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1 INTRODUCTION

1 Introduction

Formal verification is a key aspect in UnCoVerCPS since this project aims at combining

novel controller synthesis techniques with novel formal verification techniques for systems

with a mixed discrete and continuous dynamics, which we refer to as hybrid dynamics in

this deliverable. Before a system can be verified, one has to specify the properties to be

checked as described in deliverable D 1.1. As demonstrated in D 1.1, most specifications can

be formulated as a monitor automaton. In essence, the verification problem using monitor

automata can be boiled down into a reach-avoid problem, where one should reach a goal

region, while avoiding a set of unsafe states. For instance, a set of unsafe states in a chemical

plant may contain all temperatures above the boiling point of a liquid. The verification task

would be to guarantee that it is impossible to reach the unsafe set containing temperatures

above the boiling point. The challenge of guaranteeing the avoidance of unsafe sets lies in

the infinitely many possible trajectories that a system can evolve with when the initial state,

the input, or the parameters may take values within a continuous set.

An obvious technique to test the correct behavior of a system, is by simulation. The big

advantage of a simulation is that it might produce a counter-example, i.e. a trajectory that

hits a set of unsafe states. In this case, one can show that a system is unsafe. However,

one cannot prove that the system is safe if no counter-example is produced, since there exist

infinitely many possible trajectories due to uncertain initial states, inputs, and parameters.

Thus, testing exemplary trajectories is not sufficient since the trajectory that hits the unsafe

set may have been missed; see Fig. 1 for two continuous state variables x1 and x2.

x1

x2

trajectory

unsafe set
initial set missed trajectory ?

Figure 1: Searching for counter-examples by simulation.

In UnCoVerCPS, safety verification is conducted via reachability analysis. Loosely speak-

ing, reachability analysis determines the set of states that a system can possibly visit. A more

precise description of a reachable set is the union of all possible trajectories that a system

can evolve within finite or infinite time, when starting from a bounded set of initial states,

subject to a set of possible input and parameter values. An example of a reachable set is
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1 INTRODUCTION

presented in Fig. 2. If the reachable set does not intersect any set of unsafe states, one can

guarantee the safety of the system.

x1

x2

reachable set
unsafe set

initial set

Figure 2: Verification using reachable sets.

However, one can only compute the exact reachable set for special cases [1, 2, 3]. A

possibility to still prove the safety of a system is to over-approximate the set of reachable

states, as shown in Fig. 3. Clearly, if the over-approximated set of reachable states does not

intersect the set of unsafe states, the original system is safe, too. The downside is that if

the over-approximation intersects the unsafe set, one cannot decide if the system is unsafe

since the exact reachable set might not intersect the unsafe set. Thus, the goal is to minimize

the over-approximation of reachable sets along with a moderate increase in computational

costs. If this goal is accomplished, there is much hope that reachability analysis will become

a tool that is frequently used by a huge variety of engineers – much the same as today’s use

of simulations.

x1

x2

reachable set
unsafe set

initial set

over-approximated
reachable set

Figure 3: Verification using over-approximated reachable sets.

Our goal in UnCoVerCPS is to significantly reduce the computation time for formal veri-

fication to make it applicable during the operation of the system, which we refer to as online

verification. The online capability of our verification approaches allows one to consider the

current situation and thus tackle the problem of verifying systems in unknown and chang-

ing environments. It should be mentioned that the proposed advances in online verification

will also benefit classical offline verification techniques. The proposed new techniques for

reachability analysis are implemented in the tools State Space Explorer (SpaceEx ) [4] and
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2 PREVIOUS WORK

Continuous Reachability Analyzer (CORA) [5], which are continuously improved during the

course of the project. The applicability of the developed techniques are tested by applying

them to our demonstrators as described in deliverable D 5.1.

The deliverable is organized as follows: Previous work is reviewed in Sec. 2. In Sec. 3,

we present techniques for abstracting complicated nonlinear dynamics to simpler dynamics.

Abstraction is understood as the process to simplify the mathematical description while not

loosing any rigor by adding uncertainty to the abstract model. Thus, the abstract models

are no longer deterministic, but are still analyzable to reachability analysis – or even become

feasible for reachability analysis due to the abstraction. Two abstraction techniques are pre-

sented. The first one abstracts to linear systems (see Sec. 4) and the second one abstracts to

polynomial systems (see Sec. 5). Finally, we present a technique for compositional verification

in Sec. 6, i.e., a divide-and-conquer technique to verify larger systems by composing verifi-

cation results of smaller subcomponents. Examples in the area of smart grids, illustrate the

usefulness of the presented techniques. We have also implemented the presented techniques

in the verification tool CORA. Later in the project, the techniques for nonlinear continuous

dynamics will also be transferred to SpaceEx.

2 Previous Work

Formal verification has pioneered for purely discrete systems and was later extended to timed

automata and continuous as well as hybrid systems involving discrete and continuous dynam-

ics. By definition, cyber-physical systems have a hybrid dynamics. Similar to discrete systems,

a variety of formal verification techniques have been developed: automatic theorem proving

[6], constraint propagation [7], barrier certificates [8], and reachability analysis [9]. Contrary

to discrete dynamics, the most common property to be checked is whether the continuous

state variable enters a set of forbidden states.

The aforementioned techniques are not applicable to on-the-fly verification or have not

yet been adapted such that they can be appropriately used during the operation of systems.

Theorem proving typically requires human intervention so that it does not qualify for on-the-

fly verification (e.g. 656 user interventions in [10, p.3577]). Further, the runtime of theorem

proving for hybrid systems is unknown and thus does not qualify for real-time applications.

Although constraint propagation and barrier certificates have upper bounds on the runtime,

the computational complexity makes on-the-fly computation infeasible considering the current

state-of-the-art. For both techniques, the maximum number of considered continuous state

variables is around 5, see e.g. [7, 8].
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Due to the potential applicability of reachability analysis to on-the-fly verification of

cyber-physical systems, the remaining literature review focuses on this technique. For most

systems, the continuous rather than the discrete dynamics is the most challenging aspect of

the verification process. Reachability analysis can be performed via simulation techniques

when approximate bisimulation properties can be shown [11], by Eulerian schemes, and by

Lagrangian schemes. Eulerian schemes translate the reachability problem into an optimiza-

tion problem of Hamilton-Jacobi equations, requiring to discretize the state space [12]. This

causes exponential complexity in the number of continuous state variables limiting the ap-

plicability to systems with no more than 5 continuous state variables. Lagrangian schemes

propagate the reachable set for consecutive points in time or time intervals. Especially for

linear continuous dynamics, large state spaces with potentially more than 100 continuous

state variables1 can be efficiently computed. Typical set representations are: polytopes [13],

zonotopes [14], ellipsoids [15], support functions [16], and oriented hyper-rectangles [17].

In this paragraph we present own previous work in the area of reachability analysis of

nonlinear systems. We have developed novel algorithms that can handle ordinary differential

equations and differential-algebraic equations with more than 100 continuous state variables

since the algorithms have a polynomial complexity with respect to the number n of contin-

uous state variables [18]. The work in [18] is an extension of the earlier work [19]. Both

approaches are based on a conservative linearization, where the over-approximation holds for

a region moving along the reachable set, and has been adopted by other researchers, see e.g.

[20]. While the work in [18] and [19] uses linear abstractions, the work in [21] uses poly-

nomial abstractions. In this deliverable, we present new and better abstraction techniques

and a first analysis on the efficiency of compositional verification techniques with respect

to different partitions of a complete system into components that are individually analyzed

under consideration of interactions with other components.

3 Abstraction Techniques for Nonlinear Systems

Although a fairly large group of dynamic systems can be described by linear continuous sys-

tems, the extension to nonlinear continuous systems is an important step for the analysis of

more complex systems. The analysis of nonlinear systems is much more complicated since

many valuable properties are no longer valid. One of them is the superposition principle,

which allows the homogeneous and the inhomogeneous solution to be obtained separately.

Another aspect is that reachable sets of linear systems can be computed by a linear map.

1depending on the set representation and whether uncertain inputs are considered
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This makes it possible to exploit that geometric representations such as ellipsoids, zonotopes,

and polytopes are closed under linear transformations, i.e. they are again mapped to ellip-

soids, zonotopes and polytopes, respectively. In CORA, reachability analysis of nonlinear

systems is based on abstraction. We present abstraction to linear systems and to polynomial

systems. Since the abstraction causes additional errors, the abstraction errors are deter-

mined in an over-approximative way and added as an additional uncertain input so that an

over-approximative computation is ensured.

General nonlinear continuous systems with uncertain parameters and Lipschitz continuity

are considered. The initial state x(0) can take values from a set XO ⊂ Rn and the input u

takes values from a set U ⊂ Rm. The evolution of the state x is defined by the following

differential equation:

ẋ(t) = f(x(t), u(t)), x(0) ∈ XO ⊂ Rn, u(t) ∈ U ⊂ Rm,

where u(t) and f(x(t), u(t)) are assumed to be globally Lipschitz continuous so that the

Taylor expansion for the state and the input can always be computed, a condition required

for the abstraction. The solution of (3) for x(0) = x0, t ∈ [0, tf ], and input trajectory u(·)
is denoted by χ(t, x0, u(·)). Note that u(·) refers to a trajectory, whereas u(t) refers to the

value of the trajectory at time t. The exact reachable set for an uncertain initial set XO and

a set of possible inputs U is

Re([0, tf ]) =
{
χ(t, x0, u(·))

∣∣∣t ∈ [0, tf ], x0 ∈ XO, ∀t : u(t) ∈ U
}
. (1)

Since, as previously mentioned, the set of reachable states cannot be computed exactly, we

compute over-approximations R([0, tf ]) ⊇ Re([0, tf ]). The iterative computation of reach-

able sets for linear systems requires set-based addition (Minkowski addition) and set-based

multiplication:

X ⊕ Y :={x+ y|x ∈ X , y ∈ Y},

X ⊗ Y :={x y|x ∈ X , y ∈ Y}.

Note that in the remainder of this deliverable, the symbol for set-based multiplication is

often omitted for simplicity of notation, and that one or both operands can be singletons.

For addition and subtraction of a set with a singleton, we use the classical symbols + and

−. In order to avoid parentheses, it is agreed that operations of fixed values have precedence

over corresponding set-based operations, e.g. a + b ⊕ C = (a + b) ⊕ C, and that set-based

multiplication has precedence over Minkowski addition.

A schematic visualization of the overall concept for computing the reachable set is shown

in Fig. 4. The reachable set in this deliverable is computed iteratively for time intervals
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➀

➁

➂

➃

➄

➅

➆

Initial set: R(0) = XO, time step: k = 1

Compute system abstraction (linear/polynomial)

Obtain required abstraction errors L̄ heuristically

Compute Rabstract(τs) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄

Compute L based on Rabstract(τs)

L ⊆ L̄ ? Enlarge L̄

Compute R(τs) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L

Cancellation of redundant reachable sets

Next initial set: R(tk+1), time step: k := k + 1

Yes

No

Figure 4: Computation of reachable sets – overview.

t ∈ τs = [k r, (k + 1)r] where k ∈ N+ and r ∈ R+ is the time step. The procedure for

computing the reachable sets of the consecutive time intervals is as follows:

➀ The nonlinear system ẋ(t) = f(x(t), u(t)) is either abstracted to a linear system or a

polynomial system. After introducing z = [xT , uT ]T ∈ Ro the more general polynomial

form can be formalized for the ith dimension of the system as

ẋi = fabstract(x, u) =wi +
1

1!

o∑

j=1

Cijzj(t) +
1

2!

o∑

j=1

o∑

k=1

Dijkzj(t)zk(t)

+
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijklzj(t)zk(t)zl(t) + . . .

(2)

We introduce the set of abstraction errors L to ensure that f(x, u) ∈ fabstract(x, u)⊕L,
which allows the reachable set to be computed in an over-approximative way.

➁ Since the set of abstraction errors is initially unknown for each time interval, we guess

an over-approximation of the set of abstraction errors, denoted by L̄.

➂ The reachable set Rabstract(τs) of ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L̄ is computed.

➃ The set of abstraction errors L is computed based on the reachable set Rabstract(τs).

Details on how to obtain the set of abstraction errors are later described.

➄ When L * L̄, the abstraction error is not admissible, since the guessed set of abstraction

errors L̄ is not an over-approximation. This requires the assumption L̄ to be enlarged.
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4 ON-THE-FLY LINEARIZATION

If several enlargements are not successful, one has to split the reachable set and continue

with one more partial reachable set from then on.

➅ If L ⊆ L̄, the abstraction error is accepted and the reachable set is obtained by using

the tighter abstraction error: ẋ(t) ∈ fabstract(x(t), u(t)) ⊕ L.

➆ It remains to increase the time step (k := k + 1) and cancel redundant reachable sets

that are already covered by previously computed reachable sets. This decreases the

number of reachable sets that have to be considered in the next time interval.

4 On-The-Fly Linearization

In this section, we present how to abstract the original nonlinear dynamics in (3) to linear

dynamics on-the-fly. The abstracton is on-the-fly since we abstract the dynamics based on

the current state of the system and not statically for a fixed linearization point. For a

concise notation, we use the linearization point z∗ := [x∗T , u∗T ]T , and Rz := R(τs)×U . The
linearization point is chosen differently for each iteration so that it is close to the center of

the next reachable set R(τs), which is a good heuristic for minimizing the linearization error.

The Euler integration method is used for the time increment 0.5r to approximate this point

by x∗ = cd + 0.5r · f(cd, cu), where cd and cu are the respective centers of the sets R(ts) and

U . For the input linearization point we choose u∗ = cu, using the same argument that the

center is a good heuristics.

The linearization of (3) is performed using a first-order Taylor expansion with Lagrangian

remainder:

ẋi = fi(z(t)) ∈ fi(z
∗) +

∂fi(z)

∂z

∣∣∣
z=z∗

(z(t)− z∗)

⊕
{
1

2
(z(t)− z∗)T

∂2fi(z)

∂z2

∣∣∣
z=ξ

(z(t) − z∗)

∣∣∣∣ξ, z(t) ∈ Rz

}

︸ ︷︷ ︸
=:Li

, (3)

where Li denotes the projection of L onto the ith coordinate. The Lagrangian remainder L
encloses all higher-order terms if ξ can take any value of the linear combination of z and z∗,

i.e. ξ ∈ {αz + (1 − α)z∗|α ∈ [0, 1]}, which follows from the mean value theorem [22, p. 87].

Since for the time interval τs, (i) z(t) can take any values from Rz, (ii) Rz will be represented

by a convex set for the linear abstraction, and (iii) z∗ is chosen as an interior point of this

set, it follows that for ξ ∈ Rz the set of Lagrangian remainders is captured in (3). In order

to obtain the standard notation of the linearized system, the z vector is separated into the
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4 ON-THE-FLY LINEARIZATION

state vector x and the input vector u.

ẋ ∈ f(z∗) +
∂f(z)

∂z

∣∣∣
z=z∗

(z − z∗)⊕L

= A∆x+B∆u+ f(x∗, u∗)⊕ L
(4)

with

∆x = x− x∗, ∆u = u− u∗

A =
∂f(x, u)

∂x

∣∣∣
x=x∗

, B =
∂f(x, u)

∂u

∣∣∣
u=u∗

We start with the easiest way of obtaining the set of Lagrangian remainders, followed by a

more sophisticated quadratic and even more sophisticated cubic technique. In order to apply

techniques for computing the Lagrangian remainder, we first have to introduce zonotopes

with which we over-approximate reachable sets in this deliverable.

4.1 Zonotopes

We first recall the representation of a zonotope, followed by three interpretations. Throughout

this deliverable, we index elements of vectors and matrices by subscripts and enumerate

vectors or matrices by superscripts in parentheses to avoid confusion with the exponentiation

of a variable. For instance A
(k)
ij is the element of the ith row and jth column of the kth matrix

A(k).

Definition 4.1 (Zonotope (G-Representation)) Zonotopes are parameterized by a cen-

ter c ∈ Rn and generators g(i) ∈ Rn and defined for c ∈ Rn, g(i) ∈ Rn as

Z =
{
c+

p∑

i=1

βi g
(i)
∣∣∣βi ∈ [−1, 1]

}
. (5)

The order of a zonotope is defined as ̺ = p
n .

We write in short Z = (c, g(1), . . . , g(p)). Zonotopes are a compact way of representing sets

in high-dimensional spaces. A zonotope can be interpreted as the Minkowski addition of

line segments l(i) = [−1, 1] g(i), and is visualized step-by-step in R2 in Fig. 5. Another

interpretation of a zontope is the projection of a p-dimensional unit hypercube C = [−1, 1]p

onto the n-dimensional space by the matrix of generators G =
[
g(1), . . . , g(p)

]
, which is

then translated to the center c: Z = c⊕G⊗ C. We write in short Z = (c,G).

More important than an efficient set representation of zonotopes is that linear mapsM⊗Z
(M ∈ Rq×n) and Minkowski addition Z1⊕Z2, as required for reachability analysis, can be com-

puted efficiently and exactly [23]. Given Z1 = (c, g(1), . . . , g(p1)) and Z2 = (d, h(1), . . . , h(p2))
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0 1 2

0

1

2

c

l
(1)

(a) c⊕ l
(1)

−1 0 1 2 3

−1

0

1

2

3

c

l
(1) l

(2)

(b) c⊕ l
(1)

⊕ l
(2)

−2 0 2 4

−1

0

1

2

3

c

l
(1)

l
(2)

l
(3)

(c) c⊕ . . .⊕ l
(3)

Figure 5: Step-by-step construction of a zonotope.

one can efficiently compute

Z1 ⊕Z2 = (c+ d, g(1), . . . , g(p1), h(1), . . . , h(p2)),

M ⊗Z1 = (M c,M g(1), . . . ,M g(p1)).
(6)

For the multiplication with an interval matrix M, we split M into a real-valued matrix

M ∈ Rn×n and an interval matrix with radius S ∈ Rn×n, such that M =M ⊕ [−S, S]. After
introducing Sj as the j

th row of S, the result is over-approximated as shown in [24, Theorem

3.3] by

MZ1 ⊆(MZ1 ⊕ [−S, S]Z1) ⊆ (Mc1,Mg(1), . . . ,Mg(p1), h(1), . . . , h(n))

h
(i)
j =




Sj(|c|+

∑p1
k=1 |g|(k)), for i = j

0, for i 6= j

.

Using the alternative notation of a zonotope Z = (c,G), the Cartesian product of two zono-

topes Z1 = (c, G) and Z2 = (d, H) is

Z1 ×Z2 =




c
d


 ,


G 0

0 H




 ,

where 0 is a matrix of zeros of proper dimension. We will also need the enclosure of a zonotope

by a multidimensional box [24, Prop. 2.2] and its absolute value:

box(Z1) :=[c1 −∆g, c1 +∆g], ∆g :=

p1∑

i=1

|g(i)|,

|Z1| :=|c1|+∆g.

(7)

The representation of reachable sets with zonotopes allows an efficient computation as pre-

sented later.

4.2 Lagrangian Remainder

In this section, we provide a simple but efficient technique to over-approximate the Lagrange

remainder in (3). After defining H(i)(ξ) := ∂2fi(ξ)
∂z2 , where i is the system dimension of f , one

Deliverable D3.1 – Report on Reachability Analysis of Nonlinear Systems and
Compositional Verification

11 of 45



4 ON-THE-FLY LINEARIZATION

can write the Lagrange remainder in (3) as

L =
{1

2
(z − z∗)TH(i)(ξ)(z − z∗)

∣∣∣ξ, z ∈ Rz
}
, (8)

where ξ ∈ Rz since we assume that z∗ ∈ Rz. In order to determine the set L for a time

interval τs, one has to consider the possible values of z ∈ Rz within this time interval. In

order to determine the maximum absolute values of L for each dimension Li in an efficient

way, the following over-approximation is computed:

Proposition 4.1 The absolute values of the Lagrange remainder for each dimension can be

over-approximated for z ∈ Rz by

|Li| ⊆ [0, L̂i]

with L̂i =
1

2
γT max

ξ∈Rz
(|H(i)(ξ)|)γ, γ = |c− z∗|+

p∑

i=1

|g(i)|

where c is the center and g(i) are the generators of the zonotope Rz. The max-operator and

the absolute values are applied elementwise.

Proof 1 The following over-approximations apply for the absolute value of Li:

|Li| =
{1

2
|(z − z∗)TH(i)(ξ)(z − z∗)|

∣∣ξ, z ∈ Rz
}

⊆ 1

2
[0, max

ξ,z∈Rz

(
|(z − z∗)TH(i)(ξ)(z − z∗)|

)
]

⊆ 1

2
[0,max

z∈Rz
(|z − z∗|)T max

ξ∈Rz
(|H(i)(ξ)|) max

z∈Rz
(|z − z∗|)]

The expression maxz∈Rz(|z − z∗|) can be further rewritten since z ∈ Rz is within a zonotope

with center c and generators g(i):

z ∈ Rz, βi ∈ [−1, 1] : max
z∈Rz

(|z − z∗|) = max
βi∈[−1,1]

(|c− z∗ +

p∑

i=1

βig
(i)|) ≤ |c− z∗|+

p∑

i=1

|g(i)| = γ

such that the expression of proposition 4.1 is obtained.

The expression max(|H(i)(ξ)|) in proposition 4.1 is computed via interval arithmetics [25]. To

do so, the values of z have to be over-approximated by an interval vector as shown in (7):

z ∈ box(Rz). From this follows that ξ ∈ Rz also becomes an interval vector. The result of

proposition 4.1 also allows us to find a linearization point z∗ that minimizes the values L̂i

and thus the set of Lagrange remainders.

Proposition 4.2 The bound of the Lagrange remainder L̂ is minimized by choosing z∗ = c

as the linearization point.
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Proof 2 The value of γ is minimized by z∗ = c which can be directly checked from its

computation in proposition 4.1. By choosing z∗ = c, it follows that maxz∈Rz(|z − z∗|) is

minimized and thus L̂i is minimized since maxξ∈Rz(|H(i)(ξ)|) is not affected by z∗.

4.3 Quadratic Evaluation Using Zonotopes

The previous computation of the set of Lagrange remainders in Proposition 4.1 does not

consider correlations between the generators g(i) ofRz. In order to consider this correlation for

a tighter over-approximation of the linearization error we introduce the over-approximation

of a quadratic map:

Lemma 4.1 (Quadratic Map) Given a zonotope Z = (c, g(1), . . . , g(p)) and a discrete set

of matrices Q(i) ∈ Rn×n, i = 1 . . . n, the set

ZQ = {ϕ|ϕi = xTQ(i)x, x ∈ Z}

is over-approximated by a zonotope

quad(Q,Z) := (d, h(1), . . . , h(σ))

with σ =
(p+2

2

)
− 1 generators, where the center is

di = cTQ(i)c+ 0.5

p∑

s=1

g(s)
T
Q(i)g(s),

and the generators are computed as

j =1 . . . p : h
(j)
i =cTQ(i)g(j) + g(j)

T
Q(i)c

j =1 . . . p : h
(p+j)
i =0.5g(j)

T
Q(i)g(j)

l =

p−1∑

j=1

p∑

k=j+1

1 : h
(2p+l)
i =g(j)

T
Q(i)g(k) + g(k)

T
Q(i)g(j)

Proof 3 Inserting the definition of a zonotope into the set ZQ = {ϕ|ϕi = xTQ(i)x, x ∈ Z}
yields

{
ϕ
∣∣∣ϕi = (c+

p∑

j=1

βjg
(j))TQ(i)(c+

p∑

j=1

βjg
(j)), βj ∈ [−1, 1]

}
,

Deliverable D3.1 – Report on Reachability Analysis of Nonlinear Systems and
Compositional Verification

13 of 45
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which can be rearranged to

ZQ =
{
ϕ
∣∣∣ϕi = cTQ(i)c+

p∑

j=1

0.5g(j)
T
Q(i)g(j)

︸ ︷︷ ︸
di

+

p∑

j=1

βj (c
TQ(i)g(j) + g(j)

T
Q(i)c)︸ ︷︷ ︸

h
(j)
i

+

p∑

j=1

(2β2j − 1) 0.5g(j)
T
Q(i)g(j)︸ ︷︷ ︸

h
(p+j)
i

+

p−1∑

j=1

p∑

k=j+1

βjβk (g
(j)TQ(i)g(k) + g(k)

T
Q(i)g(j))︸ ︷︷ ︸

h
(2p+l)
i

,

βi ∈ [−1, 1]
}
⊆

(
d, h(1), . . . , h(σ)

)
.

The obtained zonotope is an over-approximation since βj ∈ [−1, 1], (2β2j − 1) ∈ [−1, 1], and

βjβk ∈ [−1, 1] for j 6= k. The number of new generators is obtained from the fact that the new

generators h(j) are computed by picking two elements from the set containing all generators

and the center, where replacement is allowed and order does not matter. By subtracting the

possibility that one can choose two centers, one obtains σ =
(
p+2
2

)
− 1 generators.

The above Lemma is useful for the following abstraction of (8):

L = {1
2
(z − z∗)TH(i)(ξ)(z − z∗)|ξ, z ∈ Rz}

⊆ {1
2
zTH(i)z|z ∈ Rz

∆}, Rz
∆ = Rz ⊕ (−z∗), H(i) = {H(i)(ξ)|ξ ∈ Rz}

(9)

Lemma 4.1 is used in the following Theorem to over-approximate L in (9).

Theorem 4.1 (Linearization Error) Let each H(i) in (9) be bounded by an interval ma-

trix, the linearization error L is over-approximated by

L ⊆ 1

2

{
zTH(i)z

∣∣∣z ∈ Rz
∆

}
⊆ 1

2
quadint(H,Rz

∆),

where

quadint(H,Rz
∆) = quad(Hc,Rz

∆)⊕ [−η, η], η := |Rz
∆|TH∆|Rz

∆|

and Hc,H∆ ∈ Rn×n such that H = Hc ⊕ [−H∆,H∆].

Proof 4 For simplicity of notation, we first introduce the vectors λ(i), where λ(1) = c rep-

resents the center, and λ(2), . . . , λ(σ+1) the generators of Rz
∆. In Lemma 4.1, the operation

quad(H,Rz
∆) is broken down into expressions of the form

λ(i)
T
(Hc ⊕ [−H∆,H∆])λ

(j) = λ(i)
T
Hcλ

(j)

︸ ︷︷ ︸
fixed value

⊕λ(i)
T
[−H∆,H∆]λ

(j)

︸ ︷︷ ︸
symmetric set

,
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4 ON-THE-FLY LINEARIZATION

where the equality follows from the fact that the set-valued components have only a single

occurrence. Due to the equality and the fact that each result has a fixed and symmetric part,

we can conclude that

quadint(H,Rz
∆) = quad(Hc,Rz

∆)⊕ quad([−H∆,H∆],Rz
∆)

One can further simplify quad([−H∆,H∆],Rz
∆) to

quad([−H∆,H∆],Rz
∆) =

p+1⊕

i=1

p+1⊕

j=1

(
[−1, 1]λ(i)[−H∆,H∆]λ

(j)
)
=

[−1, 1]

p+1∑

i=1

p+1∑

j=1

(
|λ(i)|H∆|λ(j)|

)
= [−1, 1]

( p+1∑

i=1

|λ(i)|
)

︸ ︷︷ ︸
=|Rz

∆|, see (7)

H∆

( p+1∑

j=1

|λ(j)|
)

︸ ︷︷ ︸
=|Rz

∆|, see (7)

which concludes the proof.

In the next subsection, we provide a novel and an even tighter over-approximation of the

Lagrange remainder.

4.4 Cubic Evaluation Using a Combination of Zonotopes and Intervals

The over-approximation of the Lagrange remainder can be further improved by not only

considering second order terms of the multivariate Taylor expansion of (3), but also higher

order terms. This makes it possible to consider the fixed linearization point z∗ for the second

order terms instead of ξ ∈ Rz:

ẋi ∈wi +
1

1!

o∑

j=1

Cijzj +
1

2!

o∑

j=1

o∑

k=1

Dijkzjzk ⊕
{ 1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijkl(ξ)zjzkzl

∣∣∣ξ ∈ Rz
}
. (10)

Thus, given that z ∈ Rz, the set of Lagrangian remainders using cubic Taylor terms is

obtained as

Li =
{ 1

2!

o∑

j=1

o∑

k=1

Dijkzjzk +
1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijkl(ξ)zjzkzl

∣∣∣z, ξ ∈ Rz
}

⊆
{ 1

2!

o∑

j=1

o∑

k=1

Dijkzjzk

∣∣∣z ∈ Rz
}
⊕
{ 1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijkl(ξ)zjzkzl

∣∣∣z, ξ ∈ Rz
} (11)

Lemma 4.2 (Cubic Map) Given a zonotope Z = (g(0), . . . , g(p)) and a tensor C ∈ Rn×n×n×n,

i = 1 . . . n, the set

ZC =
{
λ
∣∣∣λi =

n∑

j=1

n∑

k=1

n∑

l=1

Cijklxjxkxl, x ∈ Z
}

is over-approximated by a zonotope

cubic(C,Z) := (l(0), . . . , l(ω)),
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where ω is the number of obtained generators. The center is computed as

l
(0)
i =

n∑

j=1

n∑

k=1

n∑

l=1

Cijklg
(0)
j g

(0)
k g

(0)
l

+ 0.5

p∑

s=1

n∑

j=1

n∑

k=1

n∑

l=1

Cijkl

(
g
(s)
j g

(s)
k g

(0)
l + g

(s)
j g

(0)
k g

(s)
l + g

(0)
j g

(s)
k g

(s)
l

)
,

and the generators are computed as

s =1 . . . p : h
(s)
i =

n∑

j=1

n∑

k=1

n∑

l=1

Cijkl

(
g
(s)
j g

(s)
k g

(s)
l

)
,

s =1 . . . p : h
(p+s)
i =0.5

n∑

j=1

n∑

k=1

n∑

l=1

Cijkl

(
g
(s)
j g

(s)
k g

(0)
l + g

(s)
j g

(0)
k g

(s)
l + g

(0)
j g

(s)
k g

(s)
l

)
,

l =

p−1∑

s=0

p∑

t=s+1

1 : h
(2p+l)
i =

n∑

j=1

n∑

k=1

n∑

l=1

Cijkl

(
g
(s)
j g

(s)
k g

(t)
l + g

(s)
j g

(t)
k g

(s)
l + g

(t)
j g

(s)
k g

(s)
l

)
,

l =

p−2∑

s=0

p−1∑

t=s+1

p∑

u=t+1

1 : h
(0.5p2+2.5p+l)
i =

n∑

j=1

n∑

k=1

n∑

l=1

Cijkl

(
g
(s)
j g

(t)
k g

(u)
l + g

(s)
j g

(u)
k g

(t)
l + g

(t)
j g

(s)
k g

(u)
l

+ g
(t)
j g

(u)
k g

(s)
l + g

(u)
j g

(s)
k g

(t)
l + g

(u)
j g

(t)
k g

(s)
l

)
.

The complexity of constructing this zonotope over-approximation with respect to the dimension

n is O(n5).

Proof 5 Inserting the definition of a zonotope into the set

ZC =
{
ϕ
∣∣∣ϕi =

o∑

j=1

o∑

k=1

o∑

l=1

Cijklzjzkzl, z ∈ Z
}

yields

{
ϕ
∣∣∣ϕi =

o∑

j=1

o∑

k=1

o∑

l=1

Cijkl(cj +

p∑

s=1

βsg
(s)
j )(ck +

p∑

s=1

βsg
(s)
k )(cl +

p∑

s=1

βsg
(s)
l ), βj ∈ [−1, 1]

}
,

which can be rearranged to

{
ϕ

∣∣∣∣ϕi =

o∑

j=1

o∑

k=1

o∑

l=1

Cijkl

(
cjckcl

+ cjck

p∑

s=1

βsg
(s)
l + cj

p∑

s=1

βsg
(s)
k cl +

p∑

s=1

βsg
(s)
j ckcl

+ cj
( p∑

s=1

βsg
(s)
k

)( p∑

s=1

βsg
(s)
l

)
+

( p∑

s=1

βsg
(s)
j

)
ck
( p∑

s=1

βsg
(s)
l

)

+
( p∑

s=1

βsg
(s)
j

)( p∑

s=1

βsg
(s)
k

)
cl

+
( p∑

s=1

βsg
(s)
j

)( p∑

s=1

βsg
(s)
k

)( p∑

s=1

βsg
(s)
l

))
, βj ∈ [−1, 1]

}
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This can be further simplified by factoring out the multiplication factors βi:

{
ϕ

∣∣∣∣ϕi =

o∑

j=1

o∑

k=1

o∑

l=1

Cijkl

(
cjckcl

+

p∑

s=1

βs

(
cjckg

(s)
l + cjg

(s)
k cl + g

(s)
j ckcl

)

+

p∑

s=1

p∑

t=1

βsβt

(
cjg

(s)
k g

(t)
l + g

(s)
j ckg

(t)
l + βsg

(s)
j g

(t)
k cl

)

+

p∑

s=1

p∑

t=1

p∑

u=1

βsβtβu

(
g
(s)
j g

(t)
k g

(u)
l

))
, βj ∈ [−1, 1]

}

Since the order of generator multiplications does not matter, we further group them since

this reduces the number of combinations of β values, which reduces the number of obtained

generators to over-approximate the cubic map. Thus, we obtain

{
ϕ

∣∣∣∣ϕi =
o∑

j=1

o∑

k=1

o∑

l=1

Cijkl

(
cjckcl

+

p∑

s=1

βs

(
cjckg

(s)
l + cjg

(s)
k cl + g

(s)
j ckcl

)

+

p∑

s=1

β2s

(
cjg

(s)
k g

(s)
l + g

(s)
j ckg

(s)
l + βsg

(s)
j g

(s)
k cl

)

+

p−1∑

s=1

p∑

t=s+1

βsβt

(
cjg

(s)
k g

(t)
l + g

(s)
j ckg

(t)
l + βsg

(s)
j g

(t)
k cl + cjg

(t)
k g

(s)
l + g

(t)
j ckg

(s)
l + βsg

(t)
j g

(s)
k cl

)

+

p∑

s=1

β3s

(
g
(s)
j g

(s)
k g

(s)
l

)

+

p−1∑

s=1

p∑

t=s+1

β2sβt

(
g
(s)
j g

(s)
k g

(t)
l + g

(s)
j g

(t)
k g

(s)
l + g

(t)
j g

(s)
k g

(s)
l

)

+

p−2∑

s=1

p−1∑

t=s+1

p∑

u=t+1

βsβtβu

(
g
(s)
j g

(t)
k g

(u)
l + g

(s)
j g

(u)
k g

(t)
l + g

(t)
j g

(s)
k g

(u)
l

+ g
(t)
j g

(u)
k g

(s)
l + g

(u)
j g

(s)
k g

(t)
l + g

(u)
j g

(t)
k g

(s)
l

))
, βj ∈ [−1, 1]

}

Given that βi ∈ [−1, 1] we have that βs, βsβt, β
3
s , β

2
sβt, βsβtβu ∈ [−1, 1] and that β2s ∈ [0, 1].

Since β2s is always positive, we split the term multiplied by β2s into a center part and its
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remainder:

{
ϕ

∣∣∣∣ϕi =

o∑

j=1

o∑

k=1

o∑

l=1

Cijkl

(
cjckcl + 0.5

p∑

s=1

(
cjg

(s)
k g

(s)
l + g

(s)
j ckg

(s)
l + βsg

(s)
j g

(s)
k cl

)

+

p∑

s=1

βs

(
cjckg

(s)
l + cjg

(s)
k cl + g

(s)
j ckcl

)

+

p∑

s=1

(2β2s − 1)0.5
(
cjg

(s)
k g

(s)
l + g

(s)
j ckg

(s)
l + βsg

(s)
j g

(s)
k cl

)

+

p−1∑

s=1

p∑

t=s+1

βsβt

(
cjg

(s)
k g

(t)
l + g

(s)
j ckg

(t)
l + βsg

(s)
j g

(t)
k cl + cjg

(t)
k g

(s)
l + g

(t)
j ckg

(s)
l + βsg

(t)
j g

(s)
k cl

)

+

p∑

s=1

β3s

(
g
(s)
j g

(s)
k g

(s)
l

)

+

p−1∑

s=1

p∑

t=s+1

β2sβt

(
g
(s)
j g

(s)
k g

(t)
l + g

(s)
j g

(t)
k g

(s)
l + g

(t)
j g

(s)
k g

(s)
l

)

+

p−2∑

s=1

p−1∑

t=s+1

p∑

u=t+1

βsβtβu

(
g
(s)
j g

(t)
k g

(u)
l + g

(s)
j g

(u)
k g

(t)
l + g

(t)
j g

(s)
k g

(u)
l

+ g
(t)
j g

(u)
k g

(s)
l + g

(u)
j g

(s)
k g

(t)
l + g

(u)
j g

(t)
k g

(s)
l

))
, βj ∈ [−1, 1]

}

By using cj = g
(0)
j one can integrate

(
cjckg

(s)
l + cjg

(s)
k cl + g

(s)
j ckcl

)
into

(
g
(s)
j g

(s)
k g

(t)
l +

g
(s)
j g

(t)
k g

(s)
l + g

(t)
j g

(s)
k g

(s)
l

)
and

(
cjg

(s)
k g

(t)
l + g

(s)
j ckg

(t)
l + βsg

(s)
j g

(t)
k cl + cjg

(t)
k g

(s)
l + g

(t)
j ckg

(s)
l +

βsg
(t)
j g

(s)
k cl

)
into

(
g
(s)
j g

(t)
k g

(u)
l +g

(s)
j g

(u)
k g

(t)
l +g

(t)
j g

(s)
k g

(u)
l +g

(t)
j g

(u)
k g

(s)
l +g

(u)
j g

(s)
k g

(t)
l +g

(u)
j g

(t)
k g

(s)
l

)
.

Considering that βs, (2β
2
s − 1), βsβt, β

3
s , β

2
sβt, βsβtβu ∈ [−1, 1] we obtain the result of the

lemma.

Now that we can compute cubic maps of zonotopes, we can over-approximate the compu-

tation in (11). Given the set of possible values of Eijkl(ξ) as E = {Eijkl(ξ)|ξ ∈ Rz} we define

the center and radius of this set as Ec⊕ [−E∆, E∆] ⊇ E . Using the center and the radius, we

can over-approximate the cubic map as

Li ⊆
{ 1

2!

o∑

j=1

o∑

k=1

Dijkzjzk

∣∣∣z ∈ Rz
}
⊕

{ 1

3!

o∑

j=1

o∑

k=1

o∑

l=1

Eijkl(ξ)zjzkzl

∣∣∣z, ξ ∈ Rz
}

⊆
{ 1

2!

o∑

j=1

o∑

k=1

Dijkzjzk

∣∣∣z ∈ Rz
}
⊕

{ 1

3!
(

o∑

j=1

o∑

k=1

o∑

l=1

Eczjzkzl

∣∣∣z, ξ ∈ Rz
}
⊕ [−ωi, ωi])

⊆ 1

2!
quad(D,Rz)⊕ 1

3!

(
cubic(E,Rz)⊕ [−ωi, ωi]

)

(12)

where

ωi =

o∑

j=1

o∑

k=1

o∑

l=1

E∆,ijkl|Rz|j |Rz|k|Rz|l.
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4.5 Application to a Smart Grid Use Case

The load-following capabilities of power plants became increasingly important in the recent

years in order to ensure a reliable operation of future power systems. We use reachability anal-

ysis techniques developed in UnCoVerCPS to rigorously verify safety of critical components

that often pose limitations on the flexibility of power plants to perform fast load changes.

The previously proposed reachability algorithms makes it possible to compute the bounds of

all possible trajectories for a range of operating conditions, while simultaneously meeting the

practical requirements of a real power plant. As an example, we consider the verification of

the water level inside a drum unit. In contrast to any previous work, our results are based

on measurement data of a realistic configuration of a boiler system located within a 450MW

combined cycle plant in Germany. Furthermore, we use an abstract model which considers

the modeling errors, thus ensuring that all dynamical behaviors of the process are replicated

by the abstraction. As a result, we formally guarantee that the water level inside the drum

always remains within safe limits for load changes equivalent to 40MW, thus maximally

exploiting the power plant adaptability and its load following capabilities.

Formal verification of the steam-drum unit was initially proposed in [26] as a benchmark

problem for formal analysis and controller synthesis. It attracted considerable attention as an

interesting theoretical problem and became a classical case study for testing and comparing

formal methods, see [27, 28, 29]. The main drawback of the benchmark problem is that the

modeling is based on elementary assumptions and abstract decisions, which do not capture

any of the complicated dynamics of the process. Hence, it does not hold for formal analysis

when considering real practical problems. In contrast to the benchmark problem, we consider

a realistic configuration of a steam-drum unit using a well-developed nonlinear model, which

is approximated using a polynomial function and validated against measurements data. The

unit is located within the 450MW combined cycle power plant (München Süd GuD), owned

by SWM Services GmbH (Munich City Utilities).

The on-the-fly reachability algorithm developed in UnCoVerCPS is efficient enough to

meet the real-time requirements of the considered power plant for secondary frequency con-

trol (5min) or tertiary control (15min). It can establish in advance, whether a requested

load change imposed by the transmission system operator will trigger the water level safety

limits. By doing so, the plant operator can accept or reject the requested load dispatch, thus

preventing unnecessary shutdowns of the facility. On the one hand, the power plant avoids

drastic economical losses, and on the other hand, the transmission system operator evades

a sudden loss of one of its generating units, which jeopardizes the stability of its balancing
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Feedwater 

valve
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Feedwater Tank

Feedwater 

pump
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from the gas Turbine
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Figure 6: Simplified description of the steam generation process using a steam drum unit. Red line

indicates hot steam and the blue line indicates cold water.

area.

4.5.1 Process Modeling

The simplified diagram of the steam generation process is shown in Fig. 6. Cold water inside

the feedwater tank is pumped and heated at the economizer stage before going through the

drum inlet. Due to the gravitational force, feedwater flows through the naturally circulated

downcomer riser loop, where it is converted into steam at the evaporator stage. Different

riser tubes collect the steam and supply it back into the drum. In the final stage, the

saturated steam is taken from the drum outlet to the superheater. The model consists of four

components, i.e. the drum unit, the regulating valves, the exhaust heat, and the controller.

We refer the reader to previous works by the authors [30, 31] for further details with regards

to the modeling assumptions and controller design.

Steam-Drum Model We consider the well-developed Åström - Bell model [32] for the

drum unit. To easily represent the equations, let V [m3] represent the volume, Q [J/s] and

q [kg/s] denote heat and mass flow rates, respectively, r [%] is the valve opening percentage,

PD [MW] is the electrical power, ρ[m3/kg] is the density, h [J/kg] is the specific enthalpy, and

T [s] represents the residence time. Additionally, v and τ are the gain and time constant for a

first-order lag element. The subscripts s, wt, f , c, dc, ◦ andD refer to steam, water, feedwater,

condensation, downcomer, hypothetical situation and current demand, respectively.

The drum state variables are the pressure P̄ [Pascal], the water volume Vwt, the steam-

mass quality αr [%] in the riser tubes and the steam bubbles volume Vsd under the water

level. The inputs are the heat flow rate Q, the feedwater qf and steam qs flow rates. Using
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the nonlinear variables enm found in [32], the nonlinear drum model is expressed by:

˙̄P =
e11Q+ qf (e11hf − e21)− qs(e21 − e11hs)

e11e22 − e12e21

V̇wt =
Q+ qfhf − qshs − e22

˙̄P

e21

α̇r =
Q− αrhcqdc − e31

˙̄P

e33

V̇sd =
1

T
(V◦ − Vsd)− qf

hf − hwt

e44hc
− e41

˙̄P + e43α̇r

e44
.

(13)

Controller Model The drum is controlled using an observer-based state feedback con-

troller (see [31]) with a controller to ensure that the drum pressure P [bar] and water level

l [mm] track their corresponding reference signals wp and wl. The integrated errors h :=

[η, ψ]T are treated as artificial state variables:

η̇ = wP − P, ψ̇ = wl − l. (14)

The state-feedback controller generates the control action for the feedwater flow q̂f and

the steam valve opening percentage r̂s to preserve the water level and pressure at the desired

reference values according to 
q̂f
r̂s


 =


k11 k12

k21 k22




︸ ︷︷ ︸
K


x
h


 , (15)

where K is the state feedback matrix. The feedwater control action q̂f is compared to the

actual flow rate, and the deviation between both generates the regulating valve control action

r̂f using a PI-controller

r̂f = vpf

(
1 + vif

∫ t

0
(q̂f − qf )dt

)
, (16)

where vpf , vif are the proportional and integrator scalar gains of the PI-controller.

Model Extension The heat flow rate Q is regarded as an additional state and not treated

as an input variable due to the combined-cycle nature of the process. The heat is directly

associated with the gas turbine exhaust temperature, which corresponds to the electrical

power demand PD established by the transmission system operator. The heat flow rate is

modeled as:

Q̇ =
vDPD −Q

τD
, (17)
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and the regulation through a control valve for feedwater and steam flow rates is

qf = rf
kvfρw

√
∆P

3600
, ṙf =

vf r̂f − rf
τf

, (18)

qs = rs
13.6 kvs

√
ρsP

3600
, ṙs =

vsr̂s − rs
τs

, (19)

where ∆P [bar] is the pressure drop across the valve, and kv [kg/hr] is the valve sizing coeffi-

cient.

Combining the results (13)-(19), one obtains an 11-th order model with the input signal

u = [PD], the state variables x = [P̄ , Vwt, αr, Vsd, η, ψ, Q, r̂f , rf , rs, q̂f ]
T , and the output

vector y = [P, l]T .

4.5.2 Model Abstraction

The model derived in Sec. 4.5.1 is a mathematical model of the real process and thus suffers

from imperfections in modeling of actual physical phenomena. Furthermore, derived models

often contain complicated nonlinear expressions that are challenging for a formal analysis.

To solve the aforementioned problems, an abstraction described by a polynomial differen-

tial inclusion f(x, u) ∈ fabstract(x, u) ⊕ L based on measurements data is proposed, where

fabstract(x, u) is chosen as in (2). The measurement data is used to obtain L using a state

observer. The reachable set of this model is next computed based on on-the-fly linearization.

4.5.3 Discussion of Results

First we present the validation of the polynomial model of Sec. 4.5.2 against measurement

data to show its ability to capture the dynamical behavior of the real process. The validation

data covers almost the entirety of the gas turbine operational range, i.e. from 70MW to

120MW in both directions (increased/decreased generation). The data is collected over a

period of one year during engagement of one of the authors with the plant München Süd. We

investigate the safety of the water level against high-load transitions (≤ 40MW) by computing

the over-approximative reachable set of the system. The computations are performed on a

standard computer with an Intel Core i7-4810MQ CPU.

Validation of the Polynomial Model The model (13) is initially realized in MATLAB

R2014b using the Symbolic toolbox. It is approximated by a polynomial function using the

Taylor expansion at PD = 95MW (center of the gas turbine operational range). The valida-

tion procedure is carried out by simulating the models (1-st, 2-nd and 3-rd order polynomial

functions) and comparing the simulation results to the experimental data. All simulations

are performed using the ODE45 solver.
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It is shown in Fig. 7 and Fig. 8 that the polynomial models replicate the dynamical

behavior of the real process and most importantly the shrink and swell physical phenomena.

Figure 7: Comparison between data measurements (black solid), 1-st (blue dashed dotted), 2-nd (red

solid) and 3-rd (brown dotted) order polynomial model for perturbations of the gas turbine power.

Figure 8: Comparison between data measurements (black solid), 1-st (blue dashed dotted), 2-nd

(red solid) and 3-rd (brown dotted) order polynomial model for decrease of the gas turbine power

from 100MW to 70MW.
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It should be made clear that the model inaccuracy is acknowledged and identifiable. It is

caused due to the nature of the proposed polynomial approximation, in addition to the sim-

plification of certain components during the modeling procedure. The remaining inaccuracy

is systematically obtained and added as additional uncertain input. Details of this procedure

will be shown in a future deliverable.

Load-following Safety Verification The reachable set is computed for a time horizon

tf = 5min with a time step of 1 sec using CORA. The time horizon is chosen according to

the practical requirements of the power plant; when München Süd is subjected to secondary

frequency control, it is notified by the transmission system operator 5min earlier to meet a

load change equivalent to 40MW.

The task is to guarantee that the water level l inside the drum does not surpass ±300mm.

If the limits are triggered, it leads to tripping of the boiler as a safety precautions to protect

Figure 9: Selected projections of the reachable set for a load-change of the gas turbine from 80MW

to 120MW. Black lines represents random simulation results (n = 50), the gray area shows the

reachable set, the red box is the initial set of state variables R(0).
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critical components, e.g., the superheater and the steam-turbine. During that time, the power

plant is no longer operational and unable to meet load requirements of the transmission system

operator.

Table 1 shows a comparison between the computational time of reachability analysis for

different models. Using the 3-rd order polynomial model, It takes 206.373 sec to compute the

reachable set, where the calculation of the Lagrangian remainder consumes 96% of the time.

The computational time meets practical requirements of the plant, as it allows on-the-fly

verification of the process safety for high-load transitions in the requested time (t≤ 5min).

To speed up the computational time, one may use the 2-nd order polynomial model with

different modeling errors.

Using the model (13) [32] without a polynomial approximation, it takes 57.2min to com-

pute the reachable set for a time-horizon of 10 sec. The huge difference in the computational

time is due to the complicated nonlinear expression, which were simplified with a polynomial

function, thus substantially reducing the computational complexity and making the algorithm

feasible for practical problems.

The reachable set projections of chosen state variables for the 2-nd order polynomial

model are shown in Fig. 9 and Fig. 10. The load change is equivalent to 40 MW which is the

maximum load that can be requested by the transmission system operator. It is clear that the

water level does not hit the safety limits (the same also holds for the 3-rd order polynomial

model), hence the safety of the steam drum is formally verified under the assumption that

the set E contains all modelling errors.

Table 1: Comparison between the computational time of reachability analysis and numerical simula-

tions

Model tf R([0, tf ]) L([0, tf ])

2-nd 5min 41.4183 s 34.064 s

3-rd 5min 206.373 s 198.534 s

[32] 10 s 3420 s 3078 s

The final results show that it is computationally feasible to implement the proposed

reachability algorithm, while meeting the practical requirements of a real power plant. The

reachability algorithm can be easily integrated into a Distributed Control System (DCS), in

parallel to the existing control structure, and operates automatically without any interaction

from the operator’s side. The operators have the opportunity to accept or reject the requested

load transitions, since reachability analysis establishes in advance whether the demanded load
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5 ON-THE-FLY POLYNOMIALIZATION

change shall trigger the water level safe limit, thus avoiding unnecessary shutdown of the

facility.

5 On-The-Fly Polynomialization

The previous section shows that abstracting nonlinear continuous dynamics to linear differ-

ential inclusions results in a scalable approach for reachability analysis. However, when the

abstraction becomes inaccurate, linearization techniques require splitting of reachable sets,

resulting in an exponential growth of required linearizations. In this section, the dynamics

is more accurately abstracted to polynomial difference inclusions. Thus, it is no longer guar-

anteed that reachable sets of consecutive time steps are mapped to convex sets, requiring a

non-convex set representation, resulting in no or less splitting.

Figure 10: Selected projections of the reachable set for a load-change of the gas turbine from

110MW to 70MW. Black lines represents random simulation results (n = 50), the gray area shows

the reachable set, the red box is the initial set of state variables R(0).
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5.1 Abstraction to Difference Inclusions

As a first step, all higher order terms in (2) are interpreted as an input v to a linear system:

ẋ ∈ Ax(t) + v(z(t), u(t)) ⊕L(t) (20)

vi(z, u) = wi +

m∑

j=1

Bijuj +
1

2!

o∑

j=1

o∑

k=1

Dijkzjzk + . . .

In order to obtain a tight over-approximation, the auxiliary variables u∆(t) = u(t) − uc,

z∆(t) = z(t)−z(ts) are introduced to split the input v(z(t), u(t)) for t ∈ τs into a constant part

v(z(ts), u
c) fixed at the specific point in time ts and a time-varying part v∆(z∆(t), z(ts), u

∆(t)):

vi(z(t), u(t)) = wi +

m∑

j=1

Bij(u
c
j + u∆j (t)) +

1

2!

o∑

j=1

o∑

k=1

Dijk(zj(ts) + z∆j (t))(zk(ts) + z∆k (t)) + . . .

= v(z(ts), u
c) + v∆(z∆(t), z(ts), u

∆(t))

where

v(z(ts), u
c) = wi +

m∑

j=1

Biju
c
j +

1

2!

o∑

j=1

o∑

k=1

Dijkzj(ts)zk(ts) + . . .

v∆(z∆(t), z(ts), u
∆(t)) =

m∑

j=1

Biju
∆
j (t) +

1

2!

o∑

j=1

o∑

k=1

Dijk

(
zj(ts)z

∆
k (t) + z∆j (t)zk(ts) + z∆j (t)z∆k (t)

)
+ . . .

(21)

After defining U∆ := U ⊕ (−uc) and assuming that the reachable set R(τs) and

R∆(τs) :=
{
χ (t;x(ts), u(·)) − x(ts)

∣∣∣t ∈ τs, x(ts) ∈ R(ts),∀t ∈ τs : u(t) ∈ U
}

(22)

are already known, where χ() is the solution of (3), the set of possible values of v∆(z∆(t), z(ts), u
∆(t))

is bounded by

V∆(τs) :=
{
v∆(z∆, z, u∆)

∣∣∣z∆ ∈ R∆(τs)× U∆, z ∈ R(τs)× U , u∆ ∈ U∆
}
. (23)

Using (20) - (23), the linear differential inclusion

ẋ ∈ Ax(t) + v(z(ts), u
c)⊕

(
V∆(τs)⊕ L(τs)

)

is obtained for t ∈ τs. Due to the superposition principle of linear systems, the solution is

obtained by adding the solution of the homogeneous solution xh(ts+1), the input solution due

to constant input xp,c(r), where r = ts+1− ts, and the input solution set due to time-varying

inputs Rp,∆(V∆(τs)⊕ L(τs), r) to

x(ts+1) ∈ xh(ts+1) + xp,c(t)⊕Rp,∆
(
V∆(τs)⊕ L(τs), r

)
. (24)
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The well-known homogeneous solution is xh(ts+1) = eArx(ts), the input solution due to

constant input is

xp,c(r) = Γ(r) v(z(ts), u
c), Γ(r) :=

∫ r

0
eA(r−t)dt,

where Γ(r) = A−1(eAr − I) (I is the identity matrix) and when A is not invertible, the

approach in [33] is used. The reachable set Rp,∆(Ṽ(τs), r) due to the set of uncertain time-

varying inputs within Ṽ(τs) := V∆(τs)⊕ L(τs) is computed as in [33].

The difference to previous approaches (e.g. [19, 20]) is that due to the separation in a

constant and a time-varying input, nonlinear terms are saved from linearization at times ts,

while within τs, an abstracting linear differential inclusion is used. Inserting v(z(ts), u
c) from

(21) into the overall solution (24) results in a nonlinear difference equation that encloses the

exact solution:

xi(ts+1) ∈
n∑

j=1

(eAr)ijxj(ts) +
n∑

j=1

Γij(r)
(
wj +

m∑

k=1

Bjku
c
k +

1

2!

o∑

k=1

o∑

l=1

Djklzk(ts)zl(ts) + . . .
)

⊕Rp,∆
i (V∆(τs)⊕ L(τs), r)

(25)

The benefits of the above difference inclusion for reachability analysis do not immediately

show. Note that for small time increments r, as typically used in reachability analysis, the

set Rp,∆
i becomes small, no matter how large the set of possible values of z(ts) becomes during

the reachability analysis. Thus, for large sets of z(ts), the nonlinearity is well captured by

all other terms, while the abstractions in Rp,∆
i are not dominant. By replacing exact values

with sets in (25), we obtain the reachable set at the next point in time:

R(ts+1) = eArR(ts)︸ ︷︷ ︸
=:PZ1

⊕Rp,∆(V∆(τs)⊕ L(τs), r)⊕ Γ(r)
(
w ⊕Buc ⊕ 1

2!
sq(D,Rz(ts))

)

︸ ︷︷ ︸
=:PZ2

(26)

The new approach includes nonlinear mappings so that in general convex sets are no longer

mapped to convex sets as in other works, requiring a new non-convex set representation as

presented in the following subsection.

5.2 Polynomial Zonotopes

Set representations in most previous works are convex since they are easy to represent and

manipulate (see e.g. [13, 14, 15, 16, 17, 9, 34, 19]). However, the convexity property makes

the efforts in capturing the nonlinear dynamics obsolete, since convex sets only work well for

linear maps. A non-convex set representation is presented, which can be efficiently stored
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and manipulated. The proposed representation shares many similarities with Taylor models

[35] (as shortly discussed later) and is a generalization of zonotopes, which have shown great

performance for linear and nonlinear reachability analysis [14, 19].

Definition 5.1 (Polynomial Zonotope) Given a starting point c ∈ Rn, multi-indexed gen-

erators f ([i],j,k,...,m) ∈ Rn, and single-indexed generators g(i) ∈ Rn, a polynomial zonotope is

defined as

PZ =
{
c+

p∑

j=1

βjf
([1],j) +

p∑

j=1

p∑

k=j

βjβkf
([2],j,k) + . . .+

p∑

j=1

p∑

k=j

. . .

p∑

m=l

βjβk . . . βm︸ ︷︷ ︸
η factors

f ([η],j,k,...,m)

(27)

+

q∑

i=1

γig
(i)
∣∣∣βi, γi ∈ [−1, 1]

}
.

The scalars βi are called dependent factors, since changing their value does not only affect

the multiplication with one generator, but other generators, too. On the other hand, the

scalars γi only affect the multiplication with one generator, so that they are called independent

factors. The number of dependent factors is p, the number of independent factors is q, and the

polynomial order η is the maximum power of the scalar factors βi. The order of a polynomial

zonotope is defined as the number of generators ξ divided by the dimension, which is ρ = ξ
n .

For a concise notation and later derivations, we introduce the matrices

E[i] = [ f ([i],1,1,...,1)︸ ︷︷ ︸
=:e([i],1)

. . . f ([i],p,p,...,p)︸ ︷︷ ︸
=:e([i],p)

] (equal indices),

F [i] = [f ([i],1,1,...,1,2) f ([i],1,1,...,1,3) . . . f ([i],1,1,...,1,p)

f ([i],1,1,...,2,2) f ([i],1,1,...,2,3) . . . f ([i],1,1,...,2,p)

f ([i],1,1,...,3,3) . . .] (unequal indices),

G = [g(1) . . . g(q)],

and E =
[
E[1] . . . E[η]

]
, F =

[
F [2] . . . F [η]

]
(F [i] is only defined for i ≥ 2). Note that

the indices in F [i] are ascending due to the nested summations in (5.1). In short form, a

polynomial zonotope is written as PZ = (c,E, F,G).

For a given polynomial order i, the total number of generators in E[i] and F [i] is derived

using the number
(p+i−1

i

)
of combinations of the scalar factors β with replacement (i.e. the

same factor can be used again). Adding the numbers for all polynomial orders and adding

the number of independent generators q, results in ξ =
∑η

i=1

(p+i−1
i

)
+ q generators, which is

in O(pη) with respect to p. The non-convex shape of a polynomial zonotope with polynomial

Deliverable D3.1 – Report on Reachability Analysis of Nonlinear Systems and
Compositional Verification

29 of 45



5 ON-THE-FLY POLYNOMIALIZATION

order 2 is shown in Fig. 11 for

E[1] =


−1 1

0.5 1.5


 , E[2] =


 1 0.6

−1.5 0.1


 , F [2] =


−1.5

1.1


 , G =


0.4
0.4




0 2 4 6
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Figure 11: Over-approximative plot of a polynomial zonotope. Random samples of possible values

demonstrate the accuracy of the over-approximative plot.

A zonotope Z is a special case of a polynomial zonotope that has only generators g(i),

which is denoted by Z = (c,G). Due to the absence of E[i], F [i] a zonotope is centrally

symmetric to c so that for zonotopes, c is referred to as the center and not the starting point.

Although a Taylor model [35] is not a set, but a multidimensional polynomial plus a mul-

tidimensional interval, they can represent exactly the same sets than polynomial zonotopes

when the input of the Taylor models is a multidimensional interval. The different organization

of polynomial zonotopes, separating dependent from independent variables, makes it easier

to over-approximate them by zonotopes or perform the order reduction techniques presented

subsequently.

5.3 Operations on Polynomial Zonotopes

It is often required to over-approximate a polynomial zonotope by a zonotope:

Proposition 5.1 (Over-approximation by a Zonotope) A polynomial zonotope PZ =

(c,E, F,G) can be over-approximated by a zonotope Z = zonotope(PZ) = (c̃, G̃) so that
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PZ ⊆ Z, by choosing

c̃ = c+
1

2

⌊η/2⌋∑

i=1

p∑

j=1

e([2i],j),

G̃ =
[
1
2E

[2] 1
2E

[4] . . . E[1] E[3] . . . F [1] F [2] . . . G
]
,

where ⌊η/2⌋ returns the lowest integer of η/2. The computational complexity for a given

polynomial zonotope order ρ with respect to n is O(n2).

A sketch of the proof is as follows: Generators with dependent factors are made independent

by moving them into the generator matrix G, which always results in an over-approximation.

Dependent factors βi with even powers are within [0, 1] (e.g. β21 ∈ [0, 1]) instead of [−1, 1] so

that E[2], E[4], . . . can be multiplied by 0.5 and their mean is added to c.

The multiplication of a matrix M ∈ Ro×n with a polynomial zonotope PZ = (c,E, F,G)

and the Minkowski addition of a zonotope Z = (c̃, G̃) with PZ follow directly from the

definition of polynomial zonotopes:

M ⊗ PZ = (Mc,ME,MF,MG),

PZ ⊕ Z = (c+ c̃, E, F, [G, G̃]).
(28)

For a given polynomial zonotope order ρ, the computational complexity with respect to n is

O(n3) for the multiplication and O(n) for the addition. Note that the Minkowski addition of

two polynomial zonotopes is never required since R∆ and Rp,∆ are represented by zonotopes.

The only addition between two polynomial zonotopes is between PZ1 = (c1, E1, F1, G1) and

PZ2 = (c2, E2, F2, G2) in (26). Since both summands have the same dependent factors (proof

omitted), one can apply an exact set addition, where the resulting polynomial zonotope is

(c1 + c2, E1 + E2, F1 + F2, [G1, G2]). The generators with independent factors in G1 and G2

are added by concatenation as for the Minkowski addition in (28).

5.4 Order Reduction of Polynomial Zonotopes

Many of the previously presented operations increase the order of polynomial zonotopes due

to added generators. As a consequence, an order reduction technique has to be applied

to limit the representation size and the computational costs. Most techniques for classical

zonotopes remove generators and add new, but fewer ones that capture the spanned set of

the removed generators (see e.g. [36]). This results in a reordering of the generators, which is

no problem for zonotopes since the ordering of generators is irrelevant. However, generators

of polynomial zonotopes can only be reordered within G, where generators are multiplied by
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independent factors γi. For this reason, a new order reduction technique is developed that

does not change the ordering of generators in E and F .

The size of E and F is fixed and only G grows after performing the required operations

presented in this work. Thus, it is required to remove generators from G and stretch the

generators in E and F such that the ones removed from G are compensated in an over-

approximative way. As for most applied order reduction techniques of zonotopes, heuristics

are used rather than strict optimization techniques due to their favorable ratio of computa-

tional costs to obtained over-approximation.

Proposition 5.2 (Over-approximative Generator Removal)

Given is PZ = (c,E, F,G) of which n linearly independent generators with indices ind1, . . . indn

are picked from E[1] and stored in P = [e([1],ind1) . . . e([1],indn)] (det(P ) 6= 0). The over-

approximating polynomial zonotope P̂Z = (c, Ê, F, Ĝ) from which the generator g(i) is re-

moved, is computed as

Ĝ =
[
g(1) . . . g(i−1), g(i+1), . . . g(q)

]
,

Ê =
[
Ê[1] E[2] . . . E[η]

]
,

ê[1],j =




(1 + (P−1g(i))j)e

([1],j) for j ∈ {ind1, . . . , indn},

e([1],j) otherwise.

The computational complexity is O(n3) due to the matrix inversion when using the Gauss-

Jordan elimination.

Proof 6 The generator g(i) can be composed from the generators in P :

g(i) = e([1],ind1)φ1 + . . .+ e([1],indn)φn = Pφ so that φ = P−1g(i).

Note that P−1 can always be computed since det(P ) 6= 0. Thus, g(i) can be replaced by n

new generators e([1],ind1)φ1, . . ., e
([1],indn)φn, which causes an over-approximation since each

generator has an independent factor γq+j :

{
γig

(i)
∣∣∣γi ∈ [−1, 1]

}
⊆

{ n∑

j=1

γq+je
([1],indj)φj

∣∣∣γq+j ∈ [−1, 1]
}

The n new generators are aligned with the corresponding generators in E[1] and can be removed

by stretching each e([1],indj) by the factor

‖e([1],indj)‖2 + ‖e([1],indj)φj‖2
‖e([1],indj)‖2

= 1 + φj = 1 + (P−1g(i))j .
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We remove the longest generators g(i) (maximum 2-norm) from G so that the generators

in E are more dominant than the ones in G, which is required since only the generators in

E are used for the exact computation of quadratic maps. The heuristic for choosing the set

of picked generators P in Prop. 5.2 is as follows: The first generator is the one in E[1] that

is best aligned with the removed generator g(i), and the other n − 1 generators are the ones

which have the least alignment with g(i) and among each other. The alignment is measured

by the normalized scalar product |g(i)
T
e([1],indi)|

‖g(i)‖2‖e([1],indi)‖2
, where a value of 1 occurs when the vectors

are aligned and 0 for perpendicular vectors. The generators g(i) are removed until the order

is less than a user-defined order. Without giving the proof, the complexity of the order

reduction heuristic is O(n3).

6 Compositional Verification

In order to tackle the curse of dimensionality in the verification of cyber-physical systems, it

is unavoidable to use a divide-and-conquer approach that makes it possible to verify a large

system in a modular way by verifying smaller subsystems. In assume-guarantee reasoning (see

Fig. 12), assumptions on system inputs are made, which are used to verify the specifications

of subsystems. The partial verification results are utilized to check the correctness of the

assumptions. For instance, we can assume a set of possible inputs U1 and U2 of subsystems

M1 and M2 as shown in Fig. 12. Using reachability analysis, we can determine the possible

set of outputs Y1 and Y2. If those output sets are enclosed by the corresponding input

sets, the reachable set of the entire system is over-approximated. The problem with assume-

guarantee reasoning is that the verification result quickly becomes too conservative since

dependencies between subsystems are not considered. We address this problem by considering

hierarchies in the system modeling and in the computation of reachable sets. As initial

solutions, the verification of nonlinear systems is performed by (1) dividing the original

system into subsystems, and (2) only dividing the system into subsystems for the abstraction

error computation. A new investigation regarding the robustness to varying selections of

possible partitions is also provided.

M1 M2

Y1 U2

U1 Y2

Figure 12: Assume-Guarantee Reasoning: The input sets enclose the output sets (Y1 ⊆ U2, Y2 ⊆ U1).
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6.1 Compositional Reachable Set Computation

This subsection describes the first option investigated for compositional analysis by splitting

the system into subsystems. The reachable set of each subsystem is computed as previously

presented. The input sets representing inputs to the complete system are known, however,

the possible inputs from the interfaces of the subsystems are unknown. They depend on the

reachable set of neighboring subsystems (i.e., subsystems where an output of one subsystem

is an input to the other one, or the other way round), which in turn depend on the reachable

sets of other subsystems. This mutual dependence is broken apart by assuming a set obtained

from enlarging the inputs in between subsystems, which we refer to as interface inputs, by a

factor λU , where i refers to the ith subsystem:

Û (i) = ĉ
(i)
U ⊕ ((λU − 1)Λ(i) + I)(U (i) ⊕ (−ĉ(i)U )), (29)

where Λ is a diagonal matrix that contains ones for indices corresponding to interface inputs

and zeros otherwise. Based on the system input Û (i), the reachable set of the corresponding

subsystem is computed as previously presented in Sec. 3. For aggregating the reachable sets

of the complete system by partial reachable sets R(i)(τs) of the i
th subsystem, matrices Φ(i)

are introduced, which map the local states of the ith subsystem to the states of the full system.

The matrices Φ(i) contain ones when states are correlated, and zeros otherwise, so that the

complete reachable set is obtained using the Cartesian product:

R(τs) = Φ(1)R(1)(τs)× Φ(2)R(2)(τs)× . . .× Φ(ns)R(ns)(τs), (30)

where ns is the number of subsystems and the computation of linear maps and the Carte-

sian products of zonotopes is performed as presented in Sec. 4.1. In order to check if the

assumption on the set of interface inputs is correct for all subsystems, further matrices Υ(i)

are introduced, which map the states of the complete system to the interface inputs of the

ith subsystem. Again, the matrix contains ones for corresponding states and interface inputs

and zeros otherwise. If

∀i : Υ(i)R(τs) ⊆ Λ(i)Û (i)

the assumption is over-approximative and thus valid. Otherwise, one has to re-apply the

enlargement in (29) for the subsystems that violate the assumption. This procedure is sum-

marized in Alg. 1 under the assumption that no split of the reachable set is required.
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Algorithm 1 reachNextCompositional(R(i),d(ts), λU ,U (i), otherInputsToReachNext)

Require: Previous set R(i),d(ts) and input set U (i) for each subsystem, factor λU ,

otherInputsToReachNext).

Ensure: R(i),d(tk+1),R(τs)

1: ∀i : inputEnclosure(i) = false

2: repeat

3: for i = 1 . . . ns do

4: if inputEnclosure(i) == false then

5: obtain Û (i) based on U (i) using (29)

6: Standard reachability computation based on Û (i) → R(i),d(tk+1),R(i)(τs)

7: end if

8: end for

9: R(τs) = Φ(1)R(1)(τs)× . . .× Φ(ns)R(ns)(τs)

10: for i = 1 . . . ns do

11: if Υ(i)R(τs) ⊆ Λ(i)Û (i) then

12: inputEnclosure(i) = true

13: else

14: inputEnclosure(i) = false

15: end if

16: U (i) = Λ(i)Û (i) ⊕ (I − Λ(i))U (i)

17: end for

18: until ∀i : inputEnclosure(i) == true

Deliverable D3.1 – Report on Reachability Analysis of Nonlinear Systems and
Compositional Verification

35 of 45



6 COMPOSITIONAL VERIFICATION

6.2 Compositional Linearization Error Computation

In some systems, the dynamics of subsystems might be strongly correlated, resulting in

unsatisfactory over-approximations of the compositional algorithm in Alg. 1. Since most of

the computation time is spent on evaluating the linearization error, one could only compute

the linearization error compositionally, while maintaining all the correlations for the reachable

set computation as presented in Sec. 3.

Using a decomposition of the full system into subsystems as in the previous subsection,

the Lagrangian remainder in Sec. 4.2 is evaluated compositionally. For this purpose, the set

of input values from subsystem interfaces has to be considered resulting in the set of inputs

for each subsystem as proposed in (29). The partial Lagrange remainders of the ith subsystem

denoted by L(i) are combined to the complete Lagrange remainder as for the reachable set in

(30):

L(τs) = Φ(1)L(1)(τs)× Φ(2)L(2)(τs)× . . .× Φ(ns)L(ns)(τs).

The computation of the Lagrange remainder has complexity O(n5), where n is the number

of state variables, whereas all other operations have complexity O(n3) when using zonotopes

as the set representation. Thus, the compositional computation of the linearization error has

similar computational savings than the completely compositional computation as presented

in the previous subsection.

6.3 Application to a Smart Grid Use Case

The introduced methods are applied to the transient stability analysis of a smart grid use

case. Other than the power plant example in Sec. 4.5, we consider the interconnection of

several power plants through the electric grid. From now on we refer to a power plant as a

generator and a consumer as a power demand.

6.3.1 Power System Modeling

The mathematical models used for the case studies are standard models. However, those

models are huge and tedious to implement manually. For this reason, we have integrated

an automatic method that generates the required differential equations and constraints in

CORA. The dynamic variables of the ith generator are the generator phase angle δ̃i [rad],

the angular velocity ωi [rad/s], and the torque Tm,i [p.u.] (p.u.: per unit). The commanded

power production Pc,i [p.u.] is a system input. The generator phase angles δi = δ̃i − Θs

are chosen relative to the slack bus angle Θs which has a constant angular velocity ωs. The
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dynamic equations of the chosen generator model are according to [37]:

δ̇i = ωi − ωs

ω̇i = −Di

Mi
(ωi − ωs) +

1

Mi
Tm,i −

1

Mi
Pg,i

Ṫm,i = − 1

TSV,iRD,iωs
(ωi − ωs)−

1

TSV,i
Tm,i +

1

TSV,i
Pc,i.

(31)

The parameter values are chosen identical to [37] for each generator and synchronous con-

densers and are listed in Tab. 2.

The power flow equations are obtained using standard methods, see e.g. [38, p.174]. The

algebraic variables of the ith bus are the absolute value of the bus voltage Vi [p.u], the phase

angle of the bus voltage Θ̃i [rad], the active power Pi [p.u.], the reactive power Qi [p.u.], and

the generator voltage Ei [p.u.] if the bus is connected to a generator. The bus phase angles

with respect to the slack bus are denoted by Θi = Θ̃i − Θs. The buses are connected via

admittances Yij = Yji, where i and j are the indices of the connected buses. The admittance

from the generator to the ith generator bus is Yg,i, where |Yg,i| [p.u.], Ψg,i = ∠Yg,i [rad]

are the absolute values and phase angles, respectively. The absolute value and the angle of

the admittances are denoted by |Yij | and Ψij = ∠Yij, respectively. The active and reactive

power of each bus results from the generator production Pg,i, Qg,i and a demand of that node

Pd,i, Qd,i. The parameters of the power grid are chosen according to the corresponding IEEE

benchmark problem and can be found in [39].

In order to obtain the constraints on the continuous variables, we classify nodes in the

power network as slack bus (reference bus), generator bus (bus to which a generator is at-

tached), and load bus (bus to which typically a consumer is attached). We introduce Ng as

the number of generators and Nl as the number of load buses. Since we are dealing with an

alternating current network, buses produce active and reactive power:

Pg,i = EiVi|Yg,i| cos(Ψg,i + δi −Θi)− V 2
i |Yg,i| cos(Ψg,i),

Qg,i = −EiVi|Yg,i| sin(Ψg,i + δi −Θi) + V 2
i |Yg,i| sin(Ψg,i).

The power flow equations as in [38, p.174] of each bus are

Pi = Pg,i + P d
g,i + Pd,i =

Ng+Nl∑

j=1

ViVj|Yij | cos(Ψij +Θj −Θi),

Qi = Qg,i +Qd
g,i +Qd,i = −

Ng+Nl∑

j=1

ViVj |Yij| sin(Ψij +Θj −Θi),

(32)

where Pg,i and Qg,i are the active and reactive power produced by generators with the dy-

namics according to (31), while P d
g,i and Q

d
g,i are directly injected active and reactive powers
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from renewable energy sources. In order to write the power system in the standard form of

time-invariant, semi-explicit, index-1 differential-algebraic equations, the dynamic, algebraic,

and input variables are renamed. Additionally, the number of cut transmission lines Ni for

the considered subsystem is introduced. It is also required to consider variables of neighbor-

ing subsystems. The jth voltage of the kth subsystem is denoted by V̂k,j and an analogous

notation is used for Θ̂k,j. The function [k, j] = h(i) returns the subsystem number k of which

the bus with number j is connected to the considered subsystem and i takes integers up

to the number of cut transmission lines (i = 1 . . . Ni), thus providing the first, second, and

further input sources. The algebraic variables are assigned as follows:

i = 1 . . . Ng : yi = Ei,

i = 1 . . . Nl : yNg+i = VNg+i,

i = 2 . . . (Ng +Nl) : yNg+Nl+i−1 = Θi.

Note that Θ1 is not considered in the above assignment since it is the phase of the slack bus

and thus always 0. The dynamic variables are

i = 1 . . . Ng : xi = δi,

i = 1 . . . Ng : xNg+i = ωi,

i = 1 . . . Ng : x2Ng+i = Tm,i,

and the inputs are assigned as follows:

i = 1 . . . Ng : ui = Pc,i,

i = 1 . . . (Ng +Nl) : uNg+i = P d
g,i,

i = 1 . . . (Ng +Nl) : u2Ng+Nl+i = Qd
g,i,

i = 1 . . . Ni, [k, j] = h(i) : u3Ng+2Nl+i = V̂k,j,

i = 1 . . . Ni, [k, j] = h(i) : u3Ng+2Nl+Ni+i = Θ̂k,j.

Table 2: Parameters of the generators.

∀i: Mi Di |Yg,i| Ψg,i TSV,i RD,i ωs

1
15π 0.04 5 −π

2 1 0.05 120π

6.3.2 Scenario

The transient stability analysis is performed as follows. After a pre-fault phase of 0.1 s, the

power plant producing the most power is taken off the grid (e.g. caused by a short circuit)
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for 0.03 s and afterwards reconnected. In the post-fault phase, the dynamics is computed

until all continuous state variables reach the set of initial states. In all case studies, the

center of the initial set is the steady state solution denoted by a superscripted zero. For all

power generators the initial phase is δi(0) ∈ δ0i ⊕ 0.005 · [−1, 1], the initial rotational speed is

ωi(0) ∈ ω0
i ⊕ 0.1 · [−1, 1], and the initial torque is Tm,i(0) ∈ T 0

m,i ⊕ 0.001 · [−1, 1].

The case study is based on the IEEE 14-bus benchmark system, enhanced by the generator

dynamics as introduced in Sec. 6.3.1. We compute the linearization error compositionally as

described in Sec. 6. For that purpose, the power system is split into different subsystems as

described next in Sec. 6.3.3.

6.3.3 Sensitivity Analysis of Partitioning

In this subsection we investigate whether the proposed approach is sensitive with respect to

the partitioning into subsystems. We consider three partitions as illustrated in Fig. 13. It is

expected that the sensitivity is manageable since correlations between states are preserved

using our technique. This is demonstrated by comparing the reachable sets for selected

projections of different partitions in Fig. 14. It can be observed that the result is almost

identical although the partitions are quite different. The accuracy of the reachable sets in

Fig. 14 is indicated by simulations of system trajectories from randomly chosen initial states,

which are plotted as black lines. Note that the results for the algebraic variables jump after

the pre-fault and fault-on phase since the system model switches.

Computation times for different partitions are listed in Tab. 3 when the linearization

errors of subsystems are computed in parallel using different cores. All computations are

performed in MATLAB on an Intel i7-3520M processor with 2.9 Ghz. Partition 1 and 2 in

Fig. 13 result in similar computation times since the size of each subsystem is comparable

and thus, the computational load is well balanced between each processor. Since partition 3

is unbalanced, the resulting computational time is much closer to the one of the full system.

Although the over-approximation of the compositional computation of the linearization error

is small, the savings in computation time are significant. This is because the linearization

error computation consumes around 90% of the overall computation time.

Table 3: Computation times for different partitions.

partition: full 1 2 3

computation time in [s] 1634 797.4 769.8 1038
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(c) Partition 3.

Figure 13: Considered partitions of the IEEE 14-bus benchmark system. Gray lines show subsystem

borders.

7 Conclusion

This deliverable summarizes new abstraction techniques for the reachability analysis of non-

linear systems and their compositional verification. For nonlinear systems, two abstractions

are presented. First, on-the-fly linearization is presented, which abstracts arbitrary nonlinear

systems to linear ones on-the-fly by adapting the linear system parameters based on the cur-

rent center of the reachable set. The uncertain input is over-approximative to guarantee the
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Figure 14: Selected projections of reachable sets for transient stability analysis. Partitions 1-3 are

shown from left to right. Black lines show random simulations, gray areas show reachable sets, and

the white box the initial set. For algebraic variables, dark gray represents pre-fault and post-fault

sets, light gray represents fault-on sets, and medium gray represents sets for all fault phases.
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conservativeness of the approach. We present a novel cubic evaluation of the linearization

error that is more accurate compared to a quadratic one. The effectiveness of linear sys-

tem abstractions is demonstrated by a smart grid example, which uses data from an actual

power plant in Munich. This made it possible to formally verify the correctness of a steam

generation process for the very first time.

Second, on-the-fly abstraction to polynomial systems is presented, which is more accurate

compared to linear abstractions. The disadvantage, however, is that sets are no longer prop-

agated by linear maps, such that the convexity property of reachable sets is lost. To this end,

we apply so-called polynomial zonotopes, which can represent non-convex sets. Polynomial

zonotopes have been integrated into CORA for further use in UnCoVerCPS.

Finally, we show a novel concept for the compositional verification of nonlinear systems.

In order to preserve the dependencies between variables, we only compose the problem of

computing abstraction errors into smaller subproblems. As a result, we obtain significant

savings in computational time as shown in Tab. 3 since the abstraction error computation is

the most time-consuming task. However, the accuracy is almost as good as for a monolithic

verification since the linear part of the dynamics is not partitioned, see Fig. 14. The robustness

of this approach is demonstrated by a new study on smart grids that shows that the results

are insensitive with respect to the partitioning into subproblems for the abstraction error

computation.

The results of this deliverable will be used in all tasks related to constraint generation for

controller synthesis and on-the-fly verification of our use cases.
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