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1 INTRODUCTION

1 Introduction

This document presents the continous extension of the Scade language, named Scade Hybrid.

The main motivation for Scade Hybrid is the capability to describe in a same language contin-

uous and discrete parts while keeping determinism, as explained in section 1.1. Relationship

with the UnCoVerCPS project are also explained in this introductory section.

The document is decomposed into the following sections. The section 2 presents the

notion of zero-crossing events and their interactions with discrete controllers. The interaction

of continuous and discrete parts is realizd by extending state machines, leading to hybrid

automata. The hybrid Scade model can be compiled in C code, but the execution has to

take care of the interaction between the continuous and discrete parts, which leads to code

to execute the discrete part and dedicated code bound to a solver for the continuous part.

Introducing continuous capabilities within Scade also allows one integrates continous models

coming from other environments into a unified simulation.

Section 3 presents the specifications for the code generator. Scade Hybrid is the result of

research done on various prototypes and similar data-flow languages. The work presented

here is the final design for the language and the generated code. It presents also the minimum

environment necessary as a runtime.

Section 4 describes some experiments done with the language. It presents the integration

capability based on a FMU example and the modeling of part of the wind turbine use case

(WP5).

The section 5 concludes on the achieved work with respect to the definition and imple-

mentation of Scade Hybrid.

In the context of the UnCoVerCPS project, a link between SCADE and SpaceEx will

be developed to bring a bridge between verification and implementation. As there are the

Scade, Scade Hybrid and SpaceEx formalisms, an analysis is required to compare them.

The appendix A provides that analysis and gives directions for a flow combining Scade and

SpaceEx. The presented work is an important step to build the UnCoVerCPS toolchain. This

work is also connected to WP5 with the automotive use case. The goal will be to analyze the

controller environment within SpaceEx and to extract properties that must be fulfilled by the

implementation of the controller designed in SCADE.

1.1 Motivations

In the UnCoVerCPS approach, the software development is model-based and code is automat-

ically deployed from SCADE models. The classical V-cycle sofware development phases are
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1 INTRODUCTION

(for development part, not taking into account the validation phases):

1. system requirements, which provide the overall system objectives

2. global specification, which describes the system architecture (functional architecture,

allocation of functions, communications) and interfaces with high level behavior of

functions;

3. detailed specifications, which give the details of the requirements of the functions. These

specifications are often close to final code, as they are given in textual form.

4. code. Depending on the context, there may be more or less constraints on the code.

The selected language (object-oriented or not), the coding standard, the traceability

means (between specification and code, specification and tests, code and tests), memory

management (dynamic or fixed) are one of the possible decisions to take when going for

embbeded software. Decisions are taken according the criticality of the application and

the confidence one wants to have and one wants to be able to demonstrate;

5. validation, which means testing. Testing ranges from unit testing for functions or even

piece of code, to functional testing at system level, and finally testing before actual use

in production;

6. verification. Verification is the activity that confirms that the development is done

properly. It mainly consists in reviews: review of specifications for accuracy, testability,

review of code for standard respect, correctness with respect to specifications, review of

tests definitions and results. Formal methods can also be used as verification means.

SCADE is used at the detailed specifications level, where it replaces textual requirements,

which is error prone, with a well-defined input. Then the code is automatically generated

from that specification and it is guaranteed to fulfill the expected behavior thanks to the

certified code generator.

But it is still necessary to perform verification and validation activities at the specification

level to ensure its correctness. Using SCADE, one can reduce or eliminate activities like

coding or unit testing, and verification of design is alleviated as the language has a clean

definition. As functional testing is key, one needs to be able to provide a test environment

which is powerful enough to describe the environment but also deterministic to be able to

replay the test sessions with the very same results. This is very important in certification

domain as the applicant must be able to present the evidences of all his/her activities that

he/she did during the complete development.
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1 INTRODUCTION

Therefore being able to mix continous and discrete parts within a deterministic semantics

is a real improvement of the current practices. By extending Scade with continuous capabilities

it is possible to perform such testing and simulation combining the continuous part and the

discrete part, with a well-defined semantics of interactions. This ensures the correctness of the

simulation (validation objective) and expected behaviors can be assessed up-front (verification

objective). The goal of Scade Hybrid is to increase that level of confidence into the described

mixed-models.

As a result, we have the following flow:

1. during system analysis, controller are defined and/or synthetized. Note that at this

stage formalisms describing interactions between discrete and continuous worlds are

usually non-deterministic, like SpaceEx. This is important to specify the controller

behavior in various contexts as non-determinism allows for exploring diverse situations.

2. Scade discrete models can be derived from controller synthesis phase.

3. These models can then be simulated within a model of the environment in Scade Hybrid

with guarantees in terms of correctness the interactions and expected results.

4. Finally, certifiable code is generated from the validated model.

This flow permits to develop embeddable controller specifications with full confidence in their

correctness, and then obtain certifiable code thanks to the automatic certified code generation.

To be complete, Formal Methods (proof-based methods) can also used to assess the

correctness of the controller but no credit can be claimed out of them in industrial high-

integrity application context. This is only the case for rail and transportation industry which

recommends the use of Formal Methods. Aerospace&Defence recognizes them in the DO-178

standard, but not yet in practice as of today. Automotive is just starting looking at it for

autonomous vehicle.

The overall benefits for stakeholders, that is to say companies developing embedded

applications and tool providers, is therefore an improved flow with better tool integration,

where the transitions between controller design, software specification and implementation

are smoother and confidence increase.

This also opens new horizons for customers as they will be able to develop new kind of

applications. In particular, there is a trend where a control application can be coupled with

an embedded simulation of the process. This is more powerful that monitoring of the safety

region where the controller must stay. Indeed, the embedded simulated process allows for

prediction of the possible failures of the actually controlled process, with less sensors or with
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1 INTRODUCTION

access to normally inaccessible data. In that perspective, Scade Hybrid is a mean to describe

such integration with the control and the process.

1.2 Scade Overview

This section gives a short description of the Scade language. More information on it can be

found in [9].

Scade originates from an effort in the 80’ to define proper languages to program high-

integrity applications. Such applications have two main characteristics: a) they control a

process using a read inputs/compute/write outputs cycle, b) a defect can have catastrophic

effects involving possible fatalities. One of the answer was the synchronous languages family

relying on the zero-delay hypothesis. Moreover these languages have a well-defined and

unambiguous semantics.

Scade is a data-flow oriented language, close to the applied control engineer practices. Its

semantics relies on the Kahn Process Network [8], which is a model of distributed computation.

The language is strongly typed and declarative. In 2006, Scade has been extended to natively

supports state-machines. As such, it is the only language supporting a full mix of data-flow

and control-flow constructs. This extension has been made with two objectives: a) it is

conservative, b) safety must still be ensured.

The point a) ensures that the Scade paradigm is preserved and the overall semantics is

well-defined, as new constructs are derived from core language notions. As a result of point

b), the design of the state-machines privileges clear notions so that a model can be easily

understood, even if the behavior is complex. For instance, there transitions cannot cross state

borders to reach some deep internal substates, priorities on transition is well-defined, there is

the notion of a weak/strong transition for a fine-grain control of the activation of the states.

A model is checked by the SCADE Suite certified code generator then, if it is correct with

respect to the language semantics, C code is generated. The SCADE Suite code generator

is itself developed following the rules of the standards (DO-178, ISO 26262, EN 50128, ...).

Every artefact produced during its development is accessible to authorities, which can then

assess the correctness of the code generator in great details.

Starting from Scade and its certified code generator, Scade Hybrid is therefore a natural

extension to achieve the objective of the mix of discrete and continuous worlds with the

highest confidence for embedded software.
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2 SCADE HYBRID PRIMER

2 Scade Hybrid Primer

2.1 Overview

The objective of Scade Hybrid is to add to the discrete Scade notation the capabily to support

continuous behavior. Therefore, Scade Hybrid is an extension of the Scade language with

constructs to define flows using ordinary differential equations (ODE). The resulting language

is an explicit hybrid systems modeler, like Mathwork’ Simulink or National Instruments’

LabView. It is different from implicit hybrid systems modelers like Dassault Systemes’

Dymola or ANSYS’ Simplorer, which use differential algebraic equations (DAE).

The language is based on the work of M. Pouzet et al. on the Zelus language [3], with

several main ideas:

� The solution of ODEs is handled by an external numerical solver. This allows one

uses an off-the-shelf state-of-the-art numerical solver for efficiency and precision of the

computation. This requires a dedicated interface to easily connect any solvers. Note

that in any cases, solvers can not provide any guarantee of their computations. Indeed

our objective is to provide a clean separation between discrete and continuous part,

leaving potential non-determinism in the continuous part. This non-determinism can

occur from resolution of computation (how close are we to zero) and resolution of time

(do two zero-crossing events (see sectionr̃efsec:zerocross actually occur simultaneously?).

Research is still on-going to refine this potential non-deterministic behavior and to how

reduce it;

� Discrete-time computations are strictly separated from continuous-time computations.

The goal is to ensure that the semantics of a model does not depend on the numerical

solver used or its time step. Whereas some tools like Simulink already check such

properties and display warnings in some cases, we decide to reject programs that don’t

separate discrete and continuous computations. The behavior of accepted programs is

fully deterministic for the discrete part;

� The existing compilation process and infrastructure should be reused as much as possible.

Discrete nodes are compiled exactly as in regular Scade. This compilation process and

the simulation algorithm is described in details in [6].

� Eventually, interfacing with reachability analysis tools will be done to explore the state

space of the continous part.
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2 SCADE HYBRID PRIMER

The work achieved within the task 4.1 is an industrialization effort of the research work.

The Zelus language is an academic language, used for various research experiments, while

Scade is a recognized industrial language1.

Zelus has a limited types support (only on integer type while Scade and Scade Hybrid

have several integers and floating point types), Scade Hybrid has arrays. The Scade Hybrid

language is the introduction of the hybrid concept within the Scade language as an extension

preserving the initial language semantics. The introduction of the hybrid concept must be

done with care to ensure that all impacts on the existing language constructs are properly

managed, like the interaction with state machines or imperative constructs.

Another difference is that the target code generation language is C instead of OCAML for

the Zelus academic compiler. The support of Scade Hybrid will be introduced into the existing

qualified code generator with the objective is to reuse a maximum of it. This will pave the

way for a certification of a Scade Hybrid to C code generator. Also, the code generator must

provide traceability information between the input model of and the generated code. The

corresponding work means detailed specification of the new language, as detailed specifications

of the generated code and of the internal algorithms.

2.2 A first example

Let us introduce a first example of a Scade Hybrid program, that defines a flow t equal to the

elapsed time since the beginning of the simulation:

hybrid time ( ) returns ( t : f l o a t 6 4 last =0.0)

der t = 1 . 0 ;

The example defines a flow t with an initial value equal to 0.0 and which derivative is constant

and equal to 1.0. We will call continuous state a flow defined by its derivative. Note we use

the term continuous state to denote a state variable. Scade basic-iest notion is the flow being

discrete or now continuous, there is no variable in Scade2 and we also need to distinguish

from discrete states.

The hybrid keyword is used to introduce an operator containing continuous constructs.

On the other hand, the node keyword introduces a discrete-time operator and the function

keyword is used to define combinatorial operators. Continuous constructs, like der equations,

can only be used in a continuous context, i.e. inside a hybrid operator. Discrete constructs,

1In 2017, a record track was established of more than one hundred certifiable/qualifiable projects using

Scade in Aerospace&Defence, Rail Transportation, . . . . Most of the recent C-919 airliner software (flight-control,

landing-gear, ...) has been realized with Scade.
2Scade is inspired from functional languages
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2 SCADE HYBRID PRIMER

like the pre or fby operators, can only be used in a discrete context, i.e. inside a node

operator. Similarly, a hybrid (resp. node) operator can only be called inside another hybrid

(resp. node) operator. Combinatorial functions can be used inside any context, but can only

contain combinatorial operators.

2.3 Zero-crossing events

Continuous and discrete parts of a model are linked by zero-crossing events3. Such events

occur when a continuous state crosses zero, that is, when it goes from positive to negative

or vice-versa. Detecting zero-crossing events is one of the features of numerical solvers. A

discrete computation can only be triggered by a zero-crossing event. It means that the discrete

state of a model only changes during zero-crossing events and remains constant during the

integration by the numerical solver.

Here is an example of a program that increments a discrete counter every time the input

signal z crosses zero from negative to positive:

node counter ( ) returns ( cpt : in t32 )

cpt = 1 −> pre cpt + 1 ;

hybrid hybr id counter ( z : f l o a t 6 4 ) returns ( cpt : in t32 )

cpt = ( activate counter every up z i n i t i a l default 0 ) ( ) ;

The activate construct tells to execute the counter operator each time there is a positive

zero-crossing of x. The result of activate is the result of the counter operator when activated,

else the previous value, initialized to 0. The output of this operator is shown in Figure 1. As

one can see, the output of a discrete computation, like the counter operator, is a piecewise

constant flow, that only changes value at zero-crossing events.

During a discrete step, it is also possible to reset the value of a continuous state. A typical

example is the simulation of a bouncing ball, as shown in Figure 2:

const y0 : f l o a t 6 4 = 2 . 0 ;

const g : f l o a t 6 4 = 9 . 8 1 ;

hybrid s i m p l e b a l l ( ) returns ( y : f l o a t 6 4 last = y0 ; y v : f l o a t 6 4 last = 0 . 0 )

l et

der y = y v ;

activate i f down y

then y v = − 0 .8 * last ’ y v ;

3In the FMI standard, such events are called state events and zero-crossing signals are called event indicators.

Deliverable D4.2 – Extension of the Scade language for continuous modeling 10 of 38



2 SCADE HYBRID PRIMER

Figure 1: Simulation of the hybrid counter operator

Figure 2: Simulation of the simple ball operator

Figure 3: Simulation of the modes ball operator
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2 SCADE HYBRID PRIMER

else der y v = − g ;

returns y v ;

te l

Each time the position y of the ball crosses zero, its speed y_v is reset to -0.8 times its

previous value, to simulate the contact with the ground4.

2.4 Hybrid automata

State machines can also be used in a continuous context [2]. In that case, states contain

continuous equations, like der equations, and transitions are triggered by zero-crossing events,

which means that actions on transitions are considered discrete. We can for instance write an

improved version of the bouncing ball (Figure 3). In that version we introduce the modes_ball

automaton.

const

y0 : f l o a t 6 4 = 2 . 0 ;

g : f l o a t 6 4 = 9 . 8 1 ;

eps : f l o a t 6 4 = 0 . 0 0 1 ;

hybrid b a l l ( ) returns ( y : f l o a t 6 4 last = y0 ; y v : f l o a t 6 4 last = 0 . 0 )

l et

der y = y v ;

activate i f down y

then y v = − 0 .8 * last ’ y v ;

else der y v = − g ;

returns y v ;

te l

hybrid modes ba l l ( ) returns (y , y v : f l o a t 6 4 )

l et

automaton

i n i t i a l state Bouncing

y , y v = b a l l ( ) ;

until i f down y and y v < eps restart S l i d i n g ;

state S l i d i n g

l et

4This example uses the last construct which refers to the previous value of an identified flow declared in

an outer scope. The pre refers to the previous value of a flow expression used in a local scope
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2 SCADE HYBRID PRIMER

y = 0 . 0 ;

y v = 0 . 0 ;

te l

returns y , y v ;

te l

In Figure 2, we can see that, after a while, the balls falls below the ground. It is because

when the ball gets closer to zero, changing its speed is not enough to make it go above zero.

We fix this problem by introducing a two-state automaton:

� In the first state, the ball is bouncing as before. We leave this state when the ball crosses

zero and its speed is below a given threshold.

� In the second state, the ball is fixed.

2.5 Time events

A common way to schedule a discrete computation in a continuous setting is to launch it

periodically. A periodic event z can be created from a continuous state of derivative 1.0 that

is reset every p seconds:

activate i f z

then x = 0.0;

e l se der x = 1.0;

z = up ( l a s t ’x - p);

There is however a much more efficient way to implement periodic events. Indeed, numerical

solvers take as input an horizon, which is the maximal date until which the integration should

be done. Time events are a built-in feature of the code generation: the horizon given to the

numerical solver is the closest deadline of all the operators in the program. Several predefined

operators can be used:

� timer(delay) is a one-shot timer that creates an event delay seconds later.

� period(off , p) creates an event after an offset off , then every p seconds.

timer is an imported operator which just returns the expected horizon. The period

operator is defined from the timer operator:
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2 SCADE HYBRID PRIMER

hybrid imported t imer ( de lay : f l o a t 6 4 ) returns ( z : ze ro ) ;

hybrid per iod ( o f f s e t , p : f l o a t 6 4 ) returns ( z : ze ro )

l et

automaton

i n i t i a l state I n i t

z = timer ( o f f s e t ) ;

until i f z restart Per i od i c ;

state Per i od i c

z = timer (p ) ;

until i f z restart Per i od i c ;

returns z ;

te l

More complex behaviors can be implemented using the same ideas.

2.6 Other events

We have already seen two kinds of events that can be used in a continuous context: zero-

crossing detection (up, down, cross operators) and time events. These events have type

zero. Transition or activate blocks expect as condition a flow of type zero in a continuous

context and type bool in a discrete context as usual.

More generally, continuous events are:

� Zero-crossing detection: up z is active z was negative and becomes positive; down z

when it was negative and becomes positive; cross z in both cases.

� Time events

� A special event denoted init, which is active during the first instant of the current

continuous context. This discrete instant is for instance used to set the initial value of

continuous state. This is equivalent to the expression timer(0.0).

� Composition of events: z1 and c is the conjunction of an event and a Boolean condition;

z1 or z2 the disjunction of two events.
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2 SCADE HYBRID PRIMER

Figure 4: Simulation algorithm

2.7 The last operator

In a discrete context, the last operator has the same semantics as usual: it returns the value

of the flow at the previous discrete step. This definition cannot be used in a continuous

context, as this value depends on the method and the time step used by the numerical solver.

As in [1], we thus define last as the left limit of a signal. This definition corresponds to

the previous one for discrete flows, as they are constant during integration phases. If last is

used in a discrete context for a continuous signal, it corresponds to the value of the flow right

before the event. This value can be computed before triggering the event. In a continuous

context, we can only define last ’x = x to remain independent of the solver.

In the current prototype, the last operator can be used in any context for a continuous

state, as their value is an input given by the solver. For other flows, last can only be used in

a discrete context.

2.8 Execution

The Scade Hybrid code generator generates sequential C code from a model. The execution

of a Scade Hybrid program uses a numeric solver as a black box for approximating continuous

signals and detecting interesting events with reasonable accuracy

The basic structure of the simulation algorithm is shown in Figure 4. The algorithm begins

in an initial discrete phase, D, which initializes both the discrete and the continuous states.

After which the algorithm alternates between a continuous phase, C, and a discrete phase, D.

In the C phase, the numeric solver is repeatedly executed to approximate the evolution

of continuous states and to search for zero-crossings. The solver in turn makes two types of

callbacks: one for the values of continuous state derivatives, and the other for the values of

zero-crossing expressions.

The algorithm cycles in the continuous phase, constantly increasing the value of the

simulation time, until the solver reports that one or more zero-crossings have been found or

the requested horizon has been reached. The algorithm then enters the D phase. The discrete
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controller then performs its computation. It produces outputs according to the inputs, the

zero-crossing events and its current state and possibly changes its internal state. Once this

atomic reaction is finished, the C phase then restarts, and so on.

2.9 Standard library

A Scade Hybrid library called libhybrid is distributed with Scade Hybrid. It allows to use

the new constructs of the language in SCADE Suite IDE to design graphical Scade Hybrid

models. These constructs are defined in a package called Pervasives.

The Hybrid package defines some commonly used functions, like the integrator (scalar or

vector), the unit delay, the PID, etc.

2.10 Scade Hybrid bibliography

Scade Hybrid is based on research work by M. Pouzet et al, which first proposed to extend

a synchronous language with primitives to define ODEs [3]. This work was later extended

with hierarchical automata [2] similar to the one in Scade. The separation between discrete

and continuous is enforced by a simple type system [3]. A causality analysis ensures the

absence of causality loops [1]. A semantics based on non-standard analysis was proposed in [4].

The compilation process to statically scheduled code and the execution with an off-the-shelf

numerical solver is described in [6]. Theses results are the foundation of Scade Hybrid and of

the academic language Zélus5 [7].

3 Code Generator Specifications

This section describes the specifications of the code generator. The specifications are in

two parts. The first part is about the syntax and semantics (in natural language) of the

Scade Hybrid extensions of the Scade language. The second part is the description of the

generated C code. We describe the C constructs to support new functions, continuous states,

zero-crossings events. We also introduce an horizon function that is used to compute the next

time at which a continuous computation is expected.

Note that the Zelus academic compiler produces OCAML code. The Scade Hybrid code

generator will produces C code, that will be compatible with the existing C code generation

from classical Scade model. The new C generated code combines the discrete and continous

parts. The continuous part is computed by some external solver. This external solver depends

on the user environment. Therefore, we propose a generic runtime which role is to perform the

5http://zelus.di.ens.fr/

Deliverable D4.2 – Extension of the Scade language for continuous modeling 16 of 38

http://zelus.di.ens.fr/


3 CODE GENERATOR SPECIFICATIONS

integration between the generated code and the solver. The runtime relies on some predefined

C constructs that must be defined in relationship with the solver interface and the actual

generated code. An example of automatic generation of the content of the runtime is given

for the Functional Mockup Interface standard (see also section 4.2).

3.1 Scade Hybrid specifications

This section describes the Scade Hybrid language. Since Scade Hybrid is an extension of

Scade, this section is based on the Scade 6 Reference Manual [9]. Only new constructs are

described here. The new constructs are related to:

� new type to handle zero-crossing event;

� new function kind for Scade operators;

� new expressions to support zero-crossing events;

� extension of boolean operation for zero-crossing events;

� modification of higer-order operation to handle zero-crossing events as inputs

3.1.1 Types and groups

type expr ::= bool | zero | . . .

A new type called zero is introduced. It is the type of for zero-crossing events. Strongly-

typed languages like Scade rely on type systems to perform semantics checks and help the

user to manipulate proper data type for a given intent. Additionally, a new type kind called

boolean is introduced to group regular Booleans (bool) and zero-crossings (zero). Therefore

we can discriminate between cases where only event expressions are possible, cases where

only Boolean expressions are possible, or cases when it does not matter. In case of incorrect

use of an expression in a given context, the code generator will emit a clear message to the

user, who can understand the situation and if he/she is modeling properly with respect to the

specification needs.

3.1.2 User defined operators
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op kind ::= function

| node

| hybrid

where decl ::= where typevar {{ , typevar }} numeric kind

| where typevar {{ , typevar }} boolean

A new kind of user-defined operators is defined. These operators are introduced with the

keyword hybrid and can contain continuous-time equations. It allows to describe a hybrid

model modularly, like for discrete model in Scade. The node keyword represent discrete nodes

and function introduces combinatorial functions, that can be used both in a continuous or

discrete context.

3.1.3 Equations

equation ::= . . .

| der equation

der equation ::= der id = expr

We introduce a new kind of equation to specify an ODE: der x = e defines the derivative

of x to be equal to e . The initial value of x is given by the last value of its declaration. A

derivative equation is well typed if the type of the left-hand side matches the type of the

right-hand side expression. It can only be used in a continuous context.

The existing control structures of Scade can be used in a continuous context. However,

continuous-time and discrete-time equations must be clearly separated:

� In a continuous context, the condition of an if-block must have zero type. The then

branch is then a discrete context, whereas the else branch is a continuous context. In a

discrete context, the condition of an if-block must have bool type.

� In a continuous context, the condition of transitions in a state machine must have zero

type. The body of each state is a continuous context, whereas the actions on transitions

are discrete contexts. In a discrete context, the condition of transitions in a state

machine must have bool type. The body of each state and the actions on transitions

are discrete contexts.

� An emission can only be done in a discrete context.
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3.1.4 Expressions

Zero-crossing operators We introduce zero-crossing operators:

expr ::= id expr

| . . .

| zc expr

zc expr ::= up expr

| down expr

| cross expr

| init

The operators up, down and cross detect the zero-crossing of a signal:

� up z is true if z goes from negative to strictly positive

� down z is true if z goes from strictly positive to negative

� cross z is true if z goes from negative to strictly positive or vice-versa

The init keyword is a special event that is true during the first discrete instant where the

current continuous context is active. It is equivalent to true -> false in a discrete context.

It could also be defined as init = timer(0.0).

Boolean operators The type of some Boolean operators are modified:

� and takes as first input a value of kind boolean (either bool or zero), as second input

a value of type bool and returns a value of the same type as the first input.

� or takes as inputs and returns values of the same boolean type (either bool or zero).

In the current specification it is not possible to take the conjunction of two zero-crossings.

There is still on-going work to provide a definition of what could be simultaneous zero-crossing

events knowing that the zero-crossings depend on the solver for the precision of the computed

values close to zero and for the precision of the time resolution. Currently, our solution offers

an operational semantics, so that we can guarantee that the discrete part is deterministic,

but there may be some non-determinism in the continous part. Nevertheless, it is possible to

associate Boolean flows with occurences of zero-crossing events and to perform the conjunction

on these Boolean flows as a workaround.
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Continuous and discrete contexts There are restrictions to the use of operators depend-

ing on the context:

� Zero-crossing operators can only be used in a continuous context.

� Discrete operators (like pre, fby) can only be used in a discrete context.

� Combinatorial operators (eg. arithmetic or Boolean operators) can be used in any

context.

Higher-order operators The activate higher-order operators can be used with both kind

of boolean:

� If the condition has type zero, the input operator must be discrete (ie. a node or

function) and the resulting expression must be used in a continuous context.

� If the condition has type bool, the resulting operator has the same kind as the input

operator (either discrete or continuous).

The restart operator takes as input a condition of zero type in a continuous context and

of bool type in a discrete context.

3.2 Code generation

To implement the integration of the continuous and the discrete part, we follow the approach

described in [3], but applied to our existing tool. The current Scade code generator architecture

will be reused, so that the impact will be minimal (only 5% of the code generator should

modified). While [3] presents the overall concept and its implementation with OCAML as

target language, the new code generator will produce C code and supports more data types.

3.2.1 Generated functions

In the case of a discrete node, we generate as usual:

� An init function to initialize the context of the node.

� A reset function to reset the internal state of the node.

� A step function that computes one step of the node and updates the internal state.

Note that the code generated from a discrete operator is the same as the one generated by

KCG² from a (regular) Scade model.

In the case of a hybrid operator, we now generate:
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� An init function to initialize the context of the node.

� A reset function to reset the internal state of the node.

� A step function that computes one discrete step of the node and updates the internal

discrete state. It can read the values of continuous states as computed by the solver

and may change them.

� A cont function that computes the current value of zero-crossings and derivatives.

� A horizon function that returns the next horizon requested by this operator.

3.2.2 Continuous states

To represent derivatives, we introduce a structure type:

type kcg_cstate = { l a s t : rea l ; val: rea l ; der: rea l ; };

The real type is a new internal float type used for continuous states and zero-crossings. It

shall be defined as the type used by the numerical solver. Casts are added from/to this type

when reading or writing continuous states and zero-crossings. The kcg_real type must be

defined in a kcg_hybrid_types.h header included by kcg_types.h.

For each variable defined by its derivative, we add a corresponding field of type kcg cstate

in the context. Constructs are translated as follows:

� An equation der x = e is translated to x.der = e in the cont function

� An equation x = e is translated to x.val = e in the step function.

� A read of x is translated to a read of x.val

� A read of last x is translated to a read of x.last

The x.val and x.last fields are updated by the runtime before the execution of the

step and cont functions. The runtime reads the x.der field to get the derivative of each

continuous state and the x.val field to get the updated value of the continuous state after a

discrete step. These values are given to the numerical solver.

3.2.3 Zero-crossings

We proceed the same way for zero-crossings:

type kcg_zc = { up: bool; out: rea l ; l a s t : rea l ; };
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For each zero-crossing x = up z, we declare a corresponding field of type kcg zc in the

context. Constructs are translated as follows:

� The equation x = up z is translated to:

x.out = z;

x = x.up;

The first equation is only used in the cont method. In the step method, x is always

equal to false. The last field of each zero-crossing is copied from the out field after each

discrete step.

The x.out field is read by the runtime and given to the numerical solver to detect zero-

crossings. The x.up field is updated by the runtime before calling the step function to signal

the detected events. The x.last field is also updated by the runtime.

3.2.4 Horizon computation

The horizon method returns the next date at which an event should occur (or kcg_infinity

if there is no active timer). It is one of the inputs expected by the numerical solver and can

be used to efficiently implement time events (see Section 2.5).

Note that there is no construct in the language to set the horizon returned by an operator.

Only the imported timer operator sets an horizon. Other operators just compute the minimum

of the horizons of called operators.

The horizon method returns the minimum of the results of calling the corresponding

method for all instances of called nodes, including in particular instances of the timer operator.

kcg_real n_horizon(outC_Root *outC)

{

kcg_real horizon_acc;

kcg_real tmp;

horizon_acc = kcg_infinity;

tmp = period_horizon (&outC ->Context );

horizon_acc = kcg_min(horizon_acc , tmp);

return horizon_acc;

}
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After reading a local horizon, it has to be set to kcg_infinity. This ensures that if

we call the horizon of an operator that is not active during a step, it will always return

kcg_infinity.

3.3 Scade Hybrid runtime

The code generated by KCG Hybrid compiler is independent of the backend used. The

following backends have been implemented:

� Model-exchange FMU (FMI 1.0 and 2.0): it uses the solver and zero-crossing detection

provided by the FMU host.

� Co-simulation FMU (FMI 1.0 and 2.0): it uses the CVode numerical solver6 to solve

ODEs.

� Standalone executable: it is also based on CVode and acts as the simulation master.

3.3.1 Structure of the runtime

The runtime is located in the lib/ directory:

� kcg_hybrid_runtime.h defines generic data structures used by all backends.

� kcg_hybrid_runtime.c defines generic functions used by all backends. For instance,

the discrete_steps function execute discrete steps until the returned horizon is not

zero.

� libhybrid.scade, timer.c and timer.h contain the predefined operators for time

events (see section 2.5).

� fmu_generator.py is a Python script that generates the files used by the several

backends (see Section 4.2.1).

� pack_fmi.py is a Python script used to build an FMU from a Scade Hybrid model. It

takes care of calling the code generator, the fmu_generator.py script to generate the

FMU files, compiling the generated code and packing the FMU.

� me_fmu/: FMI 1.0 and 2.0 model-exchange FMU backend.

� cs_fmu/: FMI 1.0 and 2.0 co-simulation FMU backend.

� cvode_standalone: the standalone backend using CVode.

6https://computation.llnl.gov/projects/sundials/cvode
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� kcg_ext_component.h, cs[12]_fmu.[ch], me[12]_fmu.[ch] and fmu_wrapper.py are

used for importing FMUs (see Section 4.2.2).

3.3.2 Generic parts of the runtime

The runtime expects two additional files to be generated for each model. These files are

generated by the fmu_generator.py script since they can be generated using only the

information in the mapping file. This allows to minimize the impact on the compiler.

The first file is called kcg_info.h and should define several macros about the root operator:

/* information used for corresponding FMI attribute */

#define KCG_GUID "8daf05a3 -247a-11e5-aa15 -2 beff3ac55df"

#define MODEL_IDENTIFIER simple_ball

/* root operator functions */

#define STEP_FUN simple_ball

#define RESET_FUN simple_ball_reset

#define INIT_FUN simple_ball_init

#define CONT_FUN simple_ball_cont

#define HORIZON_FUN simple_ball_horizon

/* context and output structure */

#define SCADE_OUT_CTX outC_simple_ball

#define SCADE_IN_CTX inC_simple_ball

/* number of continuous states */

#define NB_CSTATE 2

/* number of zero -crossings */

#define NB_ZC 1

The runtime also uses global arrays containing information about input/output variables,

continuous states and zero-crossings:

/* Information about an input/output */

typedef struct {

size_t offset;

} var_info;

extern const var_info var_infos [];
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/* Information about a continuous state */

typedef struct {

size_t offset;

} cstate_info;

#i f NB_CSTATE > 0

extern const cstate_info cstate_infos[NB_CSTATE ];

#endif

/* Information about a zero -crossing */

typedef enum { UP, DOWN , CROSS } zero_dir;

typedef struct {

size_t offset;

zero_dir dir;

} zero_info;

#i f NB_ZC > 0

extern const zero_info zero_infos[NB_ZC ];

#endif

In order to access variables stored in the context, we store its offset so that they can be

directly read or updated. This allows for instance to read the derivatives (set by der x = e

equations) to send them to the numerical solver. The arrays storing this information are

declared in a file generated by the wrapper generator.

Each backend must declare two header files:

� kcg_logger.h must declare macros TRACE, WARNING, ERROR used for error reporting;

� kcg_hybrid_types.h which must declare the kcg_real type used for storing continuous

states and zero-crossing signals;

4 Experiments

This section details experiments done with the Scade Hybrid prototype. The first experiment

is a modeling of the Wind Turbine case. The second experiment is a support of the FMI

standard.
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4.1 Wind Turbine

A model of a wind turbine as a hybrid system was initiallly proposed by GE. This model has

been captured in a simplified Scade Hybrid model (not all equations are given), as shown in

figure 5. The interface of the automaton is as follows:

inputs Omg, for Ωg, is the rotor speed;

outputs Mg, for Mg, is the generator torque and teta c, for θc, for the demanded pitch angle.

The obtained hybrid automaton is composed of three states:

� an initial state;

� a state Region12 computing Mg, from various conditions. Note that in that state θc is

set to a constant value θopt in the initial model. This is specified as the default value for

the teta c input. Therefore, the equation does not appear in the state;

� a state Region3 which computes an other value for Mg and computes also the derivative

of θc. In textual Scade Hybrid, this can be written as der theta_c = f_x_y;. As the

new textual constructs are not yet graphically supported we re-use existing capabilities

with a pseudo-integrator. The specific operator is recognized by the code generator

which in turn produces the right derivative operation.

Figure 5: Hybrid model of wind turbine

In parallel to these three states, the graphical equation corresponding to

cross3 = cross(Omg-Om3_min) which is true whenever the guarded expression becomes

0. cross3 is used as the condition to switch back-and-forth the two states containing the

equations. This shows the interaction between continuous and discrete worlds via the zero-

crossing detection thanks to the cross operator, and the direct interaction between data-flow
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and state-flow constructs through the cross3 bolean data-flow. The example also shows

the capability of the Scade language to freely mix data-flow and control-flow constructs.

Extensions on that example are the finalizeation the implementation and the execution of a

complete simulation using Scade Hybrid.

4.2 FMU code generation experiments

FMI (Functional Mock-up Interface) is a standard7 designed by the Modelica community. The

objective of FMI is to support both model exchange and co-simulation of dynamic models

using a combination of xml-files and compiled C-code. Simulation models can be exchanged,

while preserving intellectual property if needed (source code is optional). A simulation model

is called a Functional Mock-up Unit (FMU). The model exchange flavor provides only the

simulation model: handles to inputs, outputs, continuous states are provided and simulation

is done by external solvers. In co-simulation flavor, the FMU also contains the solver. This

allows for exchanging simulation models with solvers dedicated to the physics of the model.

With Scade Hybrid, it is possible to import FMI 1.0 and 2.0 FMUs, in model-exchange or

co-simulation kind:

� A model-exchange FMU defines ODEs, so it can be imported as an hybrid operator

with the same inputs/outputs. It is mostly equivalent to an imported operator: an

hybrid operator has the same behavior as the same operator compiled to an FMU;

� A co-simulation FMU is imported as a node operator. It can be activated periodically

using an activate construct. The outputs of the FMU are piecewise constants (no

interpolation is done);

� a co-simulation could be envisaged with SpaceEx, as it has been shown in [5].

As a result, an hybrid model can be made of not only continuous and discrete parts designed

in Scade Hybrid, but also continuous simulation models designed in any FMI-compliant tool.

This extends the simulation capabilities at model-level as specific models for the environment

can be shared.

4.2.1 FMU wrapper generator

The goal of the FMU wrapper generator (lib/fmu_generator.py) is to:

7https://www.fmi-standard.org/
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� Generate the files needed by the runtime, that is, kcg_info.h and root_fmu.c (which

defines the array storing information about inputs/outputs, continuous states and

zero-crossings);

� Generate the modelDescription.xml file describing the interface of the generated FMU.

These files are generated by reading the mapping file generated by KCG Hybrid and given

as input of the script.

4.2.2 FMU import

The lib/fmu_wrapper.py script is used to import an FMU into a Scade Hybrid model. It

generates a .xscade file defining the imported FMU as a Scade operator and .c and .h files

that load the FMU DLL and call FMI functions. It supports FM1 1.0 and 2.0 co-simulation

and model-exchange FMUs. To use this wrapper, one then needs to use the --imp_fmu option

of the pack_fmi.py script.

Importing a model-exchange FMU A model-exchange FMU is imported as an hybrid

operator with the same inputs/outputs:

hybrid fmu #pragma kcg nb_zeros Nz #end

#pragma kcg nb_cstates Nc #end N(...) returns (...);

Pragmas are added to specify the number of continuous states and zero-crossings used by

this operator. These pragmas can be used for any imported hybrid operator. Continuous

states (resp. zero-crossings) must be stored in an array called kcg_cstates (resp. kcg_zeros)

stored in the context.

Importing a co-simulation FMU A co-simulation FMU is imported as a discrete node

with a delayed causality:

node N(...) returns (...);

It means that the outputs at a given discrete step do not depend on the inputs at that date,

but at the previous step. This is achieved by adding a delay (pre) on all the inputs of the

node.
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5 Conclusion

Mix of continuous and discrete behavior leads to several formalisms. Usually there is a need

for a simulation master that drives the execution, that is to say when to call the solvers and

when to activate the discrete part. The master could be the continous part or the discrete

part. Regarding the continous part it can be modelled using causal or acausal semantics.

Considerations on the final target (simulation or embedded controler) are also important.

Scade Hydrid is a formalism mixing continuous and discrete behavior and which is based on

the well-defined semantics of the Scade language for discrete and deterministic behaviors. The

continous part semantics is that of causal equations. All the properties of Scade (determinism,

synchronous paradigm) are preserved and the interaction between discrete and continuous

parts is well-defined using the notion of zero-crossing events. A few language constructs are

introduced to deal with the notion of derivative and the events. This report provides the

static and dynamic semantics of the Scade Hybrid language. With respect to existing research

work, the Scade Hybrid, as a conservative extension of the Scade language, supports more

contructs and data types.

A prototype of the Scade Hybrid code generator is under development. The prototype will

check the semantics of the input model and will generate C code that will provide functions

to compute the discrete part and the continous part. Regarding the continous part, the code

will compute the current values of the zero-crossings, the derivatives and expected horizon for

efficient time events implementations.

The generated code must be independent from any solver. It will rely on a back-end using

a generic runtime which can be instantiated for a given solver. This mecanism has been

experimented to generate FMI-compliant code in both model-exchange and co-simulation

flavors. It as been also tested to generated standalone executable using the CVode solver.

The report describes the expected C interface and data types for the generated C code

and gives the generic runtime specification. The presented work extends research works in

different ways. First, the generated code will be C to fit customer environments. Second, the

code generator will be an extension with minimal impact of the existing qualifed SCADE

code C code generator. This approach paves the way for a certified code generator for Scade

Hybrid as this strategy will concentrate the effort of certification on the new elements and

will benefit of the already existing certification process8.

This development provides a brick within the UnCoVerCPS toolchain. Indeed, it allows a

smooth transition between the modelization of an abstract controller within its environment to

8This certification process is internal to Esterel Technologies, but available to certification authorities
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its implemementation as an embedded certifiable software. Controller and environment state

exploration done with SpaceEx is the mean to determine the exact conditions for the execution

of the controller and which safety properties must be fulfilled by the final implementation.

Scade Hybrid can be the bridge between the SpaceEx formalism and the Scade formalism used

for actual implementation. Within Scade, the safety properties will be verified on the controller

implementation. This proposed flow has been established through a fruitful collaboration

within Esterel Technologies and Université Grenoble Alpes. During the next steps of the

project, in collaboration with use-cases holders and in particular DLR, the proposed toolchain

will be applied on examples.
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A From Scade Hybrid to SpaceEx

Following the UnCoVerCPS proposal, a link between SpaceEx and SCADE will be established

to connect verification and certified implementation of controllers. To establish that connection,

it is necessary to analyze the semantics of both formalisms to understand in depth the

similarities and differences. Furthermore, the project is an opportunity to introduce Scade

Hybrid.

The rest of that section presents an analysis of the formalims based on a simple example

and show the differences. Then, we propose a top-down workflow, where SpaceEx is the entry

point to describe the system at an abstract level. Safety properties could be demonstrated at

that level. The actual software implemenation can be done in Scade, and these properties

must hold for the implementation.

This is on-going work. The next step is the finalization of the specification of the SpaceEx

to Scade Hybrid translation and the realization of the translator.

A.1 Translation sketch on a small example

In this section, we will consider a simple Scade Hybrid example and try to create the

corresponding SpaceEx model. This will illustrate the similarities between the two formalisms

and a mapping between their concepts.

The example we consider is the modes_ball operator used in previous sections:

const y0 : f l o a t 6 4 = 2 . 0 ;

const g : f l o a t 6 4 = 9 . 8 1 ;

hybrid s i m p l e b a l l ( ) returns ( y : f l o a t 6 4 last = y0 ; y v : f l o a t 6 4 last = 0 . 0 )

l et

der y = y v ;

activate i f down y

then y v = − 0 .8 * last ’ y v ;

else der y v = − g ;

returns y v ;

te l

Translation principles The idea of the translation is to map each Scade equation to one

base component in SpaceEx and to use a network component to link these base components.

Since SpaceEx does not support hierarchical models, we have to consider the Scade Hybrid
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model where user-defined operators are replaced by their definition.

To deal with the fact that equations can be inactive (when they are contained inside an

inactive automaton state), each equation is translated to a two-state automaton with an

on state containing the behavior of the equation and an off state where nothing happens.

Synchronized transitions are used to make sure that all equations in a given state are

deactivated when leaving this state.

Translation of simple ball Let’s first consider the first equation of simple_ball:

der y = y_v;

It is mapped to the following SpaceEx model:

Each flow appearing in the equation, as input or output, appears as a parameter of the

base component. The der equation is mapped to the definition of the derivative y’. The

synchronized Stop transition leads to the off state, where the derivate is equal to zero, in

order to hold the value of y.

The second equation is:

activate i f down y

then y_v = - 0.8 * l a s t ’y_v;

e l se der y_v = - g;

returns y_v;

It is mapped to:
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The invariant in the body of the on state corresponds to the der equation in the else

branch of the activate. The then branch, which resets the value of y_v, is mapped to the

action on the transition, denoted y_v := -0.8 * y_v.

The event down y is active when y crosses zero from positive to negative. The then

branch is activated only once at this instant. It is mapped to a guard y <= 0 for the transition

and to a constraint y >= 0.0 inside the state, to make sure that the transition is taken as

soon as possible.

The fired variable is here to encode the semantics of the Scade Hybrid discrete event

in SpaceEx. In SpaceEx, transitions are non-deterministic: they can be fired at any time as

long as the guard is true. In the example, since the transition resets the speed y_v, the guard

of the transition y <= 0.0 is still true. Without the additional constraints on fired, the

transition could be fired multiple times when y reaches zero. The definition and constraints

on fired guarantee that at least 0.000001 seconds must elapse between two successive firings

of the transition if_branch.

Translation of modes ball The body of the operator is:

automaton

i n i t i a l state Bouncing

y, y_v = ball ();

unt i l i f down y and y_v < eps restart Sliding;

state Sliding

l e t

y = 0.0;

y_v = 0.0;
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t e l

returns y, y_v;

It is mapped to:

Each state of the Scade Hybrid is mapped to a SpaceEx location (we omit here the off

location since this is the root operator which is always active). Note that the transition guard

also includes y_v > -eps. Indeed, in the Scade Hybrid model, the check y_v < eps is done

after the evaluation of the body of ball. It means that if down y is true, then y_v is always

positive (because the then branch of modes_ball has been executed). A possible solution

would be to force the if_branch transition to occur before Stop_Bouncing. In this example,

it is simpler to just check that the absolute value of y_v is smaller than y_v, which is basically

equivalent.

Putting it all together The following network component is used to link the base compo-

nents described above:
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This network components instantiates each base component and links the corresponding

variables and transitions. Here is the result of the execution of the model in SpaceEx for

1.9 <= y <= 2.0:

Issues raised by the example Most of the issues come from the fact that transitions

are non-deterministic in SpaceEx, whereas they are deterministic in Scade Hybrid. It is

sometimes possible to force a non-deterministic transition to become deterministic by putting

the negation of the transition guard in the state staying condition. However, this is not

possible as soon as the guard is a conjunction: its negation is a disjunction, which is not

supported by SpaceEx. This is for instance the case in the mapping given for modes_ball

above. It can also be an issue of the condition of the transition is still true after a discrete
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event, as in the mapping of the activate of simple_ball. The next section will describe

an extension of SpaceEx to model urgent transitions, which should help to bring the two

formalisms closer.

Another difference is that Scade Hybrid guarantees that weak transitions in an automaton

are executed after the body of the state. This behavior must also be encoded in the SpaceEx

model.

SpaceEx is also unable to model the discrete state of a Scade Hybrid model. Each possible

state of the system must be mapped to a different location in SpaceEx model. This will result

in a state explosion for any non-trivial discrete state, for instance when modeling a discrete

controller.

A.2 Top-down workflow

Use of SpaceEx In this workflow, SpaceEx is used for system-level analysis. This analysis

is done before or during the definition of the system high-level requirements. It is based

on a model of the whole system and its environment. In particular, only an abstraction of

the controller is used. formalSpec can be used to express the properties to be checked and

translate them to hybrid automata.

The figure depicts the flow, where the black arrows denote the refined data passed between

each steps, and the dashed arrows the properties to be verified.

The next paragraphs provide details on each steps.

Use of Scade Hybrid It is used for the design of low-level requirements. It is used to

design and simulate of the controller satisfying the high-level requirements obtained from the
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previous analyses and system requirements. Scade Hybrid allows to start from a continuous

model of the controller and to refine it step by step into a discrete design. It is also possible

in the same language to model the environment of the controller for simulation purposes.

Use of Scade Since Scade Hybrid is a superset of Scade, the controller designed in the

previous phase can be directly given to Scade Suite KCG to generate automatically embeddable

code for the controller. The rest of the process is the traditional one for Scade users.

XF: mettre diagramme cycle en V Scade Suite

Testing Another possible link is to extract from the analysis done on the SpaceEx model a

contract that the controller implemented in Scade must respect. This contract can be the

abstraction used in the SpaceEx model. It can be either verified by tests or proven formally

using SCADE Design Verifier, the formal proof assistant of the SCADE Suite toolchain.
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