the desired properties in (2)-(3), as we can always

go back to the feasible solution if tc is not sufficient to find a new solution. We compute

the reachable set for this alloted time (see Fig. 1(c)). If the optimization algorithm finishes

before that, we keep following the previous solution until the designated time, from which

point on we apply the new solution. If we reach this point in time without a new feasible

solution, we simply keep following the previous feasible solution and start a new optimization

(see Fig. 1(f)).

Contraction Constraint

An important consideration in MPC is to ensure the convergence to the goal set in a finite

amount of time. While this could be done using Lyapunov functions, we use an approach

similar to [12] which does not require a Lyapunov function. Through the construction of the

terminal region using the approach from [33], we know that after reaching the terminal region,

we converge in finite time to the desired goal set. Therefore, we only have to ensure that we

converge in finite time to the terminal region. To do so, we introduce the distance operator

from [12]:
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Definition 5. Given sets X̂ and Φ = 1/(1 + α)Ω, with α ∈ R+, ‖X̂ ‖Φ is defined as

‖X̂ ‖Φ = minβ, s.t. X̂ ⊆ (1 + β)Φ, β ≥ 0.

As mentioned in [12], ‖X̂ ‖Φ is equal to zero if and only if X̂ ⊆ Φ, and if x /∈ Ω, it

follows that ‖x‖Φ > α. The authors also show that if Φ is a polyhedron defined by the

intersection of half-spaces of the form Φ = {x : dTi x ≤ ei, i ∈ {1, . . . , p}} that contains the

origin (ei > 0, i ∈ {1, . . . , p}) and X̂ = 〈c,G〉 is a zonotope, then ‖X̂ ‖Φ can be obtained from

the equality

‖X̂ ‖Φ = max

{
0, max
i=1,...,p

dTi c− ei + ‖GTdi‖1
ei

}
,

where ‖GTdi‖1 denotes the sum of the absolute values of vector GTdi. By defining the distance

with respect to the tighter set Φ, we ensure a desired contraction rate, as shown later in

Thm. 1.

Optimal Control Problem

The optimization problem which is solved online at time t is given by

min
v(·|t)

J
(
X̂ (t+ tc|t), v(·|t)

)
(7)

= min
v(·|t)

∫ t+tN

t+tc

L(xref (τ |t), v(τ |t))dτ + V (xref (t+ tN |t))

s.t.

xref (t+ tc|t) = center(X̂ (t+ tc|t)), (8)

ẋref (t+ τ |t) = f(xref (t+ τ |t), v(t+ τ |t), 0), ∀τ ∈ [t+ tc, t+ tN ], (9)

v(τ |t) ∈ Ū(τ |t), ∀τ ∈ [t+ tc, t+ tN ], (10)

xref (τ |t) ∈ X̄ (τ |t), ∀τ ∈ [t+ tc, t+ tN ], (11)

xref (t+ tN |t) ∈ Φ̄, (12)

N̄(t)−1∑
k=1

‖xref (t+ k∆t|t)‖Φ−
N̄(t−∆t)−1∑

k=1

‖xref (t−∆t+ k∆t|t−∆t)‖Φ < −ᾱ, (13)

where center(X̂ (t + tc|t)) refers to the center of the zonotope X̂ (t + tc|t) and N̄(t) =

mink∈N xref (t+ k∆t|t) ∈ Φ̄.

We minimize the cost function J(·) in (7), consisting of a positive definite state cost L(·)
and a positive definite terminal cost V (·), with respect to the center trajectory, which starts

from the center of the reachable set (8) after tc. To ensure the satisfaction of the constraints

for the disturbed, closed-loop dynamics, we use tightened time-dependent input (10) and state
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constraints (11), Ū(·) and X̄ (·), respectively, as discussed later. As is common in dual-mode

MPC, we have a terminal constraint (12), which requires that the center trajectory ends in a

tightened terminal region Φ̄. Finally, we have a contraction constraint (13) with parameter ᾱ

(not necessarily equal to α), which ensures convergence to the terminal region Ω.

Tightened Constraints

To be able to apply our MPC approach online, we only optimize the center trajectory without

computing the reachable sets during this optimization. While it is possible to optimize over

reachable sets[69], this is not possible in real-time for fast systems. The authors of [12] propose

optimizing over the reachable sets; however, they do not discuss the computation times and

their approach is rather conservative as demonstrated later in Sec. 2.3. Instead, we optimize

only the center trajectory and tighten the constraint sets accordingly, such that state and

input constraints are met. At the end of the optimization, we perform a reachability analysis

to check if all constraints are actually satisfied. If this is not the case, we always have the

feasible solution as a safe fallback. We initially guess the size of the reachable set and the

resulting inputs from the controller based on the reachable set from the feasible solution and

verify the solution later. This means we take the size of the reachable set of the feasible

solution at the corresponding time step, scaled by a factor γ ∈ R+, and use this set to tighten

the constraints sets. To do this in a set-based fashion, we introduce the Minkowski difference

denoted by 	, i.e., the subtraction of two sets, as the complement of the Minkowski sum: for

sets X ,Y ⊂ Rn we define

X ⊕ Y = {x+ y|x ∈ X , y ∈ Y},

X 	 Y = {z ⊆ Rn|z ⊕ Y ⊆ X}.

This allows us to write the tightened constraints as

X̄ (t+ τ) = X 	 γ
(
X̂ (t−∆t+ τ |t−∆t)	 xref (t−∆t+ τ |t−∆t)

)
, ∀τ ∈ [tc, tN ],

Ū(t+ τ) = U 	Kγ
(
X̂ (t−∆t+ τ |t−∆t)	 xref (t−∆t+ τ |t−∆t)

)
, ∀τ ∈ [tc, tN ],

Φ̄ = Φ	 γ
(
X̂ (t−∆t+ tN |t−∆t)	 xref (t−∆t+ tN |t−∆t)

)
.

As the reachable sets might change their size, the constraints become time-dependent. If this

guess is too conservative, we only obtain a sub-optimal solution; if it is too optimistic, we

have to go back to the feasible solution. In any case, we have a safe solution in the end.
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Guarantees Through Reachability Analysis

After obtaining the center trajectory, we use the pre-defined feedback controller to compute

the reachable set for the closed-loop dynamics. We start from the reachable set X̂ (t+ tc|t)
and compute it for the remaining prediction horizon (see Fig. 1(e)). Afterwards, we check if

the reachable set satisfies the state and input constraints at all times, if the final reachable

set is completely inside the terminal region, and if the contraction constraint is also satisfied

for the reachable sets, i.e., we check if ∀τ ∈ [tc, tN ] :

X̂ (t+ τ |t) ⊆ X , (14)

v(t+ τ |t)⊕K
(
X̂ (t+ τ |t)	 xref (t+ τ |t)

)
⊆ U , (15)

X̂ (t+ tN |t) ⊆ Φ, (16)

N(t)−1∑
k=1

‖X̂ (t+ k∆t|t)‖Φ −
N(t−∆t)−1∑

k=1

‖X̂
(
t+ (k − 1)∆t|t−∆t

)
‖Φ < −α, (17)

where we evaluate the contraction constraint (17) only at finitely many time points to obtain

a finite cost and where

N(t) = min
k∈N
X̂ (t+ k∆t|t) ⊆ Φ. (18)

To evaluate if the zonotope X̂ (t+ τ |t) = 〈c,G〉 satisfies convex state and input constraints of

the form X = {x ∈ Rn|Cx ≤ d}, we simply have to check if the following inequality holds:

Cc+

p∑
i=1

|Cg(i)| ≤ d, (19)

with g(i) denoting the i-th column of G ∈ Rn×p and where the absolute value and less or equal

operators are both performed element-wise. Using this formula and using the fact that the

reachability analysis provides us with reachable sets for time intervals in the form of zonotopes,

we can efficiently check if the constraints (14)-(17) are satisfied for the reachable sets at all

times. If this is the case, we apply the new control input to the system and start with a new

iteration step. If the solution does not satisfy all those constraints or if the computation takes

longer than the pre-specified time, we apply the input from the feasible solution instead.

Main Theorem

Theorem 1. If we know an initial feasible solution at t = 0, then Alg. 1 remains feasible

for all times and the system robustly converges to the goal set Xf in finite time. During the

whole time, the system satisfies the state and input constraints (2)-(3) despite disturbances

and uncertain measurements.
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Algorithm 1 Reachset MPC Algorithm

1: Initialize: t← 0, v(·| −∆t)← initial feasible solution

2: while x̂(t) /∈ Ω do

3: u(τ)← v(τ |t−∆t) +K(x̂(τ)− xref (τ |t−∆t)),

τ ∈ [t, t+ tc]

4: vf (·|t)← feasible solution (6)

5: v∗(·|t)← solution of optimization problem (7)

6: if Optimization problem feasible & solved in time & (14)–(17) satisfied then v(·|t)←
v∗(·|t)

7: else v(·|t)← vf (·|t)
8: end if

9: u(τ)← v(τ |t) +K
(
x̂(τ)− xref (τ |t)

)
,

τ ∈ [t+ tc, t+ ∆t]

10: t← t+ ∆t

11: end while

12: u(τ)← KΩx̂(τ), τ ≥ t

Proof. We have to show three things: (i) The system remains recursively feasible, i.e., in each

step we can find a feasible solution, (ii) the system reaches the goal set Xf in finite time, and

(iii) the constraints are satisfied at all times despite disturbances and measurement noise. We

keep the proof concise, as many parts follow standard robust MPC techniques, as used in [12].

(i) This can be shown by induction:

Base Case: For t=0, we know a feasible solution by assumption.

Induction Hypothesis: If we know a feasible solution at time t, then we can always get a

feasible solution at t+ ∆t.

Induction Step: For every step at time t+ ∆t, we know from the over-approximative way

of computing the reachable set, that we start inside the reachable set of the previous step,

i.e., X̂ (t + ∆t) ⊆ X̂ (t + ∆t|t), for which we know the remainder of the solution from the

previous step, i.e., v(t + τ |t),∀τ ∈ [∆t, tN ]. Since the solution at time t is feasible, it ends

in the terminal region, where we know by construction that the terminal controller provides

a feasible solution, see Def. 4. Therefore, the previous solution extended by the terminal

controller, see (6), is always feasible and can be applied if we do not find a better solution in

time.

(ii) The terminal region Ω is computed such that any state inside Ω robustly converges to

the goal set Xf in finite time despite disturbances and sensor noise. Therefore, we only have
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to ensure reaching the terminal region in finite time. From the contraction constraint (17), we

enforce reaching the terminal region in at most (1/α)
∑N

k=1 ‖X̂ (t+ k∆t|t)‖Φ steps. If we find

a new solution, we know from (17) that this new solution satisfies the rate of at least −α. Let

us now show that the feasible solution is also guaranteed to have this convergence rate:

N(t)−1∑
k=1

‖X̂ (t+ k∆t|t−∆t)‖Φ −
N(t−∆t)−1∑

k=1

‖X̂ (t+ (k − 1)∆t|t−∆t)‖Φ

= −‖X̂ (t|t−∆t)‖Φ < −α,

where we denote by X̂ (t+ k∆t|t−∆t) the resulting reachable set from the feasible solution

vf (·|t). Since X̂ (t+(N(t−∆t)−1)∆t|t−∆t) ⊆ Φ, we know from (18) that N(t−∆t) = N(t)+1

and that ‖X̂ (t+ (N(t−∆t)− 1)∆t|t−∆t)‖Φ = 0. Therefore, the difference is only the cost of

−‖X̂ (t|t−∆t)‖Φ. Because X̂ (t|t−∆t) * Ω, it follows from Def. 5 that ‖X̂ (t|t−∆t)‖Φ > α,

and therefore the last inequality holds. As we can always revert to the feasible solution, the

convergence in finite time is guaranteed.

(iii) Before we apply the new solution, we check the constraints for the over-approximated

reachable set of the disturbed system in (14)-(17). If they are satisfied, then the new solution

is safe and can be applied. If they are violated, we apply the safe feasible solution; see (i). �

Extension

As mentioned before, we cannot guarantee that the solution resulting from the reference

trajectory which is computed with the tightened constraints (10)-(13) will satisfy the actual

constraints (14)-(17). While we are always safe, this might make our approach unnecessarily

conservative. One way to overcome the problem without getting too conservative is to compute

several possible solutions in parallel. Using different estimations of reachable sets and inputs

applied by the feedback controller results in several optimization problems with different

constraints. As they are completely independent, we can utilize modern multi-core processors

by solving them and using reachability analysis in parallel and thus choose the best feasible

solution.

2.3 Numerical Example

To compare our reachset MPC control algorithm with the approach from [12], we use the

same nonlinear continuous stirred tank reactor (CSTR) system for our numerical example.

The model of the reactor for an exothermic, irreversible reaction A → B with constant liquid
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volume is given by [12]:

d CA
dt

=
q

V
(CAf − CA)− k0 exp

(
− E

RT

)
· CA + w1 ,

d T

dt
=

q

V
(Tf − T )− ∆H · k0

ρ Cp
exp

(
− E

RT

)
· CA +

U ·A
V · ρ · Cp

(Tc − T ) + w2 , (20)

where CA is the concentration of A in the reactor, T is the temperature of the reactor and Tc is

the coolant stream temperature. The system state is defined as x =
[(
CA − C0

A

)
,
(
T − T 0

)]T
,

and the system input as u = Tc − T 0
c , with the steady state C0

A = 0.5mol/l, T 0 = 350K,

T 0
c = 300K. The model parameters can be found in [12].

The set of inputs is U = [−20, 70]K and the uncertainty w = [w1, w2]T is bounded by

w1 ∈ [−0.1, 0.1]mol/(l min) and w2 ∈ [−2, 2]K/min. The example does not consider state

constraints and assumes that the state can be precisely measured.

In order to determine a terminal region Ω, we compute an LQR controller for the system

linearized at the steady state xS = [0, 0]T , which results in KΩ = [66.65,−4.86]. We then use

the approach from [33] to calculate Ω as explained before. The time step size of ∆t = 1.8 s and

a prediction horizon of tN = 19.8 s, which is equal to N = 11 time steps, are the same as in [12].

We keep the reference inputs constant in each time step. The cost functions L(x, v) = vTRc v

and V (x) = xTQc x are applied; Rc = 10−12, and Qc is a diagonal matrix with 100 and

1 on the diagonal. Since no cost function is provided in [12], we use these parameters to

best approximate their trajectory. We use α = ᾱ = 0.1 for the contraction parameter and

Ū = [−18, 68]K for the tightened input constraints. For the control law uMPC(x) we apply a

time-varying feedback matrix K, where at each time step k, we obtain a new K as an LQR

controller for the system linearized at x∗ =
(
xref (t+ k∆t|t) + xref (t+ (k + 1)∆t|t)

)
/2 and

with input weighting matrix R = 100 and state weighting matrix Q as the identity. In order

to reproduce the behavior of the disturbed system during the execution of the algorithm,

we simulate the model (20) with random values for the disturbances w. For the allocated

optimization time we use the value tc = 0.54 s.

Our algorithm is implemented in MATLAB and we use the ACADO toolbox [43] to solve

the optimal control problems with a multiple shooting algorithm. For the reachable set

computation we use the CORA toolbox [5]. All computations are performed on a 2.9GHz

quad-core i7 processor with 32GB memory and without using parallel computing.

The initial solution for the first numerical example with initial state x0 = [−0.15, −45]T is

displayed in Fig. 2. During Alg. 1, the maximum computation time for the optimization and

reachability analysis is 0.51 s < tc, which means that we are able to perform all computations

in real time. As a comparison to our algorithm, Fig. 3 shows the initial solution of the
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Figure 2: Center trajectory (black) and reachable sets at discrete time points (blue) of the initial

solution for our approach. A resulting trajectory of the real system is shown in red, its reachable set in

gray, and the terminal region Ω in green.

robust MPC (rMPC) approach from [12] for the same example. It is clearly visible from

Fig. 2 and Fig. 3 that our reachable sets are smaller than the ones computed with rMPC.

Small reachable sets are advantageous because they minimize the probability that the input

or state constraints are violated. In addition, there is also a better chance that the sets

are located inside the terminal region. Furthermore, the rMPC algorithm exhibits several

major disadvantages that our approach is able to avoid: First, it does not provide formal

safety guarantees for time-continuous systems, as it only considers time-discretized systems.

Second, rMPC directly optimizes over the reachable sets, which leads to large computation

times, because the reachable sets have to be calculated for each iteration of the optimization

algorithm. To avoid this, we only optimize the center trajectory and compute the reachable

sets only once after the optimization. Third, the technique that rMPC uses for reachability

analysis results in larger over-approximations of the real reachable set of the system, as their

technique is more conservative than our approach.

In order to compare our approach with the rMPC algorithm, we use the same parameters

and same initial point as the authors in [12]. However, the example is not really suited for

a good comparison of control approaches, because to stabilize the system from this initial

point, the maximal available control input has to be applied for nearly the whole time horizon.

This does not leave much room for the other objectives like minimization of the cost function

or counteracting disturbances. Therefore, we provide a second example for the initial point

x0 = [−0.3, −30]. Compared to the case above, we changed the final prediction horizon to

tN = 9 s and the input weighting matrix to Rc = 0.9. The results are displayed in Fig. 4. For

Deliverable D2.3 – Report on interleaving online control and reachability
computation for certified behaviour of cyber-physical systems

18 of 70



CONTENTS
1750 J.M. Bravo et al. / Automatica 42 (2006) 1745–1751

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

5

x1

x
2

Ω

X(1|0)

X(2|0)

X(11|0)

Fig. 1. Approximated reachable sets.

lem P(x0) is feasible when this bounding operator is used.

However, if a bounding operator based only on natural inter-

val arithmetic is used, the feasibility of P(x0) is lost (in this

case, the obtained approximated set X̂(11|0) represented as a

dotted line box in the figure is too large to be included in re-

gion X). As was to be expected, the use of zonotopes provides

tighter outer bounds that enlarge the domain of attraction of the

controller.

7. Conclusion

A robust dual-mode MPC controller for constrained discrete-

time nonlinear systems with uncertainties has been presented.

Approximated reachable sets have been added to the MPC op-

timization problem. These sets are computed using a technique

based on zonotopes. The closed-loop system is shown to be

robustly ultimately bounded.
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Appendix A

Property 1. If P(x0) is feasible and X(k + j |k)*X, j =

0, 1, . . . , i then:

X(k + j |k) ⊆ X̆(k + j |k) ⊆ X, j = 0, 1, . . . , i,

v̄(k + j |k)=KX(k + j |k) ⊆ U, j = 0, 1, . . . , i.

Proof. Given a sample time k > 0, two cases must be consid-

ered:

(1) P(xk) is feasible: It will be shown first that X(k+j |k) ⊆

X̂(k+j |k), j=0, . . . , i. This claim is proved by induction. By

definition, X(k|k)= X̂(k|k)= xk . Assume now that X(k+ j −

1|k) ⊆ X̂(k+j−1|k) with 16j 6 i. As X(k+j−1|k)*X it is

inferred that X̂(k+ j − 1|k)*X. From this and the fact that W

is a bounding operator: X(k+j |k)=fK(X(k+j−1|k), v̄(k+

j − 1|k), W) ⊆ fK(X̂(k + j − 1|k), v̄(k + j − 1|k), W) ⊆

W(X̂(k + j − 1|k), v̄(k + j − 1|k), W)= X̂(k + j |k).

Therefore, it has been proved by induction that:

X(k + j |k) ⊆ X̂(k + j |k), j = 0, . . . , i. (A.1)

Taking into account that P(xk) is feasible and the definition

of X̆(k + j |k): X̆(k + j |k) = X̂(k + j |k) ⊆ X. Therefore,

it is concluded from Eq. (A.1) that: X(k + j |k) ⊆ X̂(k +

j |k)= X̆(k+ j |k) ⊆ X. From this inclusion and the feasibility

of P(xk): v̄(k + j |k)=KX(k + j |k) ⊆ v̄(k + j |k)=KX̂

(k + j |k) ⊆ U, j = 0, 1, . . . , i.

(2) P(xk) is not feasible: Denote l the smallest integer such

that P(xk−l) is feasible. It is easy to see from the proposed

controller algorithm that:

v̄(k)= {v̄(k|k − 1), . . . , v̄(k +N − 2|k − 1), 0}

= {v̄(k|k − 2), . . . , v̄(k +N − 3|k − 2), 0, 0}

...

= {v̄(k|k − l), . . . , v̄(k +N − l − 1|k − l), 0, . . . , 0}.

As v̄(k) is composed of the control signals used to compute

the reachable sets at instant k − l: X(k + j |k) ⊆ X(k + j |k −

l), j = 0, . . . , i.

From the last equation and the assumption X(k + j |k)*X,

j=0, 1, . . . , i, it is inferred that X(k+j |k−l)*X, j=0, . . . , i.

Note also that X(k + j |k − l)*X for j = −l, . . . ,−1. This

affirmation can be proved by contradiction: if there is j∗ ∈

[−l, . . . ,−1] such that X(k + j∗|k − l) ⊆ X then xk+j∗ ∈ X

implies (because of the dual controller) that xk+j ∈ X, ∀j >j∗.

This is a contradiction as xk /∈X. From the above considerations

it is concluded that: X(k − l + j |k − l)*X, j = 0, . . . , i + l.

Taking into account the feasibility of P(xk−l) and consider-

ing the previous item of the proof, it is inferred that X(k+j |k−

l) ⊆ X̆(k+ j |k− l) for j =0, . . . , i. Applying the definition of

X̆(k + j |k) and from the feasibility of P(xk−l): X̆(k + j |k)=

X̆(k+ j |k− 1)= · · · = X̆(k+ j |k− l)= X̂(k+ j |k− l) ⊆ X.

It is therefore concluded that: X(k+j |k) ⊆ X(k+j |k−l) ⊆

X̆(k + j |k − l) = X̆(k + j |k) ⊆ X, j = 0, . . . , i. From the

already proved inclusion: X(k+j |k) ⊆ X̆(k+j |k− l)=X̂(k+

j |k− l), j=0, . . . , i. This and the feasibility of P(xk−l) yield:

v̄(k + j |k)=KX(k + j |k) ⊆ v̄(k + j |k)=KX̂(k + j |k − l)

⊆ U, j = 0, 1, . . . , i. �
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Figure 3: Initial solution with reachable sets for the rMPC approach, taken from [12].

this example, the maximum computation time for optimization and reachability analysis is

0.37 s ≤ tc This example nicely demonstrates that our repeated optimization enables finding

feasible trajectories that have a lower cost than the initial solution.

Figure 4: Our approach for a different initial point with terminal region Ω (green), center trajectory

(solid black) and reachable sets at discrete time points (blue) of the initial solution, center trajectories

for all iterations (dashed black), real system trajectory (red), and reachable set for the real system

trajectory (gray). The resulting reachable sets can be seen better in the magnified section.

2.4 Discussion of the Algorithm

The computational complexity for our optimization is the same as for regular MPC. During

operation, we solve the optimal control problem (8)-(13). Since we solve it only for a single

state, we can use the same solvers which are developed for solving nonlinear programs and
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which are used for existing MPC. The only additional computation effort is the reachability

analysis [4], which has a complexity of O(n3), with n denoting the dimension of the state

space.

Because this computation only has to be performed once for the whole time horizon, we

are able to do these computation in real-time, as shown in the numerical example. Since we

do not optimize over the reachable sets and therefore are not able to obtain a global optimal

solution (which is not feasible for nonlinear programs in general), we save a lot of computation

time while still guaranteeing safety.

An advantage of our approach is that any kind of feedback controller can be used to track

the center trajectory and counteract disturbances. It is also not necessary to compute the

invariant set or some contraction set which has to hold everywhere in the state space. Instead,

we compute the actual reachable set based on the predicted future situation, resulting in a

less conservative solution.
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3 Probabilistic Reach Sets in Stochastic Model Predictive

Control

In this section, we address stochastic model predictive control (MPC) for a discrete time

linear system affected by an additive stochastic disturbance with possibly unbounded support.

At each time instant, a finite horizon constrained optimization problem needs to be solved so

as to determine the control input to be applied at that time instant. Constraints generally

involve state and input, and state constraints are necessarily enforced in probability if the

disturbance has unbounded support and the state is required to remain in a bounded set.

More precisely, the controlled reach set is required to keep within some constraint set for all

disturbance realizations except for a set of probability ε (probabilistic reach set of level 1-ε).

By adopting the so-called scenario approach [23], an inner approximation – achieved through

randomization – of the probabilistic reach sets of level 1-ε is used for input design. The

number of disturbance realizations used to approximate the reach sets can be appropriately

set so as to guarantee that the resulting scenario solution satisfies constraints at any step with

a probability that is smaller than ε (chance-constrained solution), with high confidence.

The resulting policy can be implemented in a receding horizon fashion according to the

MPC strategy. Such a possibility, however, is hampered by the fact that a feasibility issue

may arise when recomputing the policy. Infeasibility indeed can occur if the disturbance has

unbounded support and the state is required to remain in a bounded set.

In this section, we describe a solution to this issue that is based on the introduction of

a constraint relaxation which is effective only when the original problem turns out to be

unfeasible. This is obtained via a cascade of two probabilistically-constrained optimization

problems where, in the first one, performance is neglected and the policy is designed to fully

recover feasibility or –if this is not possible– to determine the minimum level of relaxation

to get feasibility, and, in the second one, such a minimum relaxation level is imposed while

optimally (re-)tuning the control policy parameters. Both problems are solved through a

computationally tractable scenario-based scheme using the same finite number of disturbance

realizations and providing an approximate solution that satisfies the original probabilistic

constraints of the cascade, with high confidence. A simulation example shows the effectiveness

of the proposed approach.

In [24, 26] stochastic uncertainty with bounded support is tackled by means of suitable

probabilistic tubes, whereas in [48] constraint tightening is adopted to enforce recursive

feasibility in MPC, always under the assumption of a bounded disturbance. In the case
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of systems affected by stochastic disturbance with unbounded support, control problems in

presence of state constraints have been addressed in [6, 41, 8, 55, 60, 61, 10, 27]. In [6, 60, 61],

state constraints are dealt with by means of a penalization term accounting for the state

constraint violation so as to ensure feasibility. In [41, 55, 10, 27], an analytic convex relaxation

of probabilistic constraints is proposed, whereas in [8] the problem is reformulated considering

a bounded disturbance obtained by suitably cutting the tails of the disturbance distribution.

In all these approaches, the disturbance is assumed to be a sequence of i.i.d. (independent and

identically distributed) random variables. Many of them also assume that the disturbance

has a Gaussian distribution, [6, 41, 8, 55, 10, 27].

Here, we address the unbounded disturbance case and, differently from the mentioned

approaches, we do make no independence and Gaussianity assumptions. We adopt a scenario-

based approach, which allows to address design in the presence of uncertainty, making solvable

problems that were otherwise deemed computationally intractable, [73].

Our previous contribution [30] addresses the same set-up but recovers feasibility by either

adding a term penalizing state constraint violation to the cost or introducing a certain pre-

defined admissible deterioration of the system performance while relaxing the state constraints.

The main advantage of the approach proposed here is that constraint relaxation is set to a

minimal level needed to recover feasibility so as to avoid penalizing excessively performance.

In particular, no relaxation is introduced if the randomized problem is feasible, which is

not the case in [29, 30]. Other randomized approaches to constrained stochastic control for

system (21) have been proposed in [16, 66, 17] but under the assumption that the noise

has bounded support, whereas in [59] only input constraints are considered, and in [67, 78]

recursive feasibility is assumed.

Scenario-based MPC was originally introduced for solving problems where achieving

robustness is not feasible and a chance-constrained reformulation is needed because of the

unboundedness of the disturbance support. However, given that the smaller the threshold ε

chosen by the user, the closer the scenario solution is to the robust one, the scenario approach

could also be used as a heuristic method to find approximate (relaxed) solutions to robust MPC

problems when the support of the disturbance is bounded. A comparison with computational

approaches providing a solution that is robustly guaranteed shows that scenario-based may

lead to an effective solution - whose robustness can be experimentally verified - even for tight

constraints, whereas robust MPC methods may show some conservatism and require the

constraints to be loose in order to be feasible. This enhances the use of randomized-based

methods as a valid alternative to other approaches to robust MPC.

Notably, scenario-based MPC can be extended to nonlinear systems that can be feedback
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linearized and to set-ups with discrete inputs. The interested reader is referred to [31] and

[13], respectively. In [31] and [13], filtering is adopted to account for observations and update

the uncertainty distribution from which realizations are extracted so as to obtain a better

tuned policy.

3.1 Problem Formulation

Consider the system

xt+1 = Axt +But +Bwwt, (21)

where xt ∈ Rn is the state, ut ∈ Rm is the control input and wt ∈ Rnw is an additive stochastic

disturbance. Matrices A, B, and Bw have appropriate dimensions so as to make (21) consistent.

The probability distribution of wt is assumed to be known and it may have an unbounded

support. Without loss of generality, we assume that nw ≤ n and Bw is full column rank. The

state is accessible, i.e., at every t a noise-free measurement of xt becomes available.

The following disturbance feedback parametrization for the control input is adopted:

ut = γt +
t−1∑
τ=0

θt,τwτ , (22)

where γt ∈ Rm represent open-loop terms, while θt,τ ∈ Rm×nw are the disturbance feedback

gains. Note that the stochastic disturbance wτ appearing in (22) can be recovered from the

measurements of the state according to

wτ = B†w(xτ+1 −Axτ −Buτ ), (23)

where B†w denotes the pseudo-inverse of Bw. This expression reveals that the disturbance

feedback control policy in (22) is in fact a state feedback control policy. Parametrization (22)

was first proposed in [37], where it was shown that the family of policies in (22) is indeed

equivalent to the family of affine state feedback policies ut = γ̃t +
∑t

τ=0 θ̃t,τxτ . To be precise,

for every choice of γ̃t, θ̃t,τ there exists a parametrization γt, θt,τ in (22) returning the same

control action, and vice-versa. The great advantage of (22) is that, differently from other

parameterizations, the input ut and the state xt are affine functions of the design parameters

γt and θt,τ , which yields clear computational benefits.

The objective is to design the parameters γt and θt,τ so as to minimize a cost function

over a finite time horizon of length M , while accounting for constraints on the input and state

variables. This problem may arise per-se in some applications (for instance, the positioning

of the end-effector of an industrial robot equipped with a robot re-initialization device), but
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its significance mainly lies in the fact that it can be adopted in a Model Predictive Control

(MPC) scheme, where it is repeatedly solved at every time step, [50, 18, 64, 45].

In our formulation, we admit as cost any strictly convex function J of the parameters γt

and θt,τ over the horizon 0, 1, . . . ,M − 1. Plainly, the most common situations is when J is

defined as a function of the input and the state. A typical choice is the average quadratic cost

J = E

[
M∑
t=1

xTt Qxt +

M−1∑
t=0

uTt Rut

]
, (24)

where Q and R are symmetric and positive semi-definite matrices, and E denotes expectation

with respect to the underlying probability distribution as induced by the (known) distribution

of the disturbance. In this case, a sufficient condition for strict convexity to hold is that

matrices R and E[wwT ] are positive definite, see [30].

As for the input and state constraints, we assume that they are expressed as

f(u0, . . . , uM−1) ≤ 0 ∧ g(x1, . . . , xM , u0, . . . , uM−1) ≤ 0 (25)

where ∧ stands for “and”, f : RmM → Rpu and g : R(n+m)M → Rpy are continuous convex

vector-valued functions, and the inequalities are meant component-wise. It is assumed that

the admissible domain for u0, . . . , uM−1 and x1, . . . , xM as given by (25) is nonempty with

nonempty interior. For example, a typical requirement is that the norm of the input and of

some output variable are kept within an admissible range at each time instant t along the

reference time horizon, i.e.,

f(u0, . . . , uM−1) =


‖u0‖

...

‖uM−1‖

− ū

g(x1, . . . , xM , u0, . . . , uM−1) =


‖Cx1‖

...

‖CxM‖

− ȳ,
where the vectors ū and ȳ defines the maximum allowed magnitude at each time instant and

‖ · ‖ denotes some norm of interest. Note that g allows for joint state and input constraints

along the temporal horizon of interest and the constraints expressed by f could be incorporated

in g. To ease further explanations, we however keep the constraints that depend on the input

only separate from the others.

It should be noted that constraints (25) cannot be directly imposed since they miss to

specify how to account for the presence of the stochastic disturbance affecting both the state

and the input variables. Since the disturbance support is possibly unbounded, we assume
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that constraints are enforced probabilistically, namely, constraints (25) are required to hold

with a certain (usually high) probability 1− ε, where ε ∈ (0, 1) is a user-chosen parameter:

P{f(u0, . . . , uM−1) ≤ 0 ∧ g(x1, . . . , xM , u0, . . . , uM−1) ≤ 0}

≥ 1− ε. (26)

This probabilistic formulation of constraints is the most natural for many problems of interest

and has actually become common in the recent literature on constrained stochastic control,

[8, 55, 60, 61, 10, 27, 24, 35, 36, 48].

Altogether, the optimal design problem we are considering is as follows:

min
γi,θi,j

J subject to (26). (27)

Note that the probabilistic constraint P{f(u0, . . . , uM−1) ≤ 0} ≥ 1− ε, where g is not present,

is always feasible, because, if needed, the disturbance feedback gains θt,τ ∈ Rm×nw in (22)

can be set to zero, which makes ut deterministic. On the contrary, a feasibility issue arises

precisely because of the presence of the requirement on g(x1, . . . , xM , u0, . . . , uM−1). As a

matter of fact, the stochastic disturbance wt enters additively the system dynamics, and,

since the input ut depends on the disturbance up to time t − 1 at most, the dependence

of xt+1 on wt cannot be canceled. Since wt has possibly unbounded support and given the

limitation imposed by the system dynamics and by the constraints on the input variable,

it may then be that, depending on the system initialization x0, no choice of γt, θt,τ exists

such that g(x1, . . . , xM , u0, . . . , uM−1) ≤ 0 is attained with the required probabilistic level. In

particular, when the noise is Gaussian and Bw is the identity matrix, the state will exit any

fixed bounded set with probability 1 as the time horizon length grows unbounded, [42].

The feasibility problem here discussed is severe because in many cases the designer has no

direct control on the system initialization, which is indeed determined by exogenous causes.

For example, in an MPC scheme where the optimization problem (27) is continuously repeated

at each time step over a receding horizon and only the first calculated control action is actually

implemented, the system initialization for a given time horizon is determined by the solutions

at previous steps. At these previous steps, however, since constraints are only probabilistically

enforced and since the disturbance has unbounded support, it may be that an unfortunate

realization of wt drives the state far away in a region where the state constraint is strongly

violated, so that no feasible control action exists to steer the state back in the region where

g(x1, . . . , xM , u0, . . . , uM−1) ≤ 0 holds with the required probability.

Our objective now is addressing the feasibility issue illustrated above by introducing

a suitable relaxation of problem (27), which is conceived so as to adhere to the intent of
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the original problem formulation (27) as much as possible. Precisely, whenever the original

constraint (26) is feasible, the original problem is maintained, while, otherwise, a new decision

problem is formulated by relaxing the condition g(x1, . . . , xM , u0, . . . , uM−1) ≤ 0 only for

those components of the vector inequality that need to be relaxed to get feasibility. This

reformulation leads to a cascade of two optimization problems with probabilistic constraints,

which, admittedly, can be very difficult to solve in general, since problems involving probabilistic

constraints can be NP-hard. The second contribution of this work is that of introducing a

resolution scheme based on randomization in order to enhance computational tractability.

Specifically, we resort to the so-called scenario approach, [14, 15, 20, 23], a recently introduced

randomized method that can be used to provide approximate solutions to problems with

probabilistic constraints establishing a precise link between the original problem and its

approximation. Such a link is extended here to the scenario solution to the cascade of

problems discussed above, which is a non-standard setup not fully covered by the available

literature (see [51] for a contribution on cascading optimization).

Compact Notation

In order to ease the notation we define:

x =


x1

x2

...

xM

 u =


u0

u1

...

uM−1

 w =


w0

w1

...

wM−1

 .

Then, the state vector can be calculated as:

x = Fx0 + Gu + Hw, (28)

where matrices F, G and H are given by

F =


A

A2

...

AM

 G =


B 0n×m · · · 0n×m

AB B
. . .

...
...

. . .
. . . 0n×m

AM−1B · · · AB B



H =


Bw 0n×nw · · · 0n×nw

ABw Bw
. . .

...
...

. . .
. . . 0n×nw

AM−1Bw · · · ABw Bw

 .
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Similarly, the disturbance feedback policy (22) can be rewritten in the following compact

form

u = Γ + Θw, (29)

where we let

Γ =


γ0

γ1

...

γM−1

Θ =


0m×nw 0m×nw · · · 0m×nw

θ1,0 0m×nw

. . .
...

...
. . .

. . . 0m×nw

θM−1,0 · · · θM−1,M−2 0m×nw

 .

By substituting the expression of the input in (29) into (28), the affine dependence of x on

the design parameters Γ and Θ becomes clear:

x = Fx0 + GΓ + (GΘ + H)w

Eventually, the nonzero components of Γ and Θ are collected in the vector of optimization

variables λ, so that the following notations can be adopted: u = uλ(w), x = xλ(w), and

J = J(λ), which point out the dependence of input, state, and cost on the optimization vector

λ and the disturbance realization w. The constraints in (26) then become

P{f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ 0} ≥ 1− ε.

3.2 State Constraint Relaxation to Ensure Feasibility

In order to recover feasibility, we introduce a relaxation of the condition g(xλ(w),uλ(w)) ≤ 0

by substituting its right-hand side with h ∈ Rpy , h being a new optimization variable. By

doing this, the constraint involving state variables turns out to be always feasible, since it is

enough to take the variable h large enough. On the other hand, large values for h are clearly

not desired since the bigger h the larger the deviation from the original constraint. To stick to

the original problem formulation as much as possible h should be minimized component-wise.

On the other hand, one should account for the minimization of the cost function J(λ), which

represents the system performance. To this purpose, the following cascade of optimization

programs (two-step approach) is proposed, where L(h) is an user-chosen strictly convex

function of h, that is positive definite at h = 0 (i.e., L(h) > 0, h 6= 0 and L(0) = 0):

min
λ,h≥0

L(h) subject to: (30)

P{f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ h} ≥ 1− ε,

min
λ

J(λ) subject to: (31)

P {f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ ho} ≥ 1− ε,
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where ho is the optimal value for h obtained in (30). The optimal value for λ obtained from

(31) is denoted by λo.

Problem (30) in the first step aims at determining the smallest value of h, according to

the cost L(h), that ensures the feasibility of the probabilistic constraint

P{f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ h} ≥ 1− ε.

A possible choice for the cost function L(h) is e.g. L(h) = hTTh, which allows to assign

a different importance to each component of h by properly choosing the positive definite

matrix T . Note that since the cost function L(h) does not depend on λ, it may happen that

the optimal cost L(ho) is achieved in correspondence of different choices for λ, each of them

leading to a possibly different value of J(λ). The second step optimization problem (31) then

exploits this degree of freedom to minimize the performance cost. To this purpose, J(λ) is

minimized while the relaxed constraint P {f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ ho} ≥ 1− ε is

enforced. Since the bound on the state condition g(xλ(w),uλ(w)) is fixed to ho as computed

in the previous step, problem (31) does not suffer from any feasibility issue.

The cascade of problems is conceived so that, when the probabilistic constraint in (27)

is infeasible, the control action is basically designed according to (30) so as to recover

feasibility (minimization of L(h)). In this case, (31) provides just a refinement of the solution.

The requirement h ≥ 0 in (30) ensures that the constraint relaxation in (31), component

by component, cannot become tighter than the original constraint in (27), and for those

components not requiring any relaxation (31) pursues the goal of minimizing J(λ) as in (27).

In particular, whenever (27) is already feasible, program (30) simply returns ho = 0 and the

original problem (27) is recovered in (31).

Overall, the cascade of problems (30) and (31) returns a solution given by the pair (λo, ho),

where λo determines the control action to be implemented and ho is the probabilistically

guaranteed bound for the state constraint. Note that the value ho computed in the first step

optimization problem can be inspected to evaluate the mismatch with respect to the original

state constraint.

3.3 Scenario-based Resolution Scheme

As problems (30) and (31) are, in general, hard to solve because of the presence of a probabilistic

constraint, we propose to tackle them by means of a sample-based scheme which is in the vein

of the so-called scenario approach, [14, 15, 20, 23]. The proposed scheme allows to recover

computational tractability at the price of introducing some approximation. However, by

exploiting the scenario approach, which is here extended to the cascade of problems (30)
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and (31), precise probabilistic guarantees on the feasibility of the achieved solution are also

provided.

The idea of the scenario approach is to consider N disturbance realizations of length M :

w(k) =
[
w

(k)
0 w

(k)
1 . . . w

(k)
M−1

]
, k = 1, . . . , N,

each one extracted according to the disturbance probability distribution. Then, the proba-

bilistic constraint in (30) and (31) are replaced by N non-probabilistic constraints, one for

each disturbance realizations. More precisely, we have the following cascade of problems that

can be seen as a sample-based counterpart of the cascade of problems (30) and (31):

min
λ,h≥0

L(h) subject to: (32)

f(uλ(w(k))) ≤ 0, k = 1, . . . , N,

g(xλ(w(k))),uλ(w(k))) ≤ h, k = 1, . . . , N,

min
λ
J(λ) subject to: (33)

f(uλ(w(k))) ≤ 0, k = 1, . . . , N,

g(xλ(w(k))),uλ(w(k))) ≤ h?, k = 1, . . . , N,

where h? is the optimal value of h obtained in (32). The optimal value for λ obtained from

(33) is denote by λ?.

Problems (32) and (33) are convex and have a finite number of constraints, hence they can

be efficiently solved by means of standard solvers. Note that as the constraints are convex and

the cost function L(h) is strictly convex with respect to its argument, problem (32) uniquely

determines the value of h?; similarly, thanks to the strict convexity of J(λ), the solution to

problem (33) is unique.

The same interpretation we had for the cascade of problems (30) and (31) in Section 3.2

applies to the cascade of problems (32) and (33): indeed, the solution of the latter cascade

defined by the pair (λ?, h?) is the empirical counterpart of the solution of the former. It

is worth noticing that, as the pair (λ?, h?) is feasible and optimal for (32), the second step

optimization problem (33) can be regarded as a tie break rule by means of which the solution

that minimizes the cost J(λ) is chosen among the possible multiple solutions in λ of the first

step optimization problem (32).

We are now interested in studying the feasibility of the obtained scenario-based solution

for the probabilistic constraint

P {f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ h} ≥ 1− ε, (34)
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so as to provide a connection between (λ?, h?) and the original cascade of problems (30) and

(31).

This question pertains to the theory of the scenario approach, which provides in a number

of different setups guarantees on the feasibility of the scenario solution for the original

probabilistic constraint as long as N is suitably chosen, see e.g. [15, 20, 21, 19, 25, 22]. The

tightest result is that of [20] which, however, does not directly apply to the cascade of problems

(32) and (33). The results on cascading optimization in [51] apply to this context but the

resulting bound on N is conservative. The following theorem provides an extension of the

result in [20] to the current framework.

Theorem 2. Let β ∈ (0, 1) be a user-chosen confidence parameter. If the number of extracted

disturbance realizations N is chosen so as to satisfy

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i ≤ β, (35)

where d is the dimensionality of (λ, h), then it holds with confidence at least 1− β that

P {f(uλ?(w)) ≤ 0 ∧ g(xλ?(w),uλ?(w)) ≤ h?} ≥ 1− ε,

where (λ?, h?) is the solution to the cascade of problems (32) and (33).

Proof: For a given (λ, h), define the violation probability of (λ, h) as

V (λ, h) := P
{
f(uλ(w)) > 0 ∨ g(xλ(w),uλ(w)) > h

}
= 1− P

{
f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ h

}
,

where ∨ stands for “or”. Then, Theorem 2 amounts to showing that

PN{V (λ?, h?) > ε} ≤ β, (36)

where PN is the product probability underlying the independent extraction of the sample

w(1), . . . ,w(N) based on which the solution (λ?, h?) is computed.

Consider the following auxiliary scenario programs

min
λ,h≥0

L(h) +
1

n
J(λ) subject to: (37)

f(uλ(w(k))) ≤ 0, k = 1 . . . N,

g(xλ(w(k)),uλ(w(k))) ≤ h, k = 1 . . . N,

for n = 1, 2, . . ., and denote by (λ?n, h
?
n) its optimal solution, which exists and is unique, since:

i. the cost function L(h) + 1
nJ(λ) has compact level sets for every n ≥ 1 thanks to its strict
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convexity; ii. the optimization feasibility domain defined by the constraints in (37) is close

and nonempty.

The following two properties hold:

1. For every n ≥ 1, it holds that

PN{V (λ?n, h
?
n) > ε} ≤ β. (38)

2. For every multisample w(1), . . . ,w(N), the solution to (37) converges to the solution to

(32) and (33), namely,

(λ?n, h
?
n)→ (λ?, h?) as n→∞. (39)

Formal proofs of (38) and (39) are given later on.

We now capitalize on (38) and (39) to show that (36) holds. To this purpose, start by

fixing a sample w(1), . . . ,w(N) such that V (λ?, h?) > ε, which, we recall, means that

P
{
f(u(w, λ?)) > 0 ∨ g(x(w, λ?),u(w, λ?)) > h?

}
> ε.

By continuity of f and g, this implies that

P
{
f(u(w, λ)) > 0 ∨ g(x(w, λ),u(w, λ)) > h

}
> ε,

for all (λ, h) : ‖(λ, h)− (λ?, h?)‖ ≤ r for a radius r small enough, and, since (λ?n, h
?
n)→ (λ?, h?)

so that ‖(λ, h)− (λ?, h?)‖ ≤ r for all n bigger than a suitable n̄, we can conclude that

V (λ?n, h
?
n) > ε, (40)

for n > n̄. If we now let w(1), . . . ,w(N) vary and we consider the indicator function

I{w(1),...,w(N): V (λ?n,h
?
n)>ε}, then (40) yields

I{V (λ?,h?)>ε} · I{V (λ?n,h
?
n)>ε} −−−→

n→∞
I{V (λ?,h?)>ε},

for all possible realizations of w(1), . . . ,w(N). Applying the Lebesgue dominated convergence

theorem gives

lim
n→∞

PN{V (λ?n, h
?
n) > ε}

= lim
n→∞

∫
I{V (λ?n,h

?
n)>ε}PN{dw(1), . . . ,dw(N)}

≥ lim
n→∞

∫
I{V (λ?,h?)>ε} · I{V (λ?n,h

?
n)>ε}PN{dw(1), . . . ,dw(N)}

=

∫
I{V (λ?,h?)>ε}PN{dw(1), . . . ,dw(N)}

= PN{V (λ?, h?) > ε}.
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Hence, PN{V (λ?, h?) > ε} ≤ limn→∞ PN{V (λ?n, h
?
n) > ε}, and since PN{V (λ?n, h

?
n) > ε} ≤ β,

∀n, relation (36) remains proven. �

The theorem states that with high confidence 1−β the solution (λ?, h?) achieved solving the

scenario cascade of problems (32) and (33) is feasible for the original probabilistic constraint

(34) in (30) and (31). Note that the presence of the confidence parameter β is intrinsic and is

related to fact that the obtained solution depends on the random extraction w(1), . . . ,w(N): β

is needed to account for the possibility that a not representative enough sample w(1), . . . ,w(N)

is seen. However, by exploiting the results in [3], it can be shown that the number of required

samples N according to (35) scales logarithmically with 1/β. Hence β can be chosen to be

very small such as 10−5 or 10−7 without affecting N too much, so that the fact that the

achieved solution (λ?, h?) satisfies the probabilistic constraint (34) in (30) and (31) can be

taken for granted.

Proof of (38) and (39)

Proof of (38): By adding a slack variable v ∈ R, problem (37) can be rewritten in epigraphic

form as:

min
λ,h≥0,v

v subject to: (41)

f(uλ(w(k))) ≤ 0, k = 1 . . . N,

g(xλ(w(k)),uλ(w(k))) ≤ h, k = 1 . . . N,

L(h) +
1

n
J(λ) ≤ v.

The solution to problem (41) is still unique, and the assumptions of Theorem 2.4 in [20] are

satisfied. An application of this theorem gives

PN{V (λ?n, h
?
n) > ε} ≤

d∑
i=0

(
N

i

)
εi(1− ε)N−i,

where we have d in place of d− 1 because in (41) the number of optimization variables has

been augmented by 1 and is equal to d + 1. On the other hand, since the slack variable v

does not enter the expression defining it, the constraint

{λ, h, v : f(uλ(w)) ≤ 0 ∧ g(xλ(w),uλ(w)) ≤ h}

is, irrespective of w, a cylindroid infinitely extended along the v direction. This entails that

the family (with respect to the variability of w) of constraints above has a so-called support

rank equal to d, according to Definition 3.6 of [68] (see also [79]). The conclusion that

PN{V (λ?n, h
?
n) > ε} ≤

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i
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then follows by invoking the observation made in [68] that Theorem 2.4 of [20] still applies by

replacing the optimization domain dimensionality with the support rank (see Lemma 3.8). �

Proof of (39): To show that (λ?n, h
?
n)→ (λ?, h?) as n→∞, consider the sets

Hn =
{

(λ, h) : (λ, h) is feasible for (37) and

L(h) +
1

n
J(λ) ≤ L(h?) +

1

n
J(λ?)

}
,

for n = 1, 2, . . .. In words, n by n, Hn is the set of all feasible points for (37) that also belong

to the smallest level set of the cost function of (37) containing the solution (λ?, h?) of (32) and

(33). Note that, while the level set changes with n, the feasibility domain of (37) remains the

same for all n and it coincides with the feasibility domain of (32). This entails that (λ?, h?)

belongs to Hn for all n, showing also that Hn is nonempty. Moreover, n by n, we have that

(λ?n, h
?
n) ∈ Hn, (42)

because (λ?n, h
?
n) is feasible for (37), and, being also optimal, its cost value must be better

than that of (λ?, h?), which is the second condition defining Hn.

A fundamental property of the family of sets Hn is that

H1 ⊇ H2 ⊇ · · · ⊇ Hn ⊇ Hn+1 ⊇ · · · , (43)

as pictorially depicted in Fig. 5. To show (43), suppose that a (λ̄, h̄) belongs to Hn+1. From

L(h̄) +
1

n+ 1
J(λ̄) ≤ L(h?) +

1

n+ 1
J(λ?)

it follows that J(λ̄) ≤ (n+ 1)(L(h?)− L(h̄)) + J(λ?). Whence,

L(h̄) +
1

n
J(λ̄) ≤ L(h̄) +

n+ 1

n
(L(h?)− L(h̄)) +

1

n
J(λ?)

= L(h?) +
1

n
(L(h?)− L(h̄)) +

1

n
J(λ?)

≤ L(h?) +
1

n
J(λ?),

where the last inequality follows because L(h?) − L(h̄) ≤ 0 being L(h?) the lowest among

feasible points by the definition of h?. This shows that (λ̄, h̄) ∈ Hn too, that is, (43) holds.

From (42) and (43), we have that (λ?n, h
?
n) ∈ H1, ∀n. Set H1 is compact, being the intersection

of the feasibility domain of (32), which is close, with a level set of L(h) + 1
nJ(λ), which is

compact thanks to the assumptions of strict of convexity of L and J . It then follows that

the sequence (λ?n, h
?
n) have limit points, which are feasible for (32). For simplicity, assume

that there is just one, say (λ?∞, h
?
∞), so that the sequence (λ?n, h

?
n) is convergent to (λ?∞, h

?
∞).
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Figure 5: The sets Hn’s in a simple case (h, λ ∈ R, L(h) = h2, J(λ) = 3λ2).

If not, simply repeat the argument that follows to each limit point and the corresponding

convergent subsequence.

From (42) and the definition of Hn, we have that

L(h?n) ≤ L(h?) +
1

n
[J(λ?)− J(λ?n)] ,

which in turn implies that

L(h?∞) = lim
n→∞

L(h?n) ≤ L(h?) + lim
n→∞

1

n
[J(λ?)− J(λ?n)] = L(h?).

Yet, being L(h?) minimal, it cannot be that a strict inequality holds, so that eventually

L(h?∞) = L(h?). If h?∞ 6= h?, then (1
2λ

? + 1
2λ

?
∞,

1
2h

? + 1
2h

?
∞) would be feasible for (32) thanks

to the convexity of the feasible domain, while the strict convexity of L(h) would give

L

(
1

2
h? +

1

2
h?∞

)
<

1

2
L(h?) +

1

2
L(h?∞) = L(h?),

so contradicting the minimality of L(h?). Hence, h?∞ = h?.

From (λ?n, h
?
n) ∈ H1, we have that J(λ?n) ≤ L(h?)−L(h?n) + J(λ?) which, taking the limit,

gives

J(λ?∞) ≤ lim
n→∞

L(h?)− L(h?n) + J(λ?) = J(λ?).

Plainly, it must be that J(λ?∞) = J(λ?), for, otherwise, being λ?∞ feasible for (33), J(λ?∞) <

J(λ?) would contradict the minimality of J(λ?). Moreover, if λ?∞ 6= λ?, then 1
2λ

? + 1
2λ

?
∞

would be feasible for (33), and, because of the strict convexity of J(λ) we would have

J(
1

2
λ? +

1

2
λ?∞) <

1

2
J(λ?) +

1

2
J(λ?∞) = J(λ?),

contradicting again the minimality of J(λ?). Hence, λ?∞ = λ?, and this concludes the proof of

Property 2. �
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3.4 Numerical Example

In this subsection we apply the proposed approach to a numerical example inspired by [27].

The mechanical system composed by 4 masses and 4 springs depicted in Fig. 6 is considered.

Masses and stiffness coefficients of springs are all equal to 1. The state of the system is

 

Figure 6: Scheme of the mechanical system.

formed by the displacements of masses with respect to nominal positions and their derivatives,

that is, x = [d1, d2, d3, d4, ḋ1, ḋ2, ḋ3, ḋ4]T . The control inputs u1, u2, u3 are instead the

forces acting on the masses shown in Fig. 6. The continuous-time system equations are easily

derived. The system dynamics is then discretized assuming that the input is kept constant in

the interval [t, t+ Ts), with Ts = 1 s, so obtaining a system as in (21). A stochastic additive

disturbance affecting both the masses displacements and speeds is supposed to be also present,

resulting after discretization in w ∼WGN(0, I4) and Bw = [0.5I4 I4]T . The initial condition

of the system is x0 = [10, −10, 10, −10, 0, 0, 0, 0]T .

The goal is to keep the masses close to their nominal position counteracting the action

of the disturbance. We do not consider constraints on the input, but we enforce a state

constraint requiring that the maximum speed of each mass keeps below a given bound.

To this purpose, we choose an average quadratic cost function as in (24) over a finite

horizon M = 8, where the matrices Q and R are set so as to penalize deviations from the

nominal positions:

Q =

 I4 04×4

04×4 04×4

 R = 10−6I3,

The constraints on the speed of the masses are instead formulated as follows:

‖Cxi‖∞ ≤ 10 i = 1, . . . ,M, (44)

where C = [04×4 I4]. To deal with the presence of the disturbance w, the constraint is enforced

in probability with ε = 0.1.

Following the approach of Section 3.2, the optimization variables hi, i = 1, . . . ,M , are

introduced so as to ensure feasibility of the probabilistic constraint. We set β = 10−6 resulting
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in N = 4614 according to (35). Eventually, the cascade of problems (32) and (33) is solved

with L(h) = hTh.

Numerical results show that the bound on the state constraint cannot be enforced for

the first 2 time steps. Indeed solving problem (32) gave that the smallest bound preserving

feasibility is h?1 = 1.62, h?2 = 1.08, while for the other time steps we had h?i = 0, i = 3, . . . ,M .

The cost J(λ?) achieved solving problem (33) was 2305.55. Some Monte-Carlo simulations

revealed that the probabilistic constraint (34) was satisfied by the achieved solution (λ?, h?)

as it was expected given Theorem 2.

In order to better evaluate the performance of the obtained scenario control policy, we

compared it against a finite horizon LQ controller, which was designed according to the

following cost function:

JLQ = E

[
M∑
t=1

xTt QLQxt +
M−1∑
t=0

uTt RLQut

]
,

QLQ =

qJI4 04×4

04×4 qLI4

 RLQ = 10−6I3,

where the weights qJ and qL are degrees of freedom to tune the relative importance between

displacements and speeds. In this way the LQ controller can partially account for the

requirement on the masses speed.

The comparison of the performance of the scenario-based control policy and that of the

LQ controller for different choices of qJ and qL is displayed in Table 1, which reports the

achieved cost J and the actual probability of violation ε̃ of the original state constraint (44)

(computed via Monte Carlo simulations).

Table 1

qJ qL Approach J ε̃

- - Scenario-based 2305.55 0.1248

1 0 LQ 126.44 1

0 1 LQ 4347.20 0.9724

0.2 9 LQ 2318.50 0.9960

As it can be seen, by means of the scenario-based approach a good trade-off between the

cost function J and the violation ε̃ can be achieved. In particular, though the required value

of ε = 0.1 is not achieved (as it turned out to be infeasible), the actual violation ε̃ results

quite close to the desired one, because h?1 and h?2 have been properly pushed toward 0 by the
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the first program in the cascade of problems (32) and (33).

As for the LQ controller, instead, when only the mass displacements are accounted for

(qJ = 1 qL = 0) the achieved cost function J is much improved, but, on the other hand,

the state constraint is violated by a huge extent. When, instead, in the design of the LQ

controller only the speeds of the masses are accounted for (qJ = 0 qL = 1), the cost function J

turns out to be significantly increased with respect to the one obtained by the scenario-based

controller. Moreover the speed constraint turns out to be violated with large probability,

because the control action tends to excessively reduce the speed at subsequent time steps

while it maintains a high speed at the first time instant. In a third design the LQ (qJ = 0.2

qL = 9), weights are chosen so as to obtain a performance J similar to the one obtained by the

scenario-based controller. Also in this case, however, the probability of constraint violation is

high, because the speed constraint is significantly violated in the first time instant, while the

masses speeds are excessively reduced in the subsequent time instants.
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Figure 7: Scenario-based controller – Displacements of the masses: d1 (blue diamonds), d2 (green

circles), d3 (red squares), d4 (cyan triangles).
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Figure 8: Displacements of the masses: d1 (blue diamonds), d2 (green circles), d3 (red squares), d4

(cyan triangles).

The different behaviors of the controllers can be also appreciated by analyzing the state

trajectories corresponding to 100 disturbance realizations as depicted in Fig. 7 and 8 (dis-

placements) and Fig. 9 and 10 (velocities). The scenario-based controller exploits the allowed

speed to steer the masses close to their nominal position. On the contrary, the LQ control

policy leads to the violation of the state constraint in the first time instant, while, in the other

instants, the speed is kept conservatively small, and the masses are not steered toward the
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Figure 9: Scenario-based controller – Velocities of the masses: ḋ1 (blue diamonds), ḋ2 (green circles),

ḋ3 (red squares), ḋ4 (cyan triangles).0 1 2 3 4 5 6 7 8
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Figure 10: LQ controller qJ = 0.2, qL = 9 – Velocities of the masses: ḋ1 (blue diamonds), ḋ2 (green

circles), ḋ3 (red squares), ḋ4 (cyan triangles).

nominal position.

3.5 Reach Set Computations in Robust MPC

We consider the problem of setting up a robust MPC scheme for the uncertain discrete time

linear system (21) where wt ∈ Rn is an additive stochastic disturbance whose probability

distribution has bounded support W and BW = I. To be more concrete, we shall consider the

case that W is a polytope. We assume that the state of the system is available.

Our aim is that of presenting a comparison between two types of computational approaches:

those that provide a solution that is robustly guaranteed, and scenario-based method, which

provides a solution with probabilistic guarantees only.

As for the finite horizon control problem to be solved at every time instant t, we suppose

to minimize the average quadratic cost (24) with the constraint that the state and the input

stay at every time instant in the prediction horizon M in the polytopic sets X and U :

xτ+i ∈ X i = 1, . . . ,M (45a)

uτ+i ∈ U i = 0, . . . ,M − 1. (45b)

When the constraints (45) are enforced for every possible realization of the disturbance (robust

MPC), the ensuing optimization problem turns out to be semi-infinite, i.e. a problem with

a finite number of decision variables but an infinite amount of constraints. Semi-infinite
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problems require some care, since they may be very tough to solve, and in many cases they

have been proven to be NP-hard.

A possible solution to this issue is that adopted in [52, 37, 62, 34], where the uncertain

evolution of the system (21) is properly over-bounded so that an optimization problem that

it is amenable of resolution at a relatively low computational burden can be formulated.

In this case, the obtained solution is guaranteed to robustly satisfy the constraints. Yet,

the introduced over-approximation may introduce some conservatism, so that feasibility is

achieved only if the constraints to be satisfied are loose.

Alternatively, one can opt for an inner approximation of the uncertain evolution of the

system through randomization, and adopt the scenario approach.

The advantage of a scenario-based solution is that it does not introduce any sort of

conservatism in the constrained optimization problem resolution. It may hence lead to an

effective solution even when constraints are tight and other approaches turn out to be unfeasible.

This is shown next by performing a comparative analysis of the two types of approaches

by means of prototype examples. The analysis highlights advantages and drawbacks of the

various approaches, and all the results are substantiated by quantitative evaluations. As

already anticipated, the performed analysis shows that scenario-based MPC may be a valid

alternative to other approaches, enhancing its use to tackle robust MPC.

3.5.1 Approaches to Robust MPC

Robust MPC based on Invariant Sets This first approach was originally proposed in

[52] and it relies on invariant sets to bound the uncertain dynamics of (21).

The control law is selected as

ui = K(xi − x̄i) + ci, (46)

where K is an a-priori fixed gain (e.g. the optimal LQ gain of the infinite horizon problem

without constraints), while the open loop term ci is the actual decision variable and x̄i is the

state variable of the following auxiliary nominal system

x̄i+1 = Ax̄i +Bci,

whose initialization x̄0 is a decision variable too. Given (46), the true system dynamics

becomes

xi+1 = (A+BK)xi −BKx̄i +Bci + wi,

so that the difference between the actual and the nominal dynamics η = x− x̄ satisfies the
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equation

ηi+1 = (A+BK)ηi + wi. (47)

Now, let Z be a disturbance invariant set for the system (47), that is, if ηt ∈ Z then ηt+1 must

belong to Z too, for every realization of the disturbance wt ∈W . Based on the properties of

invariant sets, it is trivial to verify that if x0 ∈ x̄0 +Z (note that b+A = {b+a, a ∈ A}), then

xi ∈ x̄i+Z, i = 1, . . . ,M , and ui ∈ ci+KZ (note that KA = {Ka, a ∈ A}), i = 0, . . . ,M−1.

In other words, Z can be used to bound the uncertain dynamics of (21). The robust satisfaction

of constraints (45) can be guaranteed by selecting x̄0 so that xτ ∈ x̄0 + Z, and ci so that

x̄i + Z ⊆ X and ci +KZ ⊆ U . This leads to the following optimization problem:

min
ci,x̄0

E

[
M∑
i=1

xTi Qxi +

M−1∑
i=0

uTi Rui

]
subject to: (48)

ci ∈ U 	KZ i = 0 . . .M − 1

x̄i ∈ X 	 Z i = 1 . . .M

x0 − x̄0 ∈ Z

,

where 	 denotes the Pontryagin difference (A	B = {a : a+B ⊆ A}).
If the invariant set Z is a polytope, then the sets U 	KZ and X 	 Z are polytopes too

and can be easily computed. In this case, problem (48) is thus convex and can be solved

through standard optimization techniques like those used in CVX, [38], and YALMIP, [47].

The constraints in (48) can be seen as tightened versions of the original state and input

constraints because of the difference with Z and KZ. In order to achieved the widest feasibility

for problem (48), the invariant set Z should be as small as possible. The minimal invariant

set, however, may not be a polytope, see [52], and moreover it is quite difficult to compute.

Usually a polytopic outer approximation of the minimal invariant set is used, see e.g. [63].

Tube-based Robust MPC This second approach was developed in [34] for the case of

multiplicative uncertainty. The case of additive uncertainty discussed here is obtained by

means of straightforward modifications.

Let z = E[x] and e = x− E[x], and select the control law as

ui = Kzi + Lei + ci, (49)

where K and L are a-priori fixed gains and the open loop term ci is the actual decision

variable. The dynamics of x = z + e, then, is split into the dynamics of z (nominal dynamics)

and of e (uncertainty dynamics):

zi+1 = (A+BK)zi +Bci, z0 = x0 (50)

ei+1 = (A+BL)ei + wi, e0 = 0. (51)
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The idea is to find at each time step in the prediction horizon of length M a polytope Pi

enclosing any possible evolution of e at time i as due to the disturbance w. Then, the evolution

of x is guaranteed to be contained in zi + Pi, while ui is contained in Kzi + ci + LPi and the

satisfaction of (45) is guaranteed by requiring that these polytopes are subsets of X and U ,

respectively. The final optimization problem is

min
ci

E

[
M∑
i=1

xTi Qxi +
M−1∑
i=0

uTi Rui

]
subject to: (52) Kzi + ci ∈ U 	 LPi i = 0, . . . ,M − 1

zi ∈ X 	 Pi i = 1, . . . ,M
.

As for the computation of the bounding polytopes, Pi are selected in the form {ei : V ei ≤ αi},
where inequality is intended componentwise. The matrix V has to be a-priori fixed so that

the polytope facets have always the same orientation for every t+ i. The bounding of the

evolution of e is achieved by suitably distancing the facets at each time instant as specified

by vector αi. Technically speaking, the polytopes are recursively computed. Starting from

P0 = {0}, Pi+1 is obtained from Pi by imposing that the set of points ei whose evolution ei+1

according to (51) is contained in Pi+1 must include the points in Pi, that is

{ei : V ei ≤ αi} ⊆ (53)

{ei : V (A+BL)ei + V wi ≤ αi+1,∀wi ∈W}.

(53) can be enforced exploiting a corollary of Farkas’s lemma, originally proven in [9], about

the inclusion of polytopes: let S1 = {x : A1x ≤ b1} and S2 = {x : A2x ≤ b2}; it holds that

S1 ⊆ S2 if and only if there exists a matrix H with non-negative entries such that HA1 = A2

and Hb1 ≤ b2.

In view of this lemma, (53) is equivalent to{
HV = V (A+BL) hkl ≥ 0 ∀k, l (54a)

Hαi ≤ αi+1 − V v ∀v vertex of W (54b)

from which the polytopes Pi are eventually determined by first selecting the H satisfying

(54a) that gives the minimum value for the trace of HHT , and then by selecting the αi with

minimal components that satisfies (54b). Note that the inequality in (54b) is posed for the

vertices of W only thanks to convexity.

3.5.2 Scenario-based MPC

In the considered scenario-based solution, the control law is expressed as

ui = Kxi + ci, (55)
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where K is an a-priori fixed gain and the open loop term ci is the actual decision variable.

In order to determine the open loop term ci, a number N of disturbance realizations of

length M

w
(k)
0 , w

(k)
1 , . . . , w

(k)
M−1, k = 1, 2, . . . , N,

are generated according to the underlying probability distribution of w. Then, a finite

optimization problem, where the state and input constraints are posed in correspondence of

the extracted realizations of the disturbance only, is considered.

To be precise, let u
(k)
0 , u

(k)
1 , . . . , u

(k)
M−1 be the control actions evaluated in correspondence

of the k-th extracted realization of the disturbance, and x
(k)
1 , x

(k)
2 , . . . , x

(k)
M the corresponding

state trajectory (clearly, u
(k)
i and x

(k)
i still depend on the choice of cl, l = 1, . . . , i). The

scenario program to be solved at each step is

min
ci

E

[
M∑
i=1

xTi Qxi +

M−1∑
i=0

uTi Rui

]
subject to: (56)

u
(k)
i ∈ U i = 0, . . . ,M − 1

x
(k)
i ∈ X i = 1, . . . ,M

, k = 1, . . . , N.

Because of the finiteness of the considered realizations of the disturbance, problem (56) has a

finite number of constraints only and is convex. Indeed, using the parametrization (55), both

the input and the state depend linearly on the parameters ci, and this entails that: i) the

cost function is convex in the decision variables (actually, it is a quadratic function); and ii)

for every fixed realization of the disturbance, the constraints (45) are convex as well (when U
and X are polytopes, they are linear).

Despite the apparent naivety of the scenario approach, the obtained solution comes with

some interesting guarantees about constraint feasibility, [14, 15, 20, 23, 1], which make it a

sensible method to find an approximate solution to a robust problem, as discussed in the

introduction. In the present convex set-up, the best available result is given by the following

theorem.

Theorem 3. Let r be the total number of optimization variables in problem (56). For any

ε ∈ (0, 1) and β ∈ (0, 1), if

N ≥ r + 1 + ln(1/β) +
√

2(r + 1) ln(1/β)

ε
,

then, the probability that there exists a disturbance realization such that the solution to (56)

does not satisfy the constraint 
ui ∈ U i = 0, . . . ,M − 1

xi ∈ X i = 1, . . . ,M
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is no bigger than ε with high confidence 1− β. �

The bound above is due to [2] and is an explicit expression of the implicit bound on N

given in [20].

In words, Theorem 3 says that the solution provided by the scenario approach is robust

except for an ε portion of the disturbance realizations (ε-robustness), as long as N is suitably

chosen. Note that ε-robustness is guaranteed with high confidence 1− β only. However, if

one adopts small values of β like β = 10−6 or β = 10−9, then, the ε-robustness is achieved

beyond any reasonable doubt.

3.5.3 Comparative Analysis

The goal of this subsection is to make a comparative analysis of the approaches described in

Sections 3.5.1 and 3.5.2, focusing in particular on their capability of providing an effective

solution to the MPC problem as the state and input constraints become tighter and tighter.

To this purpose, the approaches are applied in a receding horizon fashion to the following

second order system:

xt+1 =

 0.5 −0.5

0.5 0.5

xt +

 1

0

ut + wt, (57)

where w is a white noise uniformly distributed in [−0.2 0.2]2. The reference finite horizon

problem takes the following form:

minE

[
M∑
i=1

xTi Qxi +
M−1∑
i=0

uTi Rui

]
subject to: (58) ‖ui‖∞ ≤ ū i = 0, . . . ,M − 1

‖Cxi‖∞ ≤ ȳ i = 1, . . . ,M
,

where we set M = 10, Q = I2, R = 0.1, and C = I2.

As for the design parameters entering the solution of (58) according to the approaches of

Sections 3.5.1 and 3.5.2, we have:

� the feedback gains K in (46), K, L in (49), and K in (55) are set equal to the optimal

LQ gain KLQ;

� the shaping matrix V of the tube-based approach is

V =

1 0 −1 0 1 1 −1 −1

0 1 0 −1 1 −1 1 −1

T

Deliverable D2.3 – Report on interleaving online control and reachability
computation for certified behaviour of cyber-physical systems

43 of 70



CONTENTS

� the violation and confidence parameters of the scenario-based approach are ε = 0.05

and β = 10−6;

We set the initial state equal to 0 and evaluate the threshold values ȳT and ūT for ȳ and ū

in (58) leading to unfeasibility of the optimization problems (48), (52), and (56). Our aim is

to find how much the constraints can be tightened before incurring in unfeasibility so as to

assess the possible conservativeness of the three approaches. Results are shown in Table 2.

Table 2: Estimate of the threshold values ȳT and ūT for ȳ and ū before incurring in unfeasibililty.

ȳT ūT

Tube-based approach 0.74 0.46

Approach based on invariant sets 0.53 0.35

Scenario-based approach 0.44 0.30

Note that, when the initial state is zero, the optimization problem (48) in the approach of

Section 3.5.1 is feasible if and only if the invariant set Z and its projection KZ on the input

space through the feedback gain K are respectively contained in the constraint set X and U .

Hence, the thresholds ȳT and ūT can be obtained based on Z and KZ. Likewise, when the

initial state is zero, problem (52) in the approach of Section 3.5.1 is feasible only if the tube

sections Pi and LPi are contained in the input and state constraint sets for every i. Since Pi

and LPi are increasing with i, ȳT and ūT are obtained based on the tube sections Pt+M and

LPt+M−1.

Computing ȳT and ūT for the scenario-based approach is instead more tricky, since it

is a randomized method. The values reported in Table 2 are heuristically determined by

progressively reducing ȳ and ū and checking for each pair (ȳ, ū) whether problem (56) is

feasible in 100 trials.

As it appears, the scenario-based approach outperforms the other approaches in terms

of tightness allowed for the constraints. This can be justified by comparing the different

approximations of the uncertain evolution of the state used by the three approaches. To this

purpose, we take a bunch of 10000 disturbance realizations of length M and simulate the state

evolution from the initial condition x0 = 0 when the control input is given by ui = KLQxi.

Indeed, this is the solution to problems (48), (52), and (56) when constraints are feasible

and x0 = 0. We obtain for every time instant along the prediction horizon [0,M ] a cloud of

possible states reached by the system and we superimpose them to the invariant set Z and to

the polytopes Pi defining the tube section at that time instant.
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Figure 11: Realizations of the state of system (57) when the LQ control law is applied (green cloud),

invariant set Z (red) and sections of the tube (light blue). The green cloud is an inner approximation

of the reach set.

As one can see in Fig. 11 the clouds of reachable states are smaller than their approximations

as given by Z and Pt+i. In particular note that the invariant set Z has to contain the cloud

at every time instant and it cannot adapt to the shape of the cloud. Furthermore, even if

we superimpose all the clouds, some regions of the invariant set appear empty and hence

are quite unlikely to be reached. Using tubes gives the possibility to shape the reachable

set approximation so as to best fit the cloud, but it turns out that the tube approximation

is well adapted to the cloud just for the first 4 time steps and then becomes even larger

than the invariant set. The scenario-based approach, instead, is not affected by this over

approximation effect. As a matter of fact, according to problem (56) the optimal control

law is determined by considering N disturbance realizations and the corresponding state and

input values for defining the constraints. The resulting approximation of the uncertain state

evolution is then tighter then that used by the other two approaches. Indeed, since we adopted

the parametrization ut+i = KLQxt+i + ci for the scenario-based approach, the clouds plotted

in Fig. 11 represent the reachable states for the scenario solution.

Note that the feasibility of problems (48), (52) and (56) depends on the choice of the

feedback gains K in (46), K, L in (49), and K in (55). It may be that choices other than

KLQ lead to smaller thresholds than those reported in Table 2. However, in (48) and (52)

K and (K,L) have to be fixed in advance, otherwise computational difficulties arise, and it
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is usually difficult to guess what is the right choice. In the scenario method, instead, the

feedback gain K can be easily optimized along with the open loop term c, so that K can be

automatically tuned towards the optimum. To be precise, to preserve convexity, one has to

adopt the parametrization in (22)

ut+i = γi +
i−1∑
j=0

θi,jwt+j , (59)

where wt+j can be reconstructed from the state equation as xt+j+1 − Axt+j − But+j and

θi,j ∈ Rm×n and γi ∈ Rm are the design parameters. As previously discussed, (59) is

equivalent to optimizing both the open loop term and the feedback gain, and by using it a

further improvement in terms of tightness of the bounds can be achieved. For instance, when

a reduced parametrization is adopted where the control input depends only on the previous 3

values of the disturbance, then, the threshold values ȳT = 0.39 and ūT = 0.28 are obtained.

As for the receding horizon implementation of the three approaches, when constraints are

loose and they are all feasible, the obtained performance are quite similar. More specifically,

after some transient, they all converge to the LQ solution, also when using the control law

parametrization (59) for the scenario-based approach. When constraints are tight and only

the scenario-based approach with parametrization (59) provides a feasible solution, then such

a solution does not necessarily converge to the LQ one. This appears to be the case if we set

ū = 0.28 and ȳ = 0.39, as shown in Fig. 12, where a realization of the control input and the

corresponding values as given by the LQ control law are plotted.
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Figure 12: Input for system (57) controlled with the scenario-based approach applied in a receding

horizon fashion (solid blue) and input given by the LQ control law (dashed red).

The results of this comparative analysis highlight some key features of the approaches in

Sections 3.5.1 and 3.5.2. Specifically, the approaches in Section 3.5.1 may not be applicable

to problems with tight constraints. Unfeasibility may in fact arise due to their use of i) an

outer approximation of the uncertain system dynamics, and ii) a-priori fixed feedback gains
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in the control law parametrization. On the contrary, the scenario-based approach is able to

tackle problems with tighter constraints because of the adopted inner approximation and,

possibly, of the tuning of the state feedback gain. Both numerical examples reveal in fact

that, though setting the feedback gain to the LQ gain is an optimal choice for what concerns

the cost minimization, it may be not ‘optimal’ for the constraints satisfaction.

In turn, however, while the approaches in Section 3.5.1 are robust in that constraints are

guaranteed to be satisfied for every and each disturbance realization, for the scenario-based

approach only probabilistic guarantees are given. This drawback of the scenario approach can

be only partly alleviated by setting the size ε of the set of disturbance realizations that violate

the constraints as small as possible, compatibly with the available computational resources.
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4 Model Predictive Control for Interacting CPS with Hybrid

Dynamics

In contrast to the sections before, this part considers a subsystem (as part of a larger CPS)

which is embedded into an environment that imposes time-varying restrictions on the behavior

of the subsystem. For its dynamics, we consider hybrid dynamics following the typical notion

of hybrid automata [40, 49], in which guards set enable discrete transitions, and an invariant

set have to satisfied while being in a discrete state. If interactions of several subsystems is

considered, one possible option is to use the invariant sets of a hybrid automaton to model

that the subsystem state must not enter a region currently occupied by a different subsystem.

This situation is, e.g., relevant if an autonomous vehicle moves in the same space as other

vehicles and collision-avoidance has to be ensured, as for the use cases of autonomous driving

and human-robot interaction (investigated in WP5) . The perspective taken in this section is

that the other subsystems have computed their planned trajectory over a prediction horizon,

and have it communicated to the subsystem to be controlled. The latter can determine the

occupied space from the planned trajectory by reachability analysis, i.e., by the using the

methods developed in WP3 of UnCoVerCPS. From the reachable sets, it can construct a

sequence of (typically polytopic) state sets, the invariants, which are free for its own control

(see deliverable D2.1 for details). Computing the control strategy is, also here, accomplished

by MPC, i.e., an online optimization problem is solved which is subject to the hybrid dynamics

and the invariant sets. If a feasible strategy can be determined, it is executed, otherwise an

emergency procedure is initiated. See Fig. 13 for an overview of the method.

For the hybrid automaton constructed online, the optimzation problem determines a

control strategy as a sequence of mixed inputs, i.e., of continuous inputs together with discrete

inputs for triggering enabled transitions. The transition dynamics introduces conditional

constraints on the continuous states, leading to integer variables in the problem formulation.

The sequence of transitions as well as the discrete control inputs represent two sources of

combinatorial complexity for the optimization, that typically lead to large numbers of value

combinations for the integer variables, and thus large computation times [74].

Schemes to transform the hybrid dynamics into linear inequalities for integer and continuous

variables within the context of optimal and predictive control have been proposed in the past,

e.g. with respect to mixed logical dynamic systems [7], or for hybrid automata with linear

continuous dynamics [72]. The obtained reformulated problems can then be solved by tools

for mixed-integer programming. A common objective for such reformulations is certainly to
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in each step k:

Emergency

maneuver

Execute optimal

strategycontrol

Main focus of this section

Compute reachable sets

of other interacting subsystems

Derive local safety

speci�cations

satis�able
not

satis�able

Ful�ll real-time requirements

Compute control strategy

satisfying the safety

constraints by optimal control

Figure 13: Steps of computation to be carried out in any time step k. The determination of reachable

sets and the conversion in safety constraints uses the techniques reported in D2.1. The computation

of control strategies as described in the following relies on the model format for hybrid systems as

introduced in D1.2.

keep the number of binary variables small. An issue which has not been addressed and solved

satisfactory up to-date is how the number of value combinations of the necessary integer

variables can be limited to the extent which refers to the set of admissible executions of the

hybrid systems – this is the objective of the present section.

It should be mentioned for completeness that a larger variety of direct and indirect methods

exist to solve hybrid optimal control problems without the use of mixed-integer programming,

e.g. [11, 56, 65, 77, 39, 71, 32]. More important for this investigation are those approaches,

however, that aim at finding sequences of discrete states (and binary variables) which encode

a particular goal-attaining temporal execution of the hybrid system. The work in [76, 44, 54]

use, e.g. linear temporal logic [58] as a task-specification tool to force the obtained state

trajectory satisfying the desired property of the task. However, the encoding of the LTL

formula is often elaborate. As indicated in [76], the number of the binary variables used for

encoding a single Until operator is quadratic in the time horizon. This work also aims at

determining task specifications by encoding each attained discrete state as well as the guard

set with binary variables. But instead of directly encoding the LTL formula as mixed-integer

linear constraints, a matrix of binary variables is determined to formulate the trajectories

leading from the initial to the goal state. Constraints are formulated for this matrix to impose

a particular structure, leaving only value combinations of the binary variables that correspond

to admissible executions.

Deliverable D2.3 – Report on interleaving online control and reachability
computation for certified behaviour of cyber-physical systems

49 of 70



CONTENTS

4.1 Problem Formulation

The control approach proposed in this section targets the discrete model definition for

networked CPS with hybrid dynamics, as introduced in D1.2. To ease notation, we here

moderately simplify the model definition from D1.2: in particular, we abstain from using

subsystem indices, which is justified, since after converting the subsystem interaction into

constraints, a local constrained control problem results, which does not require explicit reference

to the interacting subsystems. Thus, let the subsystem of the CPS under consideration be

modeled by a hybrid system with mixed inputs acording to HA = (T,U,X,Z, I, T , G, V, r, f),

consisting of:

� the discrete time-domain T = {tk | k ∈ N ∪ {0},∆ ∈ R>0 : tk := k ·∆}, where k is used

in the following to refer to tk;

� the continuous input space U ⊆ Rnu with the continuous input u ∈ U ;

� the continuous state space X ⊆ Rnx on which the state vector x is defined;

� the finite set of discrete states Z = {1, · · · , nz};

� a set I = {I1, . . . , Inz} of invariants where the invariant of any discrete state i is a

polytope Ii = {x | npi ∈ N, Ci ∈ Rnpi×nx , di ∈ Rnpi , x ∈ X : Ci · x ≤ di};

� the finite set of transitions T ⊆ Z × Z, in which a transition from i ∈ Z to j ∈ Z is

denoted by the ordered pair (i, j) ∈ T ;

� the set G of guard sets contains one polytopic set G(i,j) = {x | C(i,j) ∈ RnG(i,j)
×nx , d(i,j) ∈

RnG(i,j) , x ∈ Ii : C(i,j) · x ≤ d(i,j)} for any transition (i, j) ∈ T ; let for any pair of the

outgoing transitions from the discrete state i the corresponding guard sets be disjoint,

i.e. G(i,j) ∩G(i,l) = ∅, ∀j 6= l;

� the finite set V of discrete input variables, where any element v(i,j) in V refers to one

transition (i, j) ∈ T ; the variable v(i,j) is a binary one, and for v(i,j) = 1 the transition

(i, j) is triggered if x ∈ G(i,j) applies; if v(i,j) = 0 or x /∈ G(i,j), the transition cannot

occur;

� a reset function r: T × X → X which updates the state vector x upon a transition

(i, j) ∈ T according to x′ = E(i,j) · x+ e(i,j);

� and the function f : X × U × Z → X defining the discrete-time continuous dynamics

according to xk+1 = Ai · xk +Bi · uk with xk+1 := x(tk+1), i ∈ Z, xk ∈ Ii.
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The execution of HA is defined as follows: assume a finite time set TN = {0, 1, . . . , N} ⊂ T ,

and let the initial states (x0, z0) satisfy x0 ∈ Iz0 and x0 /∈ G(z0,j) for each (z0, j) ∈ T for j ∈ Z.

For given input sequences φu = {u0, u1, . . . , uN−1} and φv = {v0, v1, . . . , vN−1}, the pair of

state sequences φx = {x0, x1, · · · , xN} and φz = {z0, z1, · · · , zN} is admissible, if and only if

for any k ∈ {0, . . . , N} the pair (xk+1, zk+1) follows from (xk, zk) according to the following

steps:

1.) x′ := Ai · xk +Bi · uk ∈ Ii,

2.) if x′ ∈ G(i,j) and vk = 1, then xk+1 := r((i, j), x′) ∈ Ij and zk+1 := j, else xk+1 := x′,

zk+1 := i.

The second step makes obvious that a transition is bound to the condition that a discrete

control decision is imposed in addition to the fact that the intermediate state x′ is contained

in a guard set.

In order to introduce the control task, assume now that a set of hybrid goal states (Xg, zg) is

defined by one zg ∈ Z and Xg = {x | npg ∈ N, Cg ∈ Rnpg×nx , dg ∈ Rnpg , x ∈ Ig : CXg ·x ≤ dXg}.
Furthermore, let a state xc ∈ Xg be specified (e.g. the volumetric center of Xg ) to later

define a distance to the goal region in a computationally easy way.

If (x0, z0), (Xg, zg), and TN are specified, the control objective is to find admissible state

sequences φx and φz, or corresponding input sequences φu and φv respectively, which minimize

an appropriate cost functional. Hereto, we define:

J (x0, xf , N) =

N∑
k=1

{(xk − xi,jc,k)TQ(xk − xi,jc,k) (60)

+ (uk−1 − ug)TR(uk−1 − ug)}+ qg ·Ng

where Q and R are positive-definite weighting matrices, and qg ∈ R≥0. The variable Ng :=

min{k ∈ {1, . . . , N} | xk ∈ Xg, zk = zg} encodes the first point of time at which the continuous

state has reached the goal set. We assume that (uk, vk) exists for k ∈ {Ng, . . . , N} to hold the

system in the goal set. For any k ∈ {1, . . . , N} with zk 6= zg, the state xi,jc encodes the center

of the guard set G(i,j), if xk ∈ Ii and if zk is left through the transition (i, j) ∈ T . Thus, any

term of the sum in (60) encodes the weighted distance to the guard set, which can be seen as

a temporary goal set while HA is in the discrete state zk. For zk = zg, we require xi,jc = xc.

The overall control problem can then be defined as:

Problem 1. For HA initialized to (x0, z0), let a time set TN and a goal (Xg, zg) be given.
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Then, determine input sequences φ∗u and φ∗v as the solution of:

min
φu,φv

J (x0, xf , N) (61)

s.t.: φu with uk ∈ U, k ∈ {0, . . . , N − 1}

φv with vk ∈ {0, 1}, k ∈ {0, . . . , N − 1}

φx, φz admissible for HA, xN ∈ Xg, zN = zg.

The solution of this problem is difficult for large values of N (a parameter for which a

sufficiently high value to reach (Xg, zg) is not known a-priori), due to the combinatorics in φz

and φv. Note that expressing the conditions for xk being contained in invariants and guard

sets for certain discrete states or transitions implies to use binary variables, when converting

Problem 1 into a form that can be processed by available solvers. In addition, solving the

problem also includes to decide (by the discrete inputs vk) whether taking a transition upon

reaching a guard set is better in terms of feasibility and costs than continuing to stay in

the current discrete state. This is different from most other settings in existing literature

on optimal control of hybrid systems. The following sections propose a new approach to

approximate the optimal solution to the MIQP problem formulated by Prob. 1 efficiently in

many cases.

4.2 Representation of Admissible Trajectories by Algebraic Programs

This section introduces a particular format to encode Prob. 1 as algebraic program with a

number of binary variables that is relatively small compared to other formulations. It is

well-known that implications like (xk ∈ Ii)⇔ (b = 1) for mapping invariant set containment

of xk into a binary variable b can be accomplished by rules as those explained in [75] (often

referred to the Big-M-approach). Such mechanisms have been re-used in different work on

hybrid system optimization, e.g. [7] and [72], but the particular challenge is to use an as small

as possible number of binary variables and constraints on these variables for low computational

times. This issue is addressed in the following for Prob. 1. To facilitate the description and

understanding of the procedure, we first refer to the simplified case that a phase sequence is

known: let the order of the discrete states Z by which HA passes through be known, but the

times in TN at which the discrete states are left or are reached still have to be determined.

Hence, the remaining task is to determine the transition times as well as φu and φv such that

φx is led (if possible) through the appropriate series of invariants and guards. Formally, a

phase sequence is denoted by φp = {p0, . . . , pL}, where pl with l ∈ {0, . . . , L} is set to the

index of the discrete state which is invariant in the l− th phase (i.e. φp ⊂ φz is obtained from
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eliminating consecutive equal elements in φz).

The phases are now important to identify the number of binary variables required to

encode the execution of HA within the optimization problem: consider a phase pi, as shown in

Fig. 14, from a hybrid state (xk, zk) with zk = i (reached by a preceding transition) up to the

state (xk+5, zk+5) with zk+5 = j, reached through the transition (i, j). Note that x′ ∈ G(i,j) is

an intermediate state, which is immediately transferred into xk+5 := r((i, j), x′) ∈ Ij by the

transition with reset upon vk+4 = 1, according to the definition of an admissible run above.

Two points are obvious from this figure: (1.) for any of the states {xk, . . . , xk+4, x
′} the same

invariant constraint (element of Ii) applies, i.e. one binary variable per phase is sufficient to

express this fact; (2.) the state x′ must be associated with an additional binary variable to

encode x′ ∈ G(i,j) for pi. Since x′ must be treated separately, we use an extended index set

for the states to be considered: k̃ ∈ {0, N + L}. Within this set, the following assignments

correspond to an admissible run of HA:

� k̃ = 0 refers to x0;

� L values indicate intermediate states x′, and thus an exit from a discrete state;

� L values belong to the entry into a newly reached discrete state;

� and one value encodes the entry into Xg.

Next, the constraints on the continuous states xk̃ have to be formulated suitably. Recall

that all invariants, guard sets, and Xg are given as polytopic sets. Exemplarily for an invariant

set Ii, the efficient algebraic encoding is explained: using the principles proposed in [75], the

constraint Ci · xk̃ ≤ di can be modeled equivalently by:

Ci · xk̃ ≤ di + bi,k̃ ·Mi (62)

if Mi ∈ Rnpi×1 is a vector of large constants, and bi,k̃ ∈ {0, 1} one binary variable. If bi,k̃ = 0,

the invariant constraint is enforced, while bi,k̃ = 1 relaxes the constraint. Likewise, a guard

Ii
IjG(i,j)

xk

x′
xk+5xk+3

xk+4

Figure 14: Execution of HA within one phase.
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constraint xk̃ ∈ G(i,j) results in:

C(i,j) · xk̃ ≤ d(i,j) + b(i,j),k̃ ·M(i,j). (63)

Consider that two binary variables are required per phase (one for the invariant conditions,

and one for the guard condition (or the terminal set, respectively)), we introduce a vector of

2 · (L+ 1) binary variables:

bk̃ = [b0,k̃, b(0,1),k̃, b1,k̃, . . . , bL,k̃, b(L,Xg),k̃]
T (64)

for each k̃ ∈ {0, N + L}. The last entry represents containment in the goal set Xg. For k̃ = 0,

the numeric values of this vector are, b0 = [0, 1, . . . , 1]T, and for the transition from phase i to

i+ 1 we have: (a) bk̃ = [1, . . . , 1, 0︸︷︷︸
2i+1

, 0︸︷︷︸
2i+2

, 1, . . . , 1]T corresponding to the intermediate state

x′, and (b) bk̃ = [1, . . . , 1, 0︸︷︷︸
2i+3

, 1, . . . , 1]T for the entry in the next invariant. For k̃ = N + L,

the vector is: bN+L = [1, . . . , 1, 0, 0]T, and all of these vectors are collected in a matrix:

Bm = [b0,b1, . . .bN+L] = (65)



0

1

1
...

1

1

1


· · ·



0

1

1
...

1

1

1


︸︷︷︸
k̃out0 −1



0

0

1
...

1

1

1


︸︷︷︸
k̃out0



1

1

0

1
...

1

1


︸︷︷︸
k̃in1

· · ·



1
...

1

0

0

1

1


︸︷︷︸
k̃outL−1



1
...

1

1

1

0

1


︸︷︷︸
k̃inL

· · ·



1
...

1

1

1

0

0





1

1

1
...

1

0

0


]


The last line refers to the time indexing, where k̃ = k̃out0 refers to the instance in which the

first invariant I0 is left, and k̃ = k̃in1 to the instance in which the second invariant of φz is

reached. The following holds by construction:

Lemma 1. If φx and φz determine an admissible run of HA with zN = zg and xN ∈ Xg,

then a matrix Bm ∈ {0, 1}(2L+2)×(N+L+1) exists according to the rules (62) to (65), and each

column in Bm uniquely determines which constraints apply to xk̃ for k̃ ∈ {0, N + L}. �

Let all constraints of the form (62) and (63) be collected in the order of the indexing of

xk̃ in:

C · xk̃ ≤ D + diag(Bm(:, k̃ + 1)) · M. (66)
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The search for an admissible run φx and φz thus means to satisfy (66) for all k̃ ∈ {0, . . . , N+L}.
While (2L+ 2)× (N + L) binary variables (b0,k̃ is known) encode in principle 2(2L+2)×(N+L)

combinations (prohibitively many for larger N and L), the particular structure of Bm reduces

the number of possible combinations (and thus of φz) considerably. The following section

proposes a scheme to efficiently exploit this structure in searching for an optimal φx and φz.

4.3 Formulation of the Optimization Problem

In order to explain how Bm enables to search only over those value combinations of binary

variables that represent admissible runs of HA, we first focus on the first two rows of the

matrix. They represent the values of the binary variables b0,k̃, b(0,1),k̃ over k̃ ∈ {0, N + L},
and these variables model that xk̃ is contained in the invariant of the first discrete state (value

0), and respectively, that the first transition is triggered (again value 0):Bm(1, :)

Bm(2, :)

 =

0 0 · · · 0 0 1 1 · · · 1

1 1 · · · 1 0 1 1 · · · 1

 . (67)

Note that the column in which Bm(1, :) changes from 0 to 1 is not yet determined. Let the

value of Bm(1, k̃+ 1) depend on an auxiliary vector dT
1,k̃+1

= [Bm(1, k̃),Bm(2, k̃)] according to:

Bm(1, k̃ + 1) =

0

1

 if dT
1,k̃+1

=

 [0, 1]

[0, 0] or [1, 1]

 . (68)

Now, define two parameter/vectors α1 ∈ R3×1 and β1 ∈ R3×1 satisfying the following

conditions: 
−∞

0

0

 <


0 1

0 0

1 1

 · α1(1 : 2) +


1

1

1

 · α1(3) <


0

1

1

 ,


0

1

1

 <


0 1

0 0

1 1

 · β1(1 : 2) +


1

1

1

 · β1(3) <


1

∞
∞

 , (69)

where the matrices in front of the vectors α1(1 : 2) and β1(1 : 2) encode the possible values of

dT
1,k̃+1

in (68). Then the relation (68) can be algebraically and equivalently formulated as:

Bm(1, k̃ + 1) ≥ αT
1 (1 : 2) · d1,k̃+1 + α1(3),

Bm(1, k̃ + 1) ≤ βT
1 (1 : 2) · d1,k̃+1 + β1(3). (70)

While this encoding relates to the first phase, the principle can be transferred to the subsequent

phases. For a phase with index l ∈ {1, · · · , L − 1}, the (2l + 1)st row of Bm is relevant. It
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refers to the binary variable bl,k̃, and the value of Bm(2l + 1, k̃ + 1) is written depending on

an auxiliary vector dT
2l+1,k̃+1

= [Bm(2l, k̃),Bm(2l + 1, k̃),Bm(2l + 2, k̃)]:

Bm(2l + 1, k̃ + 1) =

0

1


if dT

2l+1,k̃+1
=

[0, 1, 1] or [1, 0, 1]

[1, 1, 1] or [1, 0, 0]

 . (71)

If parameter vectors αl ∈ R4×1 and βl ∈ R4×1 are defined similarly to (69), the assignment

(71) can be equivalently formulated as:

Bm(2l + 1, k̃ + 1) ≥ αT
l (1 : 3) · d2l+1,k̃+1 + αl(4),

Bm(2l + 1, k̃ + 1) ≤ βT
l (1 : 3) · d2l+1,k̃+1 + βl(4). (72)

With respect to the penultimate row of Bm, which refers to bL,k̃, the value of Bm(2L+ 1, k̃+ 1)

depends likewise on an auxiliary vector dT
2L+1,k̃+1

= [Bm(2L, k̃),Bm(2L+ 1, k̃)] with:

Bm(2L+ 1, k̃ + 1) =

0

1

 if dT
2L+1,k̃+1

=

[0, 1] or [1, 0]

[1, 1]

 . (73)

Using parameter vectors αg ∈ R3×1 and βg ∈ R3×1, (73) is translated into:

Bm(2L+ 1, k̃ + 1) ≥ αT
g (1 : 2) · d2L+1,k̃+1 + αg(3),

Bm(2L+ 1, k̃ + 1) ≤ βT
g (1 : 2) · d2L+1,k̃+1 + βg(3). (74)

For any 2l-th row of Bm (with l ∈ {1, · · · , L}), which refers to b(l−1,l),k̃, only one entry equals

0 (indicating that the reset is only triggered once), what can be enforced by:

N+L∑
k̃=0

Bm(2l, k̃ + 1) = N + L, ∀l ∈ {1, · · · , L}. (75)

Finally, for the last row, referring to b(L,Xg),k̃, only the last entry Bm(2L+ 2, N + L+ 1) is

forced to 0, modeling xN ∈ Xg. This is translated into:

Bm(2L+ 2, N + L+ 1) = 0. (76)

The condition that xk̃ ∈ Xg if xk̂ ∈ Xg for k̃ ≥ k̂ is modeled by:

Bm(2L+ 2, k̃) ≥ Bm(2L+ 2, k̃ + 1). (77)

Note that the options considered for dT
1,k̃+1

in (68), for dT
2l+1,k̃+1

in (71), and for dT
2L+1,k̃+1

in (73) are sufficient to encode the part of Bm which corresponds to the change of phases.

Using this fact, and the constructive rules provided above to determine the linear inequalities

formulated for elements of Bm, the following fact can be established:
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Lemma 2. If a binary matrix Bm ∈ {0, 1}(2L+2)×(N+L+1) with first column Bm(:, 1) = b0

and last column Bm(:, N + L + 1) = bN+L satisfies the constraints (70), (72), and (74) to

(77), then it has the same structure as in (65). �

Lemma 1 and 2 together also imply that these constraints encode the set of admissible

trajectories of HA. All constraints introduced for the matrix Bm can be collected in the set

of linear constraints:

Q · Bm ≤ W +N , (78)

where the matrices Q, W, and N depend on the various parameter vectors α and β. The

constraints in (78) reduce the value combinations of the respective binary variables in Bm
from 2(2L+2)×(N+L) to

(
N+L

2L

)
.

The search for an admissible run φx and φz of HA now means to let Bm satisfy (66) and

(78), i.e. the transformed problem is:

Problem 2. For a given phase sequence φp, determine input sequences φ∗u and a matrix B∗m
as solution to:

min
φu,Bm

N+L∑
k̃=0

{(xk̃+1 − xc,k̃+1)TQ(xk̃+1 − xc,k̃+1) (79a)

+ (uk̃ − ug)TR(uk̃ − ug)}+ qg ·
N+L∑
k̃=0

Bm(2L+ 2, k̃ + 1)

s.t.: Q · Bm ≤ W +N ; (79b)

for k̃ ∈ {1, . . . , N + L} :

xk̃ ≤ xk̃ + λx · (L−
L∑
i=1

Bm(2i, k̃ + 1)), (79c)

xk̃ ≥ xk̃ − λx · (L−
L∑
i=1

Bm(2i, k̃ + 1)), (79d)

xk̃ ≤ λx · (
L∑
i=1

Bm(2i, k̃ + 1) + 1− L), (79e)

xk̃ ≥ −λx · (
L∑
i=1

Bm(2i, k̃ + 1) + 1− L); (79f)

xc,k̃ =
L∑
i=1

(1− Bm(2i, k̃)) · xi−1,i
c ; (79g)

xk̃ =

L∑
i=0

[Ai · ξk̃,i +Bi · πk̃,i] +

L−1∑
i=0

ξk̃,(i,i+1); (79h)
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C · xk̃ ≤ D + diag(Bm(:, k̃ + 1)) · M, uk̃−1 ∈ U ; (79i)

for i ∈ {0, · · · , L− 1} :

ξk̃,i ≤ Θ+
i · (Bm(2i+ 2, k̃)− Bm(2i+ 1, k̃)), (79j)

ξk̃,i ≥ Θ−i · (Bm(2i+ 2, k̃)− Bm(2i+ 1, k̃)), (79k)

ξk̃,i ≤ xk̃−1 + λx · (1− Bm(2i+ 2, k̃) + Bm(2i+ 1, k̃)), (79l)

ξk̃,i ≥ xk̃−1 − λx · (1− Bm(2i+ 2, k̃) + Bm(2i+ 1, k̃)), (79m)

πk̃,i ≤ Θ+
u · (Bm(2i+ 2, k̃)− Bm(2i+ 1, k̃)), (79n)

πk̃,i ≥ Θ−u · (Bm(2i+ 2, k̃)− Bm(2i+ 1, k̃)), (79o)

πk̃,i ≤ uk̃−1 + λu · (1− Bm(2i+ 2, k̃) + Bm(2i+ 1, k̃)), (79p)

πk̃,i ≥ uk̃−1 − λu · (1− Bm(2i+ 2, k̃) + Bm(2i+ 1, k̃)), (79q)

ξk̃,(i,i+1) ≤ Θ+
i+1 · (1− Bm(2i+ 2, k̃)), (79r)

ξk̃,(i,i+1) ≥ Θ−i+1 · (1− Bm(2i+ 2, k̃)), (79s)

ξk̃,(i,i+1) ≤ E(i,i+1) · xk̃−1 + e(i,i+1) + λx · Bm(2i+ 2, k̃), (79t)

ξk̃,(i,i+1) ≥ E(i,i+1) · xk̃−1 + e(i,i+1) − λx · Bm(2i+ 2, k̃). (79u)

The cost function (79a) is an equivalent reformulation of the one in Prob. 1, where xc,k̃

depends on the guard set relevant for k̃, according to (79g). The sum in the last term of (79a)

counts the total number of steps in which xk̃ is not in Xg.

The constraints (79c) to (79f) ensure that the costs induced by the intermediate states

x′ are not recorded in the cost function. The conditions (79b) and (79i) force the resulting

trajectory φx to comply to φp. The equations and inequalities (79h) and (79j) to (79u) refer

to standard reformulations of the hybrid dynamics by introducing auxiliary variables ξk̃,i, πk̃,i,

and ξk̃,(i,i+1). Details of such reformulations can be found in [72]. In addition, the following

parameters have to be determined:

Θ+
i =

[
max
x∈Ii

x1 · · · max
x∈Ii

xnx

]T

,

Θ+
u =

[
max
u∈U

u1 · · · max
u∈U

unu

]T

,

(80)

and likewise for minimal values in Θ−i and Θ−u . The relaxation vectors λx ∈ Rnx , λu ∈ Rnu

are selected, to have for all x ∈ X and u ∈ U :

x+ λx � 0nx×1, x− λx � 0nx×1,

u+ λu � 0nu×1, u− λu � 0nu×1.
(81)
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Since all constraints in Prob. 2 are linear, the optimization represents an MIQP problem, which

can be solved by existing solvers. The constraints (79b) reduce the possible combinations of

values for the binary variables significantly. The obtained B∗m determines φ∗v straightforwardly.

Furthermore, since (79b) admits all possible values of Bm corresponding to the structure in

(65) and since no approximation is involved, the following applies:

Corollary 1. If no feasible solution exists to Problem 2, then there exists no admissible

trajectory corresponding to the given phase sequence φp. �

Thus, Prob. 2 can be used to verify the existence of an admissible trajectory satisfying

Prob. 1 for the considered φp.

Theorem 4. If the solution of Problem 2 returns a feasible solution φ∗u and B∗m, then it

represents the optimal solution of Problem 1 for the given phase sequence φp. �

This result follows from the relation between Prob. 2 and Prob. 1 for the given φp as

established by Lemma 1 and 2, and from the fact that solvers for MIQP problem terminate

with the optimal solution if the search tree is fully explored.

If now Prob. 1 is addressed without restriction to certain single φp, the solution is obtained

by solving one instance of Prob. 2 for any possible phase sequence connecting z0 with zg. If

the number of possible phase sequences connecting the initial discrete state z0 and the target

state zg is not very high1, the search can be carried out by enumeration.

4.4 Numeric Examples

To illustrate the procedure, we consider the example of an HA with x ∈ R3 and 5 discrete

states Z = {z0, z1, z2, z3, zg}. The invariant sets of these states are marked by yellow regions,

and the guard sets by orange regions in the following figures. The continuous dynamics, reset

functions, and input constraints are parametrized suitably (but not shown here for brevity),

and the set of transitions follows from the adjacency of the invariant sets. The initial state is

x0 = [12,−7, 0]T ∈ I0, and the terminal state is set to xg = [−2,−12,−2]T ∈ Ig. The terminal

region Xg is marked as a green region in the figures, and N is first selected to be 15, which

leads to a number of 102 binary variables to be employed in Problem 2. Three different phase

sequences are possible, and the respective trajectories are shown in Figs. 15 and 16. Only for

φp = {z0, z2, zg} and φp = {z0, z3, zg} optimal admissible trajectories are found with N = 15,

leading to costs of 3135.18 and 3429.26, and requiring computation times of 0.080s and 0.096s

on a 3.4GHz processor using Matlab 2015a and the solver CPLEX. Through constraint (78),

1As applies not seldomly for hybrid models
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x0 z0

z1

z2

z3

zg

Xg

Figure 15: Optimal trajectory for φp = {z0, z2, zg} and φp = {z0, z3, zg}.

the relevant combinations of the binary variables are reduced from 2102 to
(

17
4

)
= 2380, and

the time to verify the infeasibility of φp = {z0, z1, zg} for N = 15 is about 0.01sec. If, for the

latter φp, the time horizon is increased to N = 25, then the admissible trajectory shown in

Fig. 16 is obtained with optimal cost of 6160.51 computed in 0.717sec. A further test with a

x0

z0

z1

z2

z3

zg

Xg

Figure 16: Optimal trajectory for φp = {z0, z1, zg} with N = 25.

longer φp using L = 3 and a horizon N = 24 is illustrated in Fig. 17, obtained in 1.06sec.

In summary, this section has described a new method for efficient trajectory optimization of
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x0

z0

z1

z2

zg

Xg

Figure 17: Optimal trajectory for φp = {z0, z1, z2, zg} with N = 24.

CPS with hybrid dynamics. The key aspect of the method is to cast the semantics of admissible

trajectories into a tailored set of linear constraints which reduce the value combinations of

binary variables required to formulate the transition dynamics. The significant reduction of

the number of value combinations, also reduces the search space of the underlying MIP, and

thus increases the computational efficiency. The procedure does not involve approximation

and thus ensures that the globally optimal solution is found.
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5 Summarizing Conclusions

This document has reported on mechanisms of combining (the outcome of) reachable set

computations with online controller synthesis in terms of model predictive control. The

contributions are as follows:

� Taking advantage from reachable set computations, a dual-mode model predictive

control algorithm was proposed which leads to provably safe behavior even in presence of

disturbances and uncertain measurements. Due to the online computation of reachable

sets, the proposed method is less conservative than those often seen in literature. In

addition, the computation time of the method is relatively low, and this time is considered

when computing the reachable sets.

� Using the principle particle filters, probabilistic reach sets with arbitrary probability

distributions was embedded into a version of stochastic model predictive control for

system with disturbances without bounded suport. The method relaxes the state

constraints when the original problem is not feasible. The adoption of a scenario-

based approach leads to computational tractability where alternative methods are not

applicable.

� A method for trajectory optimization of hybrid systems within MPC was proposed, which

cast the semantics of admissible trajectories into a tailored set of linear constraints of a

mixed-integer optimization problems. The constraints involve a relatively small number

of binary variables required to formulate the transition dynamics. This significantly

reduces the search space of the optimization and contributes to good computational

efficiency. The procedure does not involve approximation and thus ensures that the

globally optimal solution is found.

Overall, the proposed methods all combine techniques of online reachable set comptations

into synthesizing control strategies or laws online by predictive control. This combination

ensures properties of safety and robustness against disturbances or environment effects while

the control strategies or laws are adapted to the current situation encountered by the CPS.

Note that the breadth of techniques described in this report covers relatively different model

classes of CPS, from continuous nonlinear dynamics with bounded disturbances, over affine

systems with stochastic disturbances, to distributed hybrid dynamics with affine continuous-

valued dynamics. This set of techniques enables one to select the method which is most suited

for a given application. If, an application requires a model in between the three classes listed

above, the combination of the presented ideas appears to be possible.
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The presented techniques are all implemented in Matlab (calling dedicated additional

optimization packages). The implementations establish the unit for controller synthesis within

the tool chain of UnCoVerCPS, as developed in WP4 of the project.

Since the techniques all rely on MPC, they are particularly useful for applications for

which a control strategy has to be computed online in response to current specifications and

constraints imposed by the environment. With respect to the case studies from WP5, this

applies for the autonmous driving use case (in which a planned trajectory has to circumvent

the actual position and planned trajectory of other autonomous cars), and for the use case of

human-robot interaction (when the trajectory of the robot arm has to be adapted to avoid

collision with the human operator), see D5.3. The MPC approaches have been successfully

applied to these two use-cases.
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[19] M. Campi and A. Carè. Random convex programs with l1-regularization: sparsity and

generalization. SIAM Journal on Control and Optimization, 51(5):3532–3557, 2013.

[20] M. Campi and S. Garatti. The exact feasibility of randomized solutions of uncertain

convex programs. SIAM Journal on Optimization, 19(3):1211–1230, 2008.

[21] M. Campi and S. Garatti. A sampling-and-discarding approach to chance-constrained

optimization: Feasibility and optimality. Journal of Optimization Theory and Applications,

148(2):257–280, 2011.

[22] M. Campi and S. Garatti. Wait-and-judge scenario optimization. Mathematical Program-

ming, 167(1):155–189, 2018.

[23] M. Campi, S. Garatti, and M. Prandini. The scenario approach for systems and control

design. Annual Reviews in Control, 33(2):149–157, 2009.

[24] M. Cannon, B. Kouvaritakis, S. Rakovic, and Q. Cheng. Stochastic tubes in model

predictive control with probabilistic constraints. IEEE Transactions on Automatic

Control, 56(1):194–200, 2011.

Deliverable D2.3 – Report on interleaving online control and reachability
computation for certified behaviour of cyber-physical systems

65 of 70



REFERENCES
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