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1 Introduction 
 

This report describes the final testing performed, and the results obtained, from 

experiments on the use cases explored within the UnCoVerCPS project.  Experimental 

results are presented from both simulation models and real-world trials of the use cases 

described below. 

Section 2 of this report describes an automated driving use case which employs a 

trajectory planning and decision module based on the on-line verification framework 

developed within UnCoVerCPS. Different manoeuvres, such as lane keeping, lane 

changing, and merging among multiple automated vehicles, have been considered. These 

manoeuvres have been defined in the decision module, assuming cooperation between the 

vehicles. Experimental results from simulation, mixed real-world and simulation, and fully 

real-world trials are presented using a collaborative lane change manoeuvre as an example. 

Section 3 describes a smart grid use case, in which models of the smart grid 

components are derived based on first principles and experiments. Based on this model, a 

disturbance compensator enforcing certain reachability specifications has been designed 

using a data-driven approach to characterize the disturbance. This use case relates to the 

work under WP 1 and WP 2, on modeling and control, respectively. In contrast to most 

other UnCoVerCPS results, however, a probabilistic approach is adopted for control 

design since disturbance is modeled as a stochastic process and reachable sets are 

characterized by a probability level.   Results are presented from real-world trials using a 

testbed consisting of a photo voltaic panel installation, a storage battery, a load simulator 

and a grid interface. 

Section 4 describes a human-robot collaboration use case, which focusses on a 

system to collaboratively assemble food products such as sandwiches or pizzas.  This use 

case employs the UnCoVerCPS on-line verification techniques developed in WP 2.  It is 

tested in both simulation and on a real-world implementation to assess both its safety and 

efficiency in the presence of human co-workers.  Further work is also described which 

improves the efficiency of operation of the system in the presence of nearby co-workers. 

Section 5 summarizes the work done on a mobile robots use case at Bosch, which is 

described more fully in Deliverable D5.2 [2].  Bosch, together with TUM, have evaluated 

the UnCoVerCPS online verification methods on the basis of a newly introduced use case 

of mobile service robots. Thereby, a conformant pedestrian model was identified to ensure 

transference of verification results into reality based on the techniques developed in WP 1 

and WP2. Section 5 also summarizes recent work where the conformant pedestrian model 



1 INTRODUCTION 

Deliverable D5.3 – Report on Application Simulation Data and Experimental 7 
Results 

 

has been extended towards a new “jogger” model in order to develop a proof-of-concept 

for conformance monitors within a simulation environment.   

In the concluding section, the benefits obtained from the novel methods developed 

within the UnCoVerCPS project are summarized. 

 
 



2. AUTOMATED DRIVING USE CASE

2 Automated Driving Use Case

2.1 Introduction

New advances in automated driving seek to reduce the risk in driving situations, such as

overtaking. A study by the US National Highway Traffic Safety Administration [32] attributed

the cause of 94% of vehicle crashes to human behaviour, and among these 33% to mistakes

or wrong decisions during manoeuvring. The last couple of decades have seen substantial

progress in the field of advanced driver assistance systems (ADAS). Currently, automated

driving (AD) is developed to advance the ADAS and many people hope that human-related

risk factors can be mitigated with the advent of this technology.

In recent decades significant advances have been achieved in the field of AD, such as the

improvement of trajectory tracking controllers [24], path planning [19], wireless communication

[7], and perception. Many challenges remain due to the difficulty of introducing the technology

into a complex, unstructured and unpredictable environment, which is often governed by social

norms and interactions between a multitude of participants [26]. The authors of [23] have

conducted a study based on information given by the Bureau of Transportation Statistics in the

United States (2015), where it is demonstrated that a fleet of 100 automated vehicles driving

for 24 hours a day and all year round will require around 8 years of testing to demonstrate a

rate of 77 injuries per 100 million persons; and 500 years to obtain a rate of 1.09 fatalities

per 100 million persons (nominal data obtained from the injuries and fatalities caused during

vehicle crashes reported in the United States in 2013).

Recent research propagates formal methods for automated driving as one possible solution

to the problematic situation of validation by means of test driving. In [29] a formal approach

was proposed to verify that distributed vehicle control systems based on Adaptive Cruise

Control (ACC) satisfy the safety objective. In [6] a method for automated vehicles safety

verification based on on-line reachability analysis has been presented.

For our AD use case, Tecnalia and DLR have developed a trajectory planning and decision

module based on the on-line verification framework in UnCoVerCPS. Different manoeuvres,

such as lane keeping, lane changing, and merging among multiple automated vehicles, have

been considered. These manoeuvres have been defined in the decision module, assuming

cooperation between the vehicles. Therefore, the trajectory planning algorithm must be fast

enough to allow sufficient time for both planning and verification in one update cycle.

Verifying every manoeuver made by automated vehicles is a demanding and difficult task.

An example is shown in Figure 1, where three vehicles are considered in a two-way road
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2. AUTOMATED DRIVING USE CASE

Figure 1: Collision in XY plane vs time.

overtaking manoeuvre, with a potential collision between the overtaking vehicle and opposite

vehicle. This figure shows the trajectory of each vehicle for position and time. In this case

(overtaking scenario), the existence of a possible collision must be considered at any time. We

demonstrate a cooperative method to verify the manoeuver in real time. Our method is fast

enough to perform each planned trajectory online.

The rest of this section is organized as follows: Section 2.2 describes the problem of

cooperation among automated vehicles. Section 2.3 shows the simulation tool used and results

obtained. These are later validated in Section 2.4 and 2.5, using real platforms and virtual

vehicles. Finally, our conclusions are shown in Section 2.6.

2.2 Modelling of the problem

Our approach for the verification of the automated driving process is based on an online

analysis of each vehicle’s actions. An overview of the proposed system architecture is given in

Figure 2. The nominal planning module provides the driving skills required to autonomously

navigate in different traffic situations. The environment information is received frequently

from a set of perception modules. The nominal planning module predicts the evolution of

the traffic situation and determines actions to safely achieve the vehicle’s goals. The actions

considered are: driving along a lane, following a vehicle, merging into a gap in real traffic,

and stopping at an intersection.

However, there might be some situations in which the planned trajectory is unsafe.

Therefore, a verification module analyses the safety of each action before it is executed by a

controller [20]. The verification module uses worst-case models for other traffic participants

as well as the ego vehicle. Using these worst-case models, emergency manoeuvers are planned,

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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2. AUTOMATED DRIVING USE CASE

Figure 2: General architecture under cooperative maneuvering.

which bring the vehicle to a standstill. This is true for every combination of behaviours of the

other traffic participants as well as all ego measurement errors and disturbances. If a safe

emergency manoeuvre is found, branching off the intended plan at position P, the current

action is forwarded to the control module for execution until arriving at P. Otherwise, the

emergency manoeuvre is executed.

The nominal planning module and the verification module operate at fixed time steps.

They receive new sensor information for the i-th update at time ti, and first compute a nominal

action and then the emergency manoeuvre in a time interval of [ti, ti + Tp]. The resulting

nominal action takes place during the time interval [ti + Tp, ti + 2Tp] and the i-th emergency

manoeuvre could start at ti + 2Tp. Based on the reaction time of human drivers, the delay of

2Tp influences the degree of conservatism of this approach. The longer the delay, the more

distance must be maintained between consecutive vehicles. In such a case, the time Tp must

be large enough to compute an acceptable trajectory for the nominal conditions and small

enough to avoid any possible dangerous condition when executing the emergency manoeuvres.

2.2.1 Nominal trajectory planning approach

The overall lane following and lane changing optimization is a non-convex and non-linear

problem. In our approach, the solution space to lane following and lane changing manoeuvres

have been restricted to a convex sub-problem that can be efficiently solved.

Both longitudinal and lateral motion plans are obtained below, as a solution of an optimal

control problem (OCP) for a third-order integrator chain. The same notation will be used for

the lateral and longitudinal case. Our model can be described mathematically as:

dx,y =

∫∫∫
Jx,y(t) dt dt dt, (1)

where the indices < x, y > are used to represent the longitudinal and lateral domain, respec-

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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2. AUTOMATED DRIVING USE CASE

tively. The state-space model of (1) is:


ḋ<x,y>

v̇<x,y>

ȧ<x,y>

 =


0 1 0

0 0 1

0 0 0



d<x,y>

v<x,y>

a<x,y>

+


0

0

1

 J<x,y>, (2)

where d<x,y> refers to position, v<x,y> is speed, a<x,y> is acceleration and J<x,y> is jerk.

The state vector can be defined as x = [d, v, a]T . The optimization process will be weighted

by a vector ω ∈ R4, that can be solved by a standard quadratic programming problem.

Additionally, the problem will be discretized in equidistantly spaced points of time t0, t1, ..., tN

with ti+1 − ti = Ts.

2.2.2 Cooperative overtaking scenario

Vehicle to vehicle communication enables automated vehicles to exchange their intentions and

to cooperate in different situations. Some approaches transmit the specific trajectories [27] of

each cooperating vehicle, which can be data intensive. Instead, it may suffice to exchange

constraints, which decouple the trajectories of all involved entities. Based on [20], we propose

a simple spacetime reservation protocol, which allows vehicles to negotiate constraints to solve

conflicting traffic situations.

A cooperative exchange involves one request and confirmation. Per exchange, one request

message is sent, and one confirm message per answering vehicle is sent back. The cooperative

exchange is initiated by an imminent conflict in vehicle positions, e.g., when a vehicle VR

intends to execute a manoeuvre such as changing to or crossing over a higher priority lane. VR

must consider possible conflicts originating from future actions of vehicle VP on the targeted

higher priority lane. If VR’s intended manoeuvre is not feasible under the given predictions, it

broadcasts a request message to cancel the message. Most importantly, it specifies a lane area

to be reserved for VR, as indicated in Figure 3: a part of the lane starting at a coordinate x0,

y0, with a length lR along the lane is reserved for a time interval [t0, t1].

The confirmation message, on the one hand, obliges VP to avoid any overlap with the

reserved area. This can be achieved by adding corresponding constraints to VP ’s manoeuvre

planner. On the other hand, VP ’s confirmation allows VR to relax the constraints imposed by

the prediction of VP ’s intent, according to the negotiated reservation.

The spacetime reservation protocol is integrated into the above nominal manoeuvre

planning as follows: the committing vehicle adds a virtual vehicle of length LR to the targeted

lane object set during the time interval [t0, t1], starting at any position given by < x0, y0 >

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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Figure 3: Reserved area in s and t for a cooperative lane change.

with a velocity v0.

2.3 Simulation results

A simulation environment is used for testing the cooperative overtaking scenario (described

in Deliverable D5.2, Appendix D). Then, real tests have been performed with the DLR and

Tecnalia vehicles.

2.3.1 Scenario and tools

A first test case has been evaluated in a simulation environment using a straight two-way

road, presented in [27]. We use a hybrid approach, based on parametric curve and MPC, first

solving the regular lane following task, and then the lane change task based on a lateral offset

double integrator chain with MPC, as in [27]. The longitudinal behaviour is defined with a

triple integrator chain. An example scenario is shown in Figure 4.

Our simulator is based on a kinematic model of the vehicle. The future prediction states

are evaluated considering unsafe conditions. In the overtaking manoeuvre the boundaries and

the trajectory reference are known, based on the information of the last iteration.

Figure 4(a) shows the overtaking use case when the left lane is free and the right lane is

blocked. The boundaries are set in terms of lane occupation considering the vehicle’s width.

The reference is located in the middle of these boundaries. Figure 4(b) shows overtaking when

the right lane is blocked by an oncoming vehicle. Both boundaries are in the right lane, and

the maximum distance is limited to a safety distance between the ego vehicle and the vehicle

in front. Finally, Figure 4(c) shows the boundaries for returning to the original lane, due to

an oncoming vehicle in the left lane. The total distance is reduced to avoid a collision with

the vehicle in front while keeping a safe distance.

This approach permits verifying the trajectory planning results, avoiding any frontal

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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2. AUTOMATED DRIVING USE CASE

(a) Overtaking without any blocking.

(b) Overtaking with vehicles blocking.

(c) Started overtaking and frontal vehicle

Figure 4: Boundaries and reference in different situations.

Figure 5: Tecnalia’s Twizy platform (left) and Dynacar model (right).

collision and improving the traffic flow during the lane change manoeuvre.

The simulator used for the test is Dynacar by Tecnalia, which permits the precise modelling

of the vehicle dynamics. For the simulations, we have used a model of a Renault Twizy that

is Tecnalia’s platform for automated driving applications (Figure 5).

2.3.2 Results

Our approach has been tested with three vehicles in two different scenarios: i) an overtaking

manoeuvre with enough distance to finish it, and ii) an overtaking manoeuvre without enough

distance to finish it.

The first scenario includes 3 vehicles, where the first is the automated vehicle (the

Deliverable D5.3 – Report on Application Simulation Data and Experimental
Results
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2. AUTOMATED DRIVING USE CASE

(a) Passing. (b) Taking the other

lane.

(c) Overtaking. (d) Returning.

(e) Lateral offset. (f) Lateral error.

(g) Angular error. (h) Vehicle and reference speed.

Figure 6: Results of test case 1.

overtaking vehicle), the second vehicle (blocking) is driving at low speed, and the third vehicle

is moving in the opposite direction (left lane).

Figures 6(a) to 6(d) show the process of automated overtaking at 4 different time instances:

i) the third vehicle passing, ii) the first one taking the opposite lane, iii) the overtaking process,

and iv) returning to the right lane. In this case, the third vehicle did not affect the overtaking

process.

The information can be validated by observation of the control variables where Figure 6(e)

shows the lateral offset planned for overtaking, without any change to the intention of the

overtaking vehicle. It continues to increase the offset from 0 to 5 meters without any change.

The value of 5 meters refers to the distance from the middle of the starting lane to the middle

of the opposite lane.

Figure 6(f) and 6(g) depict good tracking of the lateral reference, with a lateral error elat

of approximately 0.75[m] for around 3 seconds. The angular error eang (heading tracking

error) has shown a maximum deviation between the vehicle heading and the angle of the

reference path of 6◦ during the overtaking manoeuvre. Additionally, the smooth evolution of

both variables results in a comfortable ride for the passengers. The speed remains constant

after arriving at top speed, since the manoeuvre is not affected by the oncoming vehicle.

The second test case uses the same 3 vehicles. The sequence in Figure 7(a) shows a 200

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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2. AUTOMATED DRIVING USE CASE

(a) Time secuence for overtaking in test case 2.

(b) Lateral offset.

(c) Lateral error.

(d) Angular error.

(e) Vehicle and reference speed.

Figure 7: Results of test case 2.

meter long road segment with two lanes, each 5 meters wide. In this test case, vehicle 1 is

trying to execute an overtaking manoeuvre based on the information arriving from vehicle 2

and the distance between it and vehicle 3 (Figure 7(a) top part at 2 seconds). Vehicle 1 starts

the overtaking manoeuvre, but the information sent by vehicle 3 causes vehicle 1 to remain in

its lane and to adapt its speed (plots between 5 and 9 seconds). Then, vehicle 1 continues the

overtaking manoeuvre (from 9 to 13 seconds) until it starts the returning process (from 13 to

17 seconds), arriving in the original lane at the end (19 seconds).

Figure 7(b) shows the process of returning to the right lane due to the blockage of vehicle

3 travelling in the opposite direction. It occurs between 5 and 9 seconds and it shows a

reduction of the offset from 2 meters to less than 0.75 meters, doing a safe correction to avoid

a possible collision.

Figures 7(c) and 7(d) show the tracking of the lateral controller, where the maximum

lateral error elat is under 0.75 meters. The angular error eang is lower than 7 degrees with

respect to the angle along the path.

Figure 7(e) depicts the speed correction made by the system to avoid the third vehicle for

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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Figure 8: DLR’s automated vehicle FASCarE.

safety reasons. Vehicle 1 reduces the speed to adapt it to the speed of vehicle 2, avoiding a

potential rear end collision.

2.4 Real vehicle results

2.4.1 Scenario and tools

For this use case, DLR’s vehicle (FASCarE) shown in Figure 8, was used. Three experiments

have been carried out on the real platform plus a virtual automated vehicle and simulated

obstacles. Experiment A and B use the same scenario of a 500m long two-lane road, with the

same driving direction for both lanes and two static obstacles at distance of 280m and 350m.

Both vehicles start at 20m with vx = 0 in adjacent lanes and accelerate up to the maximum

velocity of 16.7m/s.

Experiment C is a simulated urban scenario with high lane curvatures and a varying

number of lanes. As in A and B, two static obstacles are placed at different positions to

perform the lane changes. A slow vehicle, with a maximum velocity of 7m/s is placed 35 m

ahead of the fast vehicle, which leads to the fast vehicle catching up to the slow vehicle right

in front of the first blocking obstacle.

2.4.2 Results

The results of experiment A are shown in Figure 9 for four points in time: before, during and

after the cooperation. The physical vehicle 0 on the right lane and the simulated vehicle 1 on

the left lane arrive at their top speed with only a minor deviation in x-distance. At t1 vehicle

0 (blue) sends a cooperation request to vehicle 1 (red) to reserve the green area on the left

lane for a reservation start time t3 and directly receives a confirmation message. Vehicle 1

starts braking at t1 to avoid the reserved area, so that vehicle 0 is ahead of vehicle 1 at t2.

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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2. AUTOMATED DRIVING USE CASE

(a) Exp. A: trajectories and reservation.

(b) Exp. A: velocity. (c) Exp. A: acceleration.

(d) Exp. B: trajectories and reservation.

(e) Exp. B: velocity. (f) Exp. B: acceleration.

Figure 9: Cooperation of a physical and a simulated vehicle.

Vehicle 0 changes the lanes and enters the reserved area in front of vehicle 1. At t3, vehicle

1 starts to accelerate back to the allowed speed limit. Both vehicles then non-cooperatively

execute a lane change to the right lane, to avoid the second obstacle.

The results of experiment C are shown in Figure 10. The slower vehicle 1 (red) initially

changes to the left lane at the entrance to the curve, as it is already aware of the blocked left

lane at the exit of the curve. Vehicle 0 (blue) intends to drive faster and tries to overtake

vehicle 1 by pursuing the inner, right lane. Due to the upper bound on lateral acceleration,

it is limited to a similarly low speed inside the curve. At t = 80s depicted in Figure 10(a),

vehicle 0 reserves a portion of the outer lane in front of vehicle 1. The reservation is shown in

yellow, as it subsequently becomes active at t = 83s. Vehicle 1 reduces its velocity (coming to

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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(a) Taking the other lane.

(b) Taking the other lane.

(c) Taking the other lane.

Figure 10: Results of test case 1.

a standstill at t = 83s due to the low initial velocity), in order to avoid the reserved area. As

shown in Figure 10(b) for t = 83s, vehicle 0 changes lanes into the centre of the active (green)

reservation area. With the faster vehicle 0 ahead, both vehicles go on to non-cooperatively

change lanes to avoid the second obstacle on the left lane as well as the closure of the right

lane (Figure 10(c) for t = 107s), while approaching admissible top speeds on the straight

parts of the road and reducing the speed appropriately during curves.
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(a) Starting

(b) Cooperating

(c) Overtaking

(d) Avoiding and finishing

Figure 11: Cooperative overtaking between Tecnalia and DLR.

2.5 Real vehicle in cooperative scenarios

2.5.1 Scenario and tools

The final test case was done with both vehicles (DLR and Tecnalia) in a straight and curved

environment. Both vehicles were running different programs and architectures, but use the

same principles for trajectory planning and cooperation agreement. A sequence of pictures is

shown in Figure 11.
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2.5.2 Results

(a) Preparing the overtaking

(b) Tecnalia’s overtaking process

(c) DLR’s overtaking process

(d) Returning to the main lane

Figure 12: Overtaking scenario using Tecnalia and DLR platforms.
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(a) Preparation of the cooperation agreement

(b) Acceptance of the cooperation

(c) Returning to the lane and cooperation finished

(d) Lane following in the urban scenario

Figure 13: Overtaking scenario using cooperation between Tecnalia and DLR platforms.

The results are summarized in Figures 12 and 13. In Figures 12 both vehicles did an
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overtaking manoeuvre considering a static obstacle. In this case the cooperation manoeuvre

was not established because the lead vehicle was blocking the gaps for the follower. After

this manoeuvre ends, the follower vehicle keeps to the right lane to analyse the possibility of

a cooperative overtaking manoeuvre with the other automated vehicle (Figure 13). When

the red vehicle accepts the cooperation agreement, it starts to consider the reservation as an

obstacle that it must avoid, allowing the safe manoeuvring of the blue vehicle. After, the

cooperation is finished the lane following process continues normally.

2.6 Conclusions

In the automated driving use case, a linear model predictive approach with a decoupled

lateral and longitudinal model was developed and verified. This approach has the capability of

managing standard manoeuvres for automated vehicles, as well as lane keeping, lane changing

and overtaking. Additionally, a cooperation method is provided, based on communications

between vehicles, optimizing the overtaking process.

The results show that introducing this linear model can achieve the safe future conditions

considered in the manoeuvre planning. Additionally, it is fast enough to use other verification

methods to activate external emergency manoeuvres in the worst case.

The cooperation agreements between vehicles have been done considering space reservations

and kinematic models to project the future reservation space in time. This method shows good

results in the case of complicated manoeuvres such as overtaking, improving and ensuring its

safety.
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3 Smart Grid Use Case

In this section we address an energy management problem for a smart grid according to a

data-driven approach with probabilistic guarantees on the achieved performance.

We consider the smart grid testbed in Figure 14, which was set up at General Electric

Global Research Center (GERC) in Munich, Germany, in the Hertz Lab. The testbed comprises

only a few elements, that is photovoltaic (PV) solar panels, a (simulated) electrical load, a

battery, and related interfaces to the control unit, with inverters and metering systems. The

smart grid is connected with the main grid, which can eventually provide the energy needed

for balancing demand and generation.

Electrical energy storage systems are becoming more and more widely used, in particular,

as a means to deal with the intermittent and non-controllable nature of the power production

by renewable energy supply systems such as solar PV installations and wind turbines, since

they can serve the purpose of storing energy when production exceeds demand and releasing

it when load request exceeds generation, see e.g. [14] and the references therein. Studies

on electrical storage systems suitable for energy management in small grids or even single

building applications, [31], and even stand-alone electricity generation systems relying to a

significant extent on the supply of solar or wind energy, have been developed in the literature,

[22].

The goal here is to define a strategy for the battery usage so as to compensate for the PV

energy production fluctuations and guarantee that the energy exchange with the main grid is

as close as possible to a nominal profile, within certified bounds, with reference to a one-day

time horizon. This will reduce the uncertainty that the main grid is experiencing and, in a

more global perspective of distributed energy resource systems, simplify the task of the main

grid operator when defining the reservers and ancillary services needed to safely operate the

grid, avoiding service disruption.

Due to the stochastic nature of the PV energy production, the problem is naturally

formulated in a stochastic framework and the challenge becomes providing the probabilistic

guarantees on the region where the energy request to the main grid is confined, based

on a limited number of PV energy production profiles only, and some measurements of

environmental data on irradiance and air temperature. Some energy production profiles of

the PV installation and environmental data on irradiation and temperature are available for

the design of the energy management strategy, together with a hybrid model for the battery

and the electrical load profile. A data-driven solution resting on the so-called scenario theory,

[13], originally introduced in [10, 11] to address robust design and then extended to chance
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constrained optimization in [12], is proposed.

It is worth noticing that, despite the simplicity of the considered set-up, the resulting

smart grid energy management problem presents some of the key difficulties (control of a

hybrid system modeling the battery, presence of stochastic uncertainty due to renewable

energy sources) encountered in the energy management of large-scale smart grids.

All available data are described at the end of Section 3.3.2 and can be downloaded from

the website http://cps-vo.org/group/ARCH/benchmarks.

The rest of the section is taken from [21] and organized as follows. We describe the smart

grid configuration in Section 3.1. The benchmark energy management is presented in Section

3.2. A data-driven solution is proposed in Section 3.3 and its performance is assessed in

Section 3.4. Concluding remarks are drawn in Section 3.5.

Figure 14: Smart grid configuration.

3.1 Description of the smart grid configuration

The testbed consists of a PV installation with the associated PV inverter, a programmable

load simulator, a battery storage unit with its inverter, and a grid interface. Four smart meters

provide measures of the involved energy flows, with the meters of the PV installation and a

battery located downstream the corresponding inverters so as to include power conversion

losses. A control interface is connected to the inverters via a serial RS-485 interface and can

collect from them monitoring data and also set some of their configuration parameters. This

latter functionality, in particular, allows to control the energy exchange with the battery.
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The control strategy for the battery is implemented via NI Labview (http://www.ni.

com/labview/), which runs on a desktop personal computer located in the control room. An

Ethernet based Local Area Network (LAN) makes the control room communicate with the

control interface, the meters, and the programmable load, via the MODBUS protocol.

Model of the electrical storage unit

A Li-ion battery from IBC-Solar is adopted for electrical energy storage in the considered

testbed. The battery is combined with an SMA SunnyIsland inverter. A Battery Management

System (BMS) at the interface of the battery with the inverter prevents its overheating (for

safety) and deep discharge (to avoid shortening the battery life). The main role of the BMS

is driving the inverter and selecting the working point on the voltage-current curve so as to

track the desired power flow while pursuing the maximal efficiency for the battery.

From now on we will refer to the battery together with its inverter as the storage, and

we shall derive a model of the storage for the design of the smart grid energy management

strategy.

The plot on the left of Figure 15 represents the results of a power flow tracking experiment.

Note that the power flow can be controlled with a high precision (of the order of 10 W) and

that the storage system presents a fairly symmetric behavior when charging and discharging,

with the power dynamics overshooting when the operational mode changes from charging to

discharging or viceversa. Since the transient duration when commuting is of the order of 10

seconds and we are interested in a time scale of minutes, we shall neglect this fast dynamics

in the model of the storage.
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Figure 15: Power flow tracking experiment (left) and a cycle where the storage is discharged and

charged at maximal rate (right).

Figure 15 shows on the right a cycle where the storage is first discharged and then charged
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at a maximum constant power rate of about ±3.8 kW when its state of charge (SOC) is

between 5% and 95%. As the SOC grows beyond 95%, the maximum charging power rate

decreases exponentially. Other experimental tests suggest not to reduce the SOC of the

storage below 5% since the power flow control could be overtaken by the BMS to the purpose

of preventing deep discharge. It is then convenient to limit the operational SOC range of the

storage system between 5% and 95%.

The maximum power rates in charging and discharging that were tested are of about 3.797

kW and 3.822 kW, respectively. Charging and discharging rates depend on the SOC and the

battery temperature. Empirical insight suggests to take 3.5 kW as maximum power rate in

both the charging and discharging phases since this is the (maximum) value that is possible

to track in all SOC and temperature operating conditions. The round trip efficiency is 4.07%

and it is calculated as the energy mismatch for discharging the storage from 76% to 5% SOC

and then recharging it back to 76% SOC as shown in the experiment reported on the right

plot of Figure 15. The same experiment allows to estimate the capacity of the storage that is

24.780MJ (22.680 MJ according to the datasheet).

Based on the experimental observations described above, we can introduce a sampling

time interval ∆ and model the storage system as a discrete time hybrid system where the

stored energy x evolves according to

x(k + 1) = ax(k) + b(u(k))u(k), (3)

where u(k) represents the energy fed into (u(k) > 0) or drawn from (u(k) ≤ 0) the storage in

the k-th time slot of duration ∆, and it is re-scaled by coefficient

b(u) =


1− εu u > 0

1 + εu u ≤ 0,

with εu ∈ (0, 1). This coefficient accounts for the round trip efficiency: if we feed the storage

with an amount of energy Ein, then the storage content increases by (1− εu)Ein, and if we

draw an amount of energy Eout, the storage content decreases by (1 + εu)Eout. Given that in

a cycle where the storage is charged and discharged we waste a percentage of energy equal to

4.07%, then we can easily compute εu as follows 0.0407Ein = Ein− (1− εu)Ein/(1 + εu), thus

getting εu ' 0.02. Notice that we assume exchange losses to be symmetric between charging

and discharging. Parameter a in (3) depends on ∆ and accounts for the self discharging of

the storage (Faradaic efficiency), which in the considered storage system turns out to be quite

small. More precisely, if we set the sampling time equal to ∆ = 1 minute, then a = 0.9998.
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Figure 16: Simulated load profile. Values refer to electrical energy request per minute.

Model (3) is valid when the SOC of the storage is within 5% and 95%, which translates

into the constraint

xmin ≤ x(k + 1) ≤ xmax, k = 0, 1, . . . , kf − 1, (4)

where xmin = 1.239 MJ (5% SOC) and xmax = 23.54 MJ (95% SOC). The energy exchanged

with the storage is subject to the following constraint:

umin ≤ u(k) ≤ umax, k = 0, 1, . . . , kf − 1, (5)

where umax = −umin = ū∆, ū = 3.5 kW being the maximum power rate in both the charging

and discharging phases. If ∆ = 1 minute, then, umax = −umin = 0.21 MJ.

Electrical load

Prodigit 32612A is a device which can simulate both AC and DC electrical loads, with a

maximum voltage of 300 V and maximum power of 5.4 kW, and is commonly used for inverter

testing. In the smart grid testbed, it simulates the purely resistive load in Figure 16 that

represents a typical household application rescaled so that its daily integral is comparable

with the PV installation average daily energy production.

Notice that the simulated load is deterministic. The stochastic ingredient is brought into

the problem by the PV energy production which is added to the load demand in the grid

energy balance equation. The proposed approach to the design of an energy management

strategy can be easily extended to the case when both the PV energy production and the

load are stochastic.

PV installation & inverter

The testbed is equipped with a PV installation composed of 10 Hanwha HSL72 Polycristalline

silicon modules 300 W each for an overall nominal power of 3 kW. These panels are placed
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Figure 17: Weather station (on the left) and module temperature sensor (on the right).

on the roof of the Hertz lab and connected to the smart grid via a SMA Sunny Boy Inverter.

The rack is facing south and is tilted by 28 degrees.

The SMA Sunny Boy converts the direct current of the PV array to grid-compliant

alternating current and feeds it into the utility grid. The inverter can communicate with the

control interface via a serial RS-485 interface.

A weather station equipped with irradiance and temperature sensors is placed on the roof

of the Hertz lab (see Figure 17). Tilted global irradiance measures are made available through

an irradiance silicon sensor tilted by 28 degrees and oriented to the south so that its measures

are consistent with the radiation received by the array of PV panels. The temperature of

each PV module is measured by a thermocouple placed on its backside, as shown in Figure

17. Measures are sampled every thirty seconds and stored in a database.

3.2 Energy management problem

Consider a one-day time horizon, discretized into kf = 1440 time steps of length ∆ = 1 minute.

The energy g exchanged with the main grid at step k ∈ {0, 1, . . . kf − 1} corresponding to the

time frame [k∆, (k + 1)∆) is given by the energy balance equation

g(k) = `(k)− d(k) + u(k), k = 0, 1, . . . , kf − 1, (6)

where g(k) > 0 if the main grid provides energy to the smart grid in the k-th time frame, and

g(k) < 0 viceversa. All quantities `(k), d(k), u(k) refer to the k-th time frame and represent,

respectively, the electrical load energy request, the energy produced by the PV installation,

and the energy exchanged with the storage.

The load request ` is set equal to the (deterministic) profile in Figure 16. The energy

exchanged with the storage u affects the storage content according to the model (3) in Section

3.1, and is subject to the constraints (4) and (5). The PV energy production profiles are

uncertain and we assume that they are realizations of an underlying stochastic process,

distributed according to some probability measure P. Probability P is not known explicitly
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but only indirectly through a dataset of PV energy production profiles.

The goal is to appropriately set the charge/discharge of the battery so as to keep the

energy exchange with the main grid along the one-day time horizon as close as possible to a

suitably designed nominal profile, avoiding high fluctuations due to the energy production

from renewable solar power. The nominal profile can be optimized so as to minimize the

variability range of the energy exchanged with the main grid, while providing certified bounds

on its extent. Given that the PV energy production is uncertain, the bounds are guaranteed

in probability.

More precisely, let ḡ(k), k = 0, . . . , kf − 1, be the nominal profile to be jointly optimized

with the energy exchanged with the battery u(k), k = 0, . . . , kf − 1. Then, the energy

management problem can be formulated as the following chance-constrained optimization

program

min
hg ,ḡ(k),k=0,...,kf−1
u(k),k=0,...,kf−1

hg (7)

subject to: P
{∣∣∣ (j+1)w∑

k=jw+1

δg(k)
∣∣∣ ≤ hg, j = 0, 1, . . . , bkf/wc − 1,

xmin ≤ x(k + 1) ≤ xmax, umin ≤ u(k) ≤ umax, k = 0, . . . , kf − 1
}
≥ 1− ε,

where the extent of the fluctuations δg(k) = g(k)− g(k), k = 0, . . . , kf − 1, integrated over

time windows of length w, 1 ≤ w ≤ kf , is minimized through its upper bound hg, while

imposing the actuation constraints (4) and (5). Note that the minimization of hg is performed

jointly with the constraint enforcement over a set of realizations of the PV energy production

of probability larger than or equal to 1 − ε, where the violation probability ε ∈ (0, 1) is a

design parameter and modulates the reachability region extent: the smaller ε, the larger the

reachability region. The presence of the time window length parameter w adds some flexibility

to the problem: if w = 1, then, fluctuations over a time scale of length ∆ = 1 minute are

minimized, whereas choosing w > 1 can accomodate for a larger time scale of operation at

the main grid level.

The challenge is now to solve the chance-constrained optimization program (7) – which is

a difficult problem on its own, [35, 36] – knowing P only indirectly, through a limited number

of PV energy production profiles and some measurements of environmental data on irradiance

and air temperature.

We shall next describe a data-driven solution to this problem. The proposed approach

can also be applied to variants of the problem like, e.g., the case when the nominal profile

is assigned and given by the main grid operator, or when both PV generation and load are
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stochastic and P represents their joint probability distribution.

3.3 Proposed data-driven solution

We describe first the control policy parametrization and then the adopted scenario solution.

3.3.1 Control policy parametrization

Given that the PV energy production d is available through measurements and the goal is

to limit its impact on the energy exchange with the main grid, we shall adopt a disturbance

compensation scheme where the control input u is chosen as

u(k) = γk +
k−1∑
j=0

θk,j(d(j)− d̄(j)), (8)

d̄ being the expected value of the PV energy production d. The parameters γk ∈ R and

θk,j ∈ R are decision variables to be optimized. Let

u =


u(0)

u(1)
...

u(kf − 1)

 d =


d(0)

d(1)
...

d(kf − 1)

 ` =


`(0)

`(1)
...

`(kf − 1)

 g =


g(0)

g(1)
...

g(kf − 1)


be the vectors collecting all relevant quantities to the energy balance equation (6) along the

reference one-day time-horizon. Then, (6) can be rewritten in vectorial form as

g = `− d + u (9)

and the following expression can be derived for u as a function of d:

u = Γ + Θ(d− d̄), (10)

where Γ and Θ are given by

Γ =


γ0

γ1

...

γkf−1

Θ =


0 0 · · · 0

θ1,0 0
. . .

...
...

. . .
. . . 0

θkf−1,0 · · · θkf−1,kf−2 0

 .

By plugging (10) into (9) and reordering some terms, we obtain

g = `− d̄ + Γ + (Θ− I)(d− d̄). (11)
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We can then set

g = `− d̄ + Γ (12)

δg = (Θ− I)(d− d̄) (13)

and rewrite (11) as g = g + δg. The quantities g and δg in (13) represent, respectively, the

nominal exchange profile with the main grid and its fluctuations. Note that δg depends only

on Θ and cannot be set equal to zero by imposing Θ = I since Θ is lower triangular due to

the compensation scheme causality. Also, Θ cannot be set arbitrarily since the actuation

constraints on the storage capacity and energy exchange rate (see (4) and (5)) have to be

satisfied. The nominal profile g depends only on Γ and not on Θ. However, the choice of Γ is

coupled with that of Θ due to the actuation constraints, which are next written in vectorial

form for uniformity. This is straightforward for the constraint on the energy exchange rate:

1umin ≤ u ≤ 1umax, (14)

where 1 is a vector with all elements equal to 1 of the same dimension of u. As for the storage

capacity constraint, in order to make it explicit as a function of u, we first need to define the

stored energy vector x =
[
x(1) x(2) . . . x(kf )

]>
. Then, it is easily seen from (3) that

x = Fx0 +G (I − εudiag(sign(u))) u (15)

where x0 is the initial storage content, diag(sign(u)) is the diagonal matrix with the sign of

the elements of u on the diagonal, and matrices F and G are given by

F =


a

a2

...

akf

 G =


1 0 · · · 0

a 1
. . .

...
...

. . .
. . . 0

akf−1 · · · a 1

 .

This finally leads to the following vectorial form for (4)

1xmin ≤ Fx0 +G (I − εudiag(sign(u))) u ≤ 1xmax,

which – by observing that the inequality |Gεudiag(sign(u))u| ≤ εuG1 maxk=0,1,...,kf−1 |uk|

holds componentwise – can be enforced by adopting the conservative approximation

1xmin + Ξh(u) ≤ Fx0 +Gu ≤ 1xmax − Ξh(u), (16)

where Ξ = εuG1 and h(u) = maxk=0,1,...,kf−1 |uk|. This approximation in practice reduces the

model of the storage from hybrid to linear, and simplifies the design of the energy management

strategy.
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We can now finally formulate the energy management problem in terms of the following

chance-constrained optimization program

min
Γ,Θ,hg ,hu

hg + ρg ‖ g ‖2 +ρuhu (17)

subject to: P
{∣∣∣ (j+1)w∑

k=jw+1

δg(k)
∣∣∣ ≤ hg, j = 0, 1, . . . , bkf/wc − 1, |u| ≤ 1hu,

1xmin + Ξhu ≤ Fx0 +Gu ≤ 1xmax − Ξhu,1umin ≤ u ≤ 1umax

}
≥ 1− ε

which differs from (7) in that the penalization terms ρg ‖ g ‖2 and ρuhu with weights ρg, ρu > 0

are added to hg. This is in order to have a uniquely defined solution for Γ, and to reduce the

conservatism of the approximated storage capacity constraint (16), respectively.

3.3.2 Scenario solution

Given that the probability P is not known and only a set of realizations {d(i), i = 1, . . . , N}

extracted from P is available, we shall formulate the following scenario optimization problem

with constraint removal to approximate the original chance-constrained program:

min
Γ,Θ,hg ,hu

hg + ρg ‖ `− d̄ + Γ ‖2 +ρuhu (18)

subject to:



∣∣∣ (j+1)w∑
k=jw+1

(Θ− I)(d(i)(k)− d̄(k))
∣∣∣ ≤ hg, j = 0, 1, . . . , bkf/wc − 1

1xmin + Ξhu ≤ Fx0 +GΓ + Θ(d(i) − d̄) ≤ 1xmax − Ξhu

1umin ≤ Γ + Θ(d(i) − d̄) ≤ 1umax

|Γ + Θ(d(i) − d̄)| ≤ 1hu

i ∈ {i1, i2, . . . , iN−bηNc},

where η ∈ [0, ε) is the empirical violation parameter and {i1, i2, iN−bηNc} ⊆ {1, 2, . . . , N}

contains the indices of N − bηNc out of the N available PV energy production realizations,

which should be selected so as to best improve the cost. Each one of the removed bηNc

realizations should change the solution if included in the scenario program (18).

If N is appropriately selected, the solution to the scenario program (18) is feasible for the

original chance constrained problem (17). This is stated in the following proposition whose

proof follows directly from [12] with the only difference that the cost is not linear and one has

then to apply the considerations stated in the proof in [16, Appendix A].

Proposition 1. Select a confidence parameter β ∈ (0, 1) and an empirical violation parameter
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η ∈ [0, ε). If N satisfies(
bηNc+ n− 1

bηNc

) bηNc+n−1∑
i=0

(
N

i

)
εi (1− ε)N−i ≤ β,

where n denotes the number of optimization variables in (18), with probability no smaller than

1− β, the solution to the scenario optimization problem with constraint removal (18) satisfies

the probabilistic constraint in (17).

Not surprisingly, feasibility of the scenario solution holds with a certain confidence 1− β.

This is because the scenario solution is a random quantity that depends on the extracted

multi-sample d(1), d(2), . . . , d(N). If a bad multi-sample is extracted, the feasibility property

does not hold, but this event becomes more and more unlikely as N increases. The dependence

on β is logarithmic (see [5, 34]) so that it can be set quite small without growing too much N .

Though the feasibility of the randomized solution is guaranteed for every η ∈ [0, ε), the closer

η is to the desired violation probability ε, the better the randomized solution approximates

the actual solution to the chance-constrained problem. At the same time, however, N grows

to infinity as O( 1
ε−η ) when η → ε, [12], so that one should choose η based on the available

computational resources.

The proposed data-driven approach requires a relatively large collection of electrical energy

production profiles from the PV installation in the smart grid. 30 day of measurements

were performed in August 2016. Only 28 out of the 30 PV power production profiles turned

out to be not corrupted due to malfunctioning of the measurement system. PV module

temperature, irradiation, and air temperature profiles were also collected. A further dataset of

220 irradiation and ambient temperature profiles is available. Data were collected during July,

August, September of 2010, 2011, 2015, and 2016. The idea is then to reconstruct further PV

power production profiles from this latter dataset. This is described in the following Section

3.3.3.

3.3.3 PV energy production profiles reconstruction

Reliable profiles can be reconstructed from environmental data on air temperature and

irradiance. This topic is well investigated in literature (see e.g. [37]) and the use of photovoltaic

power models is common practice in applied power forecasting, plant performance evaluation

and design [15]. The module power production PM (t) at time t can be expressed as a static

function of the irradiance on the tilted surface I(t) and the temperature of the module TM (t)

as

PM (t) = P
I(t)

I

(
1− α

100

(
TM (t)− T

))
, (19)
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where T = 25oC and I = 1 kW/m2 are the standard test temperature and irradiance, P

represents the nominal power production of the panel, measured in the testing conditions of

TM = T and I = I = 1 kW/m2. The temperature coefficient α is introduced to take into

account the performance degradation of the panel due to overheating. In normal working

conditions a module can heat up to 70/80oC (how much depends on the panel technology

and application), and this affects significantly the solar cell efficiency [17]. This is the case,

in particular, for the polycrystalline solar panels in the testbed, which have slightly higher

temperature coefficients than panels built with other technologies (e.g. Cadmium Telluride

CdTe solar panels).

We shall next use the dataset of August 2016 to determine the parameters in model

(19). We shall then identify a model that provides the temperature of the module, based on

the irradiance and air temperature. By means of the two identified models we are able to

reconstruct the PV energy production profiles from the dataset containing only irradiance

and air temperature profiles.

Power model identification: Equation (19) can be rewritten in regression form as

PM (t) = ν>φ(t), (20)

where ν> =
[
P αP

]
and φ(t)> =

[
I(k)/I −I(k)10−2/I

(
TM (t)− T

)]
.

Data of PV power production, irradiance, and module temperature measured over 30 days

in August 2016 are reported in Figure 18, with a sampling time of 1 minute for the power

production and 30 seconds for irradiance and temperature. Over 43200 collected samples,

corrupted data due to inactivity of the test plant (i.e. maintenance) and/or missing data

from the weather or temperature measurement device and night time values are discarded.

nd = 19337 samples, corresponding to 90% of the available data, are used to identify the

parameters vector ν by the least squares method, i.e.,

ν =

(
nd∑
k=1

φ(k)φ(k)>

)−1 nd∑
k=1

φ(k)PM (k).

The obtained parameters are P = 2.1096 kW and α = 0.6566oC−1, which are similar to the

values in [38]. The remaining 10% of the data are used for model validation. Statistics of the

power model error are presented in Figure 19. From the empirical cumulative distribution

function of the absolute value of the power error, we can observe that with 90% probability it

is lower that 0.1842 kW, which is less than 8% of the nominal power P . The expected value

for the power error is 0.0084 kW and from the histogram we can see that the error is quite

concentrated around the mean.
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Figure 19: Power model error statistics.

Thermal model identification In order to reconstruct the module temperature from

environmental measures of air temperature and irradiance, we propose a variant of the

following model, that is proposed by Sandia National Laboratories, a multi-program laboratory

managed and operated by Sandia Corporation operating for the U.S. Department of Energy’s

National Nuclear Security (http://pvpmc.sandia.gov/modeling-steps/2-dc-module-iv/

module-temperature/):

TM (t) = cT I(t)eb1+b2W (t) + TA(t), (21)

where cT = 1oCW−1m2, and b1 and b2 are parameters that depend on the module construction

and materials and on its mounting configuration and their values can be found in technical

references and manuals for various common module types and configurations. Model (21) is

static and expresses the temperature of the module TM (t) at time t as a function of the air

temperature TA(t), wind speed W (t) and irradiance I(t). It is conceived for the estimation of

the average module temperature over relatively long time periods (i.e., with a duration larger

than 10 minutes). In our case, we need a smaller time resolution and, hence, we introduce a

first-order dynamics modeling the thermal transients of the module, thus replacing the static

model (21) with the following discrete time dynamic model:

TM (k) = a1TM (k − 1) + a2

(
cT I(k)eb1+b2W + TA(k)

)
. (22)

Note that in (22) the wind speed is replaced with its average value W , which will then be

estimated from data together with b1 and b2.

In order to retain the physical features of the original static model, parameters a1 and

a2 are chosen so that in stationary conditions (i.e., when TM (k) = TM (k − 1)) model (22)

matches the original static model

a2

1− a1
= 1⇔ a2 = 1− a1. (23)
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Figure 20: Module temperature error statistics.

Finally, by setting a3 = (1− a1)eb1+b2W and replacing a2 with its expression as a function of

a1 in (23), model (22) is re-parameterized as

TM (k) = a1TM (k − 1) + a3cT I(k) + (1− a1)TA(k). (24)

Parameters a1 and a3 are then identified by minimizing the mean square prediction error

J(a1, a3) =
1

nd

nd∑
k=1

(
TM (k)− a1TM (k − 1) + a3cT I(k) + (1− a1)TA(k)

)2
,

subject to the physical constraints 0 ≤ a1 < 1 and a3 > 0. Data referring to day time only

were used in the identification since nocturnal radiative cooling effects are not captured in the

proposed model. Identification is performed on nd = 5436 samples, roughly 70% of daytime

data measured every 30 seconds in a 6 days long record, the remaining 2300 (30% of data)

are then used for validation.

The identified parameters values are a1 = 0.8682 and a3 = 0.0046. The mean value of the

prediction error (considering day time only) is 0.049oC. The empirical cumulative distribution

function of the absolute value of the prediction error plotted in Figure 20 shows that for

90% of the samples the magnitude of the prediction error is smaller than 2.227 oC for the

dynamical model (22). This value roughly doubles in the case we use the original static model.

This error magnitude appears acceptable based on some studies in the literature (see e.g.,

[25]).

Power data reconstruction: We use irradiance and air temperature data records for the

period of July, August, September of the years 2010, 2011, 2015, and 2016 for an overall

number of 220 daily realizations to first reconstruct the module temperature and then to

obtain realizations of PV power production. Some post processing to lower the noise on

top of the tails for the reconstructed realizations due to the irradiance sensor was then

performed. In Figure 21 the daily mean profile of the reconstructed data set and that of
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Figure 21: Comparison between empirical mean of the PV energy production profile per minute

obtained based on the 28 measured realizations (blue line) and on the 220 reconstructed realizations

(red line).

the real measurements are compared: the latter is more oscillating and noisy because of the

limited number of realizations (only 28 measurements). The main differences can be found at

the very beginning and at the end of the production period, which are most probably due to

some model error for the power production at low value of irradiance.

3.4 Performance assessment of the proposed energy management strategy

We shall next illustrate the performance that one can achieve with the proposed approach,

based on the available dataset.

Recall that the sampling time is set equal to ∆ = 1 minute. The storage system is initially

charged at 50% SOC, i.e., x0 = 12.390 MJ. Γ and Θ in (10) are parameterized as

Γ = γd, Θ =



0 0 · · · 0

θ1 0
. . .

...

θ2 θ1 0
...

. . .
. . . 0

0 · · · θ2 θ1 0


in order to reduce the number of optimization variables in the scenario optimization program

(18) to n = 5. The weighting parameters in (18) are set equal to ρg = ρu = 10−4. The time

window length is w = 10. Confidence, violation, and empirical violation parameters are given

by β = 10−3, ε = 0.15, and η = 0.035. Correspondingly, the bound in Proposition 1 is satisfied

with N = 220 reconstructed scenarios of PV energy production. The number of constraints to

be removed is 7. The expected value of the PV energy production d̄ was estimated as the
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empirical mean of the 220 reconstructed production profiles (see Figure 21).

The obtained solution of the scenario optimization program (18) is: γ? = 0.1290, θ?1 =

0.3495, θ?2 = 0.1720, h?g = 0.3324, h?u = 0.0455.

Figure 22: ε-reachability region obtained with the designed energy management strategy using the

storage (green inner tube centered on the solid blue line) together with the energy exchange profiles

with the main grid corresponding to the 28 measured PV production realizations (red lines). The

ε-reachability region obtained without storage is the wider light blue outer tube centered on the dashed

blue line.

The green inner tube centered on the nominal profile g? = γ?d̄+`− d̄ (blue solid line) with

width 2h?g in Figure 22 represents the ε-reachability region containing all profiles of energy

exchange with the main grid integrated over time windows of length w∆ = 10 minutes except

for a set of probability smaller than ε = 0.15, with high confidence (≥ 1 − β = 1 − 10−3).

The 28 realizations of energy exchange with the main grid corresponding to the measured

PV energy production profiles are plotted in the same figure, for validation purposes. For 4

of them, the constraints in the optimization program are violated. This fraction is actually

smaller than ε = 0.15. In Figure 22, we also plot the ε-reachability region obtained by

solving (18) with γ = θ1 = θ2 = 0, i.e, removing the storage system. In this case we obtain

h?g = 0.87026, which maps into the light blue outer tube centered on the dashed blue line

representing the reference nominal profile g = `− d̄.

In Figure 23, we plot the SOC evolution obtained with the optimal energy management

strategy evaluated on the 28 validation PV energy production profiles (blue lines). The red

thick line is the nominal charging profile Γ? = γ?d̄. The green dot-dashed lines represent

the conservative bounds adopted in (16). They are violated for 4 of the profiles. The actual
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Figure 23: Energy exchange with the storage for the measured PV energy production profiles

obtained with the designed energy management strategy (blue lines). The red solid line is its nominal

component. The red dashed and greed dot-dashed lines represent, respectively, the actual storage

capacity constraints and their conservative approximation adopted in the optimization program.

bounds (red dashed lines) are violated only for 2 of them. Note that the SOC evolutions

reported in Figure 23 include also profiles where the battery capacity constraints are violated.

This is possible because we are simulating the battery behavior for the purpose of verifying

that the ε violation probability is not exceeded. When implementing the proposed strategy on

the real battery, the control input will be set to zero (no energy exchange with the battery)

when the actual bounds on its capacity are violated.

Alternative strategies can be compared in terms of width of the ε-reachability region for a

given time window length w. Computation time is not an issue when the design is performed

off-line as in our approach. It becomes a relevant criterion when adopting on-line design

strategies like in model predictive control [30], where constrained optimization is repeated

at each time step, based on the current measurements, and only the first control action is

applied at each step (receding horizon implementation).

3.5 Concluding remarks

In this section, we consider energy management of a smart grid, where a storage system is

used to compensate the fluctuations of solar PV energy production so as to provide a certified

profile of the energy exchange with a main grid together with tolerance bounds.

The high penetration in the power grid of renewable energy sources characterized by

an uncertain generation profile calls for the design of suitable strategies to guarantee the
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balance between consumption and generation in order to avoid voltage instabilities and

possible outages. Solutions based on ancillary services and reserves are costly, and the idea

developed here is that fluctuations in energy production from PV panel installations could

be compensated at the level of the smart grid, thus alleviating the main grid operator task

and reducing costs. This has potential for significant impact at societal level in supporting

low-carbon economy and reducing carbon emissions.

The main challenge in addressing the problem is that only a limited number of data is

available for the energy management strategy data-driven design. As discussed in [8], this

highly constrains the complexity of the energy management strategy, which in our design was

given by a disturbance compensator parameterized by only three scalar optimization variables.

Different control parameterizations and control strategies can be conceived. If a receding

horizon implementation is adopted, then, improved predictions of the actual PV energy

production profile could be obtained via filtering techniques and used for the on-line design of

the control input, as suggested in [9].

A possibility to enable the design of a more complex and better performing energy

management strategy is to build a stochastic model of the PV energy production from the

available data, and then use this model to extract further realizations. This opens up a

new topic on the prediction of solar PV power production and requires further investigation.

A simple stochastic model based on principal components analysis was used in the recent

UnCoVerCPS work in [18] to generate the solar PV power production profiles and derive via

a scenario-based approach a periodic control strategy to optimally operate the battery in

(cyclo)stationary conditions.
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4 Human-robot collaboration use case 
  

The GRAIL Robot System, shown in Figure 24, is the system around which the human-

robot collaboration use case is based and is intended to be used for food assembly tasks 

carried out in collaboration with human co-workers and other robots.   It uses a vision 

system to locate ingredients and bases (the bread in this case) and assembles the 

sandwiches according to an operator-defined recipe.  The user interface allows the recipes 

to be created in a graphical drag and drop manner making it easy for even non-technical 

people to operate the system. 

 
Figure 24: The GRAIL Robot System in operation. 

Since most food manufacturing companies are SMEs, they often cannot afford the 

large investment necessary to completely automate a production line. To alleviate this 

barrier to adoption, the GRAIL Robot System is designed to be deployable alongside 

other workers (human or robotic) on an incremental basis.  It consists of a low-cost, 

lightweight, hygienic robot arm along with camera systems (not shown), control system 

(not shown) and user interface (not shown). 

The GRAIL Control System is used to control the robot arm so that it assembles 

sandwiches or other food products from the ingredients that arrive on one or more 

conveyors and bases that arrive on a different conveyor.  It also has the goal of 
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assembling these sandwiches as efficiently as possible so that fewer robots or human co-

workers are required to meet the necessary throughput requirements. 

The GRAIL Robot Control System consists of two parts: the motor control system 

and the GRAIL Control System.  The motor control system is responsible for the low-

level control of the motors in the robot joints and utilise, at the lowest level, commercially 

available motor controllers, one for each robot axis.  These provide closed-loop position 

control of the robot joint positions using a PID control algorithm.  The set points for 

these motor position control systems are provided by the GRAIL Control System.  The 

motor control system also contains the actuator that controls the air supply to the gripper 

which is also controlled via the CAN bus interface. 

The GRAIL Control System uses a vision system to determine the position of the 

ingredients and bases on the conveyors and generates the appropriate motion of the robot 

joints and actuation of the gripper to achieve the goal of assembling sandwiches.  It also 

takes inputs from position encoders fitted to the conveyors so that the motion of the 

ingredients and bases along the conveyors can be accounted for. 

The original GRAIL Robot System had no mechanisms to prevent collisions 

between the robot and human co-workers when they are working side-by-side on the same 

production line.  The system could only be made safe by the provision of physical barriers 

between the robot and co-workers.  In a typical factory, especially one used by an SME, 

space is limited and bulky cages or other physical separation methods are not appropriate. 

Traditional alternative methods using light curtains or safety-rated vision systems 

are too detrimental to the throughput of the system since they normally operate the 

robot’s emergency stop (E-Stop) circuit which requires a time-consuming restart 

procedure after activation. 

4.1 The GRAIL Simulation  

A comprehensive graphical simulation of the GRAIL robot system has been produced (see 

Figure 25).  The purpose of this is twofold:  first, it allows convenient debugging of the 

high-level robot control code without the difficulty and risks associated with testing new 

software on the real robot system, and secondly it allows for the efficiency of the system, 

in terms of the rate at which it can assemble sandwiches, to be measured under various 

scenarios without the time-consuming job of proving enough ingredients and bases on the 

conveyors to keep the system busy.  The simulation also makes it possible to generate 

more precisely controllable and repeatable system inputs in the form of ingredient arrival 

rate, bases arrival rate and co-worker behaviour than would be possible using the real 
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physical system.  This makes it possible to extract more meaningful numerical data from 

the tests that are performed. 

 

 
Figure 25: Annotated main simulator display. 

The graphical simulation can also be displayed during runs using the physical 

system.  In this case it mimics the behaviour of the various devices within the system and 

can provide additional debugging information.  It is also possible to run the system in 

mixed modes of operation in which some devices are fully simulated, whereas other 

devices are based on real-world physical implementations. 

The following sections describe each of the component parts of the GRAIL System 

that are modelled in the simulation.  

4.1.1 GRAIL robot 

The GRAIL robot has been modelled using an idealized realization of its forward and 

inverse kinematics (see [1], Section 5).  This model does not take into account various 

real-world aspects including: 

 Errors in construction of the robot which result in differences between its actual 

kinematics and the modelled kinematics. 

 Imperfections in the joint control system which results in both static (due to 

sensor position errors, flexing of the structure due to gravity, and backlash) and 

dynamic errors in the joint positions (due to imperfections in the feedback 

GRAIL robot arm 

Left-hand cight curtain 
Left-hand kinect densor 

Left-hand co-worker 

Conveyors 

Right-hand light curtain 

Right-hand co-worker 

Right-hand kinect densor 
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position control system causing velocity, acceleration and gravity dependent 

following errors and flexing when the joints are moving).  

 Slight imperfections in the calibration of the robot frame of reference relative to 

the other components in the system such conveyors, light curtains and Kinect 

sensors. 

However, it has been shown to be useful in practice for both debugging the software 

and estimating the performance of the real-world system and any departures from reality 

have not been significant. 

4.1.2 Kinect sensors 

Two Microsoft Kinect V2.0 sensors are used to provide input to the plan selector 

described in detail in Section 4.4.1.  Within the GRAIL System, the Kinect sensor 

simulation has two modes of operation:  mimic mode and replay from file mode. 

When in mimic mode, the sensor data represented in the graphical simulation is a 

direct representation of the data acquired in real time from the physical sensor.  Since the 

physical GRAIL testbed only has one Kinect sensor, this mode can only be applied to the 

left-hand Kinect sensor within the simulation. 

When in replay from file mode, data is replayed from a file in a cyclic manner.  

First, the data must be captured to the file by using a special sub-mode that simply 

captures the raw Kinect data and saves it in a file.  On replay, the captured data is 

treated in the same manner as if it came from the sensor in real time.  When the data file 

ends, it is replayed from the beginning again so that continuous data is available.   

Since two operators are needed in many test scenarios, the recorded data can be 

used twice:  once to simulate the left-hand operator and once to simulate the right-hand 

operator.  In the case of the right-hand operator simulation, the data is mirrored in a left-

right manner so that the actions recorded by the original operator, who was working on 

the left, are appropriate for interacting with the ingredients and conveyors on the right.  

Additionally, a time offset is applied to the data used by the right-hand operator 

simulation so that the movements are not synchronised to the left-hand operator. 

The Kinect sensor data can also be used to generate simulated light curtain activity 

and this is described further in Section 4.1.3.  Visually, the Kinect sensor data is 

represented by “stick models” of the human co-workers as shown in Figure 26. 
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Figure 26:  Stick Figure representing position of co-worker. 

The colour of the “sticks” is used to indicate the reliability of the data originally recorded 

by the Kinect sensor.  When the Kinect sensor can only see one end of a link between 

joints, the position of the unseen end is estimated.  A link in which both end joint 

positions are seen is coloured red, and one in which only one end is visible and the other is 

inferred by the sensor is shown in dark blue.  In general, the Kinect sensor cannot see the 

positions of the co-worker’s lower legs and feet because the conveyors are in the way and 

so these are always inferred.  This is not detrimental, however, since these body parts are 

not likely to enter the robot’s workspace.   

Additionally, the visual representation of the Kinect sensor data includes provision 

for depicting the predicted position of the operator at a future point in time.  This 

predicted position is shown by the ends of the green velocity vector lines radiating from 

the stick figure’s joints.  The predictions are used in the plan selector (described in 

Section 4.4.1) to choose which ingredient to pick and where to place it. These predictions 

can be made in two different ways depending on the requirements of the tests being 

performed: using a Kalman filter to estimate velocity, or using “perfect” predictions, both 

of which are explained in the next two sub-sections. 
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4.1.2.1 Using a Kalman filter to estimate co-worker joint velocity and predict 

future co-worker positions 

A standard linear Kalman filter is used to estimate the velocity of each joint based on 

new joint position measurements and its previous position and velocity at each 

measurement cycle.  The following state vector was used for each joint: 

𝐱 =  

⎣
⎢
⎢
⎢
⎡
𝑥
𝑦
𝑧
𝑥
𝑦
𝑧̇
̇
̇

⎦
⎥
⎥
⎥
⎤

 

where 𝐱 is the state vector,  𝑥, 𝑦 and 𝑧 are the components of the position of each 

joint, and 𝑥̇, 𝑦̇ and 𝑧̇ are the components of the velocity for each joint. 

The state evolves according to the following equation: 

𝐱𝒌 =  

⎣
⎢
⎢
⎢
⎢
⎡

1  0  0  𝛥௧   0  0
0  1  0  0  𝛥௧   0
0  0  1  0   0  𝛥௧

0  0  0  1   0   0
0  0  0  0   1   0
0  0  0  0   0   1 ⎦

⎥
⎥
⎥
⎥
⎤

𝐱𝒌ି𝟏 

where 𝐱𝒌 is the state at time 𝑘, 𝐱𝒌ି𝟏 is the state at time 𝑘 − 1 and 𝛥௧ is the time 

interval between updates. 

As can be seen from the state transition equation, The Kalman filter used for this 

task does not require any control inputs and so no control input model or input vector 

was necessary.   

The following diagonal matrices were used for the measurement noise covariance 

and process noise covariance in the standard linear Kalman filter formulation: 

𝑹 =  ൥
0.5 0 0
0 0.5 0
0 0 0.5

൩    𝑸 =  

⎣
⎢
⎢
⎢
⎢
⎡
1.0 0 0 0 0 0
0 1.0 0 0 0 0
0 0 1.0 0 0 0
0 0 0 1.0 0 0
0 0 0 0 1.0 0
0 0 0 0 0 1.0⎦

⎥
⎥
⎥
⎥
⎤

 

where 𝑹 is the measurement noise covariance matrix and 𝑸 is the process noise 

covariance matrix.   

The values for the measurement and process noise variance were chosen empirically 

to get the desired filter performance.  Although not optimal, this proved to be good 
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enough in practice as can be seen from Figure 27 which shows the measured joint position, 

the Kalman-filter-estimated position and Kalman-filter-estimated velocity when applied to 

a set of real data captured from a Kinect sensor.  The grey line shows the velocity 

calculated by a simple differencing of position samples.  It can be seen that the small 

amount of noise present in the original position data (blue, mostly hidden by the red line) 

has caused the calculated velocity to be very noisy and so the velocity calculated using 

this simple method would be unusable. The estimated position determined by the Kalman 

filter (red) is a good match to the actual position but with most of the measurement noise 

removed.  In fact, it is such a good match to the original position data that the blue line 

is almost completely covered up by the red line in the graph.  The green line shows the 

velocity estimated by the Kalman filter and is smooth enough to be used to extrapolate 

the future position of the operators and yet still follows the original noisy velocity curve 

closely in general shape, but without the noise excursions.  It is important to note that 

the velocity curve produced by the Kalman filter is not significantly delayed compared to 

the original data. 

 
Figure 27: Kalman filter performance (position and velocity vs time). 
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4.1.2.2 Using “perfect” predictions 

Since many of the experiments are performed using simulated input data for the Kinect 

sensors it is possible to calculate a “perfect” prediction of where the operator will be a 

short time in the future by simply reading ahead in the data file.  This allows the 

performance of the system to be measured in idealised circumstances to ascertain the best 

case performance of any plan selector algorithm. 

To simulate a “perfect” prediction the software merely has to look ahead in the 

stored Kinect data to determine where the operator’s joints will be at the desired future 

time. 

4.1.3 Light curtains 

The light curtains have been simulated in conjunction with the Kinect sensor simulation.  

The left-hand light curtain simulation can either mimic the state of the physical left-hand 

light curtain or it can work in full simulation mode.  In full simulation mode, when the 

position of the operator, as measured by the Kinect sensor (either using real data or 

replayed data) is determined to pass through the plane defining the light curtain, the 

simulated light curtain is activated. 

Visually, the light curtains are shown in the graphical simulation as an array of 

green dashed lines which change to red whenever the light curtain light beams are 

interrupted when using data from the physical sensor, or they are activated by the Kinect 

sensor when operating in simulation mode (see Figure 28). 

Also, a small flesh-coloured rectangle is used to represent the potential position of a 

human hand.  When the light curtain is interrupted, the “hand” will start to advance 

forward at a predetermined rate.  By default the rate has been set at 1.6m/s which 

mimics the fastest movement speed that is reasonable according to the EN ISO 

13855:2010 [4].  This is discussed in more detail in Section 4.3.1. 

4.1.4 Conveyors 

Three moving conveyors are shown in the simulation and can be made to either reflect the 

movement of the physical conveyors using the data from their optical position encoders, 

or can be simulated to move at a fixed speed. 

When appropriate, the conveyor simulation can affect the position of any 

ingredients or bases placed on it so that they are seen to move realistically. 
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Figure 28:  Un-activated (left) and activated (right) light curtain simulation. 

4.1.5 Ingredients and bases 

A simulation of the vision system generates new ingredients and bases and places them on 

the ingredients and bases conveyors, respectively.  The ingredients and bases are depicted 

visually in the simulation as appropriately coloured shapes with the correct thickness.  

Since the current physical implementation of the system does not contain a real vision 

system, the simulated vision system is the only means of generating ingredients and bases 

which are input to the system even when the GRAIL testbed (described in Section 4.2) is 

used.  When physical ingredients are used, their real-world positions must be made to 

match the positions generated by the simulated vision system for consistency. 

As mentioned in Section 4.1.4, the simulated ingredients follow the positions of the 

simulated conveyors so that they can be seen to move correctly.  When ingredients reach 

the ends of the two conveyors they are deleted and vanish from the graphical simulation. 

4.1.6 Gripper 

The robot gripper and its capabilities are simulated as well.  In order to make a useful 

tool for software development purposes, the action of the gripper when picking ingredients 

has been made to be as independent as possible from the calculations within the rest of 

the software system.  When activated, the gripper simulation software will search around 

the gripper within a radius of 30mm to find an ingredient that is present in the 

simulation.  If one is found, the ingredient is “picked up” and becomes attached to, and 
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controlled by, the position of the gripper.  This means that when the robot moves, the 

ingredient is seen to move with the gripper. 

When the gripper releases an ingredient, the ingredient “falls” to any conveyor that 

is underneath it when it is released.  It then follows the movements of the conveyor.  If an 

ingredient is released when it is not above a conveyor, it just becomes fixed in space. 

4.2 The GRAIL testbed 

The GRAIL testbed is a physical implementation of the GRAIL System and is used to 

test, debug and evaluate the performance of a real GRAIL System. 

Figure 29 shows the GRAIL testbed and it can be seen that it contains the light 

curtain and Kinect senor for the left-hand co-worker only.  During test runs, the right-

hand co-worker and associated sensors are replaced by simulation versions as described in 

Section 4.1.2 and Section 4.1.3. 

The left-hand ingredients conveyor and the bases conveyor are replicated using 

physical conveyors which transport the ingredients and bases on a moving platform rather 

than a continuous belt.  The right-hand ingredients conveyor (not seen in the photograph) 

is implemented using a stationary platform and so during tests using the testbed, the 

right-hand conveyor speed must be set to 0 if physical ingredients are to be used so that 

the motion of the virtual ingredients in the simulation matches the motion of the 

ingredients in the real world. 

The right-hand Kinect sensor and light curtain are also not present in the physical 

system, but can be simulated when required. 

 
Figure 29:  The GRAIL testbed. 
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4.3 The application of the UnCoVerCPS online verification approach 

To overcome the limitations of traditional robot safety systems, the online verification 

safety approach that has resulted from the UnCoVerCPS developments has been applied 

to the existing GRAIL Robot Control System.  In particular, the method of pre-verifying 

short segments of the robot’s motion to ensure that they cannot intersect with the 

possible movements of any nearby co-workers has been adopted.  The following sections 

describe the main software modules that have been developed during the UnCoVerCPS 

project and how they are incorporated into the original GRAIL Control System. 

4.3.1 The verifier 

The verifier software module is the embodiment of the UnCoVerCPS online verification 

approach in the GRAIL Robot Control System. The primary purpose of the verifier is to 

verify that proposed movements of the robot are safe given the data gathered from sensors 

about the actions of any nearby co-workers.  To do this, the motion of the robot is 

divided up into short, 32ms long time segments (which are called “motion segments” in 

the remainder of this document) which are passed to the verifier for verifying prior to 

being acted on by the robot.  At the same time as the new proposed motion segments are 

being verified, previously successfully verified motion segments are being acted on by the 

robot. 

Additionally, the verifier has a secondary task; it must generate the “safe stop” 

trajectories which are appended to all motion segments prior to verification.  The safe 

stop trajectories must bring the robot to a halt without exceeding any of the physical 

constraints of the robot.  These physical constraints include position limits, velocity 

limits, acceleration limits, and jerk limits.   

The new composite motion segments containing the task-directed part of the motion 

followed by the safe stop trajectory are then verified to ensure that they are guaranteed to 

be safe based on the input data from external sensors. 

Due to the requirement to develop a low-cost system, the input to the verifier takes 

the form of data from two light curtains, one on either side of the robot.  Light curtains 

have been chosen because they are relatively inexpensive, even when the high integrity 

requirements of this safety application are met.  However, these are not used in a 

standard manner (whereby triggering would cause an E-Stop circuit activation). Rather, 

the output of the light curtain is taken as a digital signal input to the control system.  

The verifier uses this simple binary data from the light curtains to determine how far the 

human co-workers could have intruded into the workspace of the robot at each instant in 
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time.  It does this by using the maximum realistic speed of movement of the co-workers.  

A figure of 1.6m/s has been adopted as defined in EN ISO 13855:2010 [4].  During the 

time that a light curtain is activated, the human occupancy region is considered to 

expand towards the robot at this speed.  The motion segments are checked against this 

region of space that could be potentially occupied by the co-workers.  If there is no 

overlap, the motion segment is deemed to be safe, and if there is an overlap it is unsafe.  

Note that this is not based on any kind of prediction concerning the movements of the co-

workers, but is based on their realistic worst-case behaviour and so motion segments that 

are deemed to be safe by the verifier can be executed without any further checking.   

Of course, this method is very pessimistic since it assumes that co-workers always 

move at their maxim realistic speed.  This could result in many needless stoppages of the 

robot.  To mitigate this, a number of alternative motion segments are sent to the verifier 

on each verification cycle allowing the verifier to find a safe motion segment from amongst 

the set of all the motion segments that are sent to it.  

These alternative motion segments arise because, at any instant in time, there are 

many ingredients within reach of the robot and, for each ingredient, there are a number of 

alternative locations on the bases where they could be placed.  Throughout this document 

the picking of a particular ingredient and its placement in a particular location on a base 

is called a “plan”.  Note that not all possible combinations of ingredients and place 

locations are a valid plan since some ingredients can only be placed in certain positions 

and some positions can only be filled when other ingredients in lower “layers” have been 

placed.  See Figure 30 which gives an example of a set of valid plans. 

At the start of each pick-place cycle the valid plans that could be chosen for 

execution by the robot are ranked in priority according to their effectiveness at achieving 

the goal of completing sandwiches.  Then, the first motion segments for each of these 

ranked plans are sent to the verifier for verifying.  The motion segment from the highest 

ranking plan that is deemed to be safe by the verifier is then queued for execution by 

robot subsystem.   

On subsequent steps, the next motion segment for all plans that remain valid are 

verified.  Note that some of the alternative plans may cease to be valid during plan 

execution since, for example, once a particular ingredient is picked, alternative plans 

involving different ingredients are no longer valid. 

 



4   HUMAN-ROBOT COLLABORATION USE CASE 

Deliverable D5.3 – Report on Application Simulation Data and Experimental 54 
Results 

 

 
Figure 30: An example of a set of all valid plans. 

As an example, consider the following scenario.   At the beginning of a pick and 

place cycle, a number of valid plans are identified and sent to the verifier.  The highest 

ranking safe plan is then acted on by the robot and so it starts to move towards an 

ingredient that it is going to be picked up. 

On the next verification cycle, the next motion segments for this plan is sent to the 

verifier along with a set of alternative motion segments that would cause the robot to 

move away from its current plan and direct its movement towards an alternative pick 

location.  The original plan is always given the highest priority at all times and so will be 

followed to the end if it remains safe.  However if the verifier calculates that the motion 

segment for the original plan is no longer safe, the motion segment from the highest 

ranked alternative plan, which might be to pick a different ingredient or place it in a 

different location, will be verified and, if safe, will be executed instead. 

A flow chart showing how the verifier is integrated into the GRAIL Robot Control 

System is shown in Figure 31.  The pipelined manner in which the system operates can be 

clearly seen.  While the verifier is performing its functions, the previously verified motion 

segment is being executed by the robot arm.  The architecture takes advantage of the 8 

physical cores within an Intel Xeon E5-2650 octa-core 2.60GHz processor to verify up to 8 

alternative motion segments at the same time, thereby allowing the verification process to 

occur in real time. 

It can also be seen that if a segment ends, but a new, verified safe motion segment 

is not available, the robot motion continues by executing the safe stop motion appended 

to the end of the last motion segment that was executed. 

Robot 

The dotted red lines show all of the valid  
plans to assemble sandwiches as shown by  
the finished sandwich on the furthest right 

Limit of robot’s reach 

Finished sandwich 

Ingredients and bases 
are out of reach here 

Placing the red ingredient here  
is not valid until the large green  
ingredient has been placed 

Conveyors 
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Figure 31: Flowchart of GRAIL Control System architecture incorporating the verifier only. 

4.3.2 Testing the verifier in simulation 

This section discusses the testing that was performed using the simulation of the new 

GRAIL architecture using the verifier module alone.  The goal of the tests described in 

the remainder of this section is to test the functionality just described and to determine 

the change to the efficiency of the GRAIL System that results from using the verifier to 

maintain safety when the system is operated in the presence of nearby co-workers. 

The verifier provides two main features which must be tested.  First, it is 

responsible for stopping the robot when a human co-worker gets too close in order to 

maintain safety.  However, to provide maximum system throughput, stopping should be 
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minimised within the conservative nature of the safety assumptions.  Second, when then 

verifier is used without support from additional software modules which choose a suitable 

plan (see Section 4.4), it has the function of finding a safe plan amongst the alternative 

plans sent to it by the high-level controller as described in Section 4.3.1. 

The following sections describe how each of these features was tested using the 

simulation. 

4.3.2.1 Tests showing the verifier choosing between plans in simulation 

Several simulation runs were performed in which there where a surplus of ingredients to 

pick and positions in which they could be placed.  This ensured that the verifier was 

presented with many alternative plans on each pick and place cycle.  The simulation of 

the left co-worker was configured so that interruptions to the light curtain would occur 

frequently.  Information generated as the simulation was running was logged to determine 

if an alternative plan was chosen when the primary plan was deemed to be unsafe by the 

verifier. 

It was found that there were no instances recorded in which the primary plan was 

deemed to be unsafe, but an alternative plan was safe.  Figure 32 shows the position of the 

robot’s joint 1 when it is executing a typical motion segment.  The black vertical line 

shows the point at which an alternative plan must be chosen because the new motion 

segment from the original plan is no longer safe.  In this example, the alternative plan has 

a target position which is very distant from the original target position.  It can be seen 

that it takes a finite amount of time for the new path to take effect since the motion of 

the robot has to honour dynamic constraints such as maximum acceleration and jerk.  In 

fact, the magnified portion of the graph shows that over the time duration of the next 

motion segment, there is only a miniscule change between the original and alternative 

paths.  This means that, as far as the verifier is concerned, if the original motion segment 

was unsafe, then the alternative motion segment is almost certainly unsafe as well. 

When the fact that the example shown had a primary and alternative motion 

segment from plans that had widely different ultimate target positions is taken into 

account, it can be seen that, in general, the verifier is unable to choose between plans 

based on their safety over the short duration of a motion segment because, when the 

motion segment from the primary plan becomes unsafe, the motion segments from all the 

alternative plans will be unsafe as well.  This somewhat negative result is discussed 

further in Section 4.4 below. 
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Figure 32: Difference between the primary motion segment and an alternative motion segments. 

4.3.2.2 Tests showing the verifier providing safety activity in simulation 

For this test, simulations were run in which the simulated conveyors had a surplus of 

ingredients and bases and so the robot remained active.  The simulated left-hand co-

worker frequently interrupted the light curtain.  Sometimes the interruption was for a 

short period and sometimes for a longer period.  The verifier was given only a single plan 

for each pick and place cycle and so whenever the motion segment was deemed to be 

unsafe, the movement of the robot had to stop. 

Each time the light curtain was interrupted, the proximity between the robot and a 

hypothetical “hand” moving at the maximum realistic speed of 1.6m/s as specified in EN 

ISO 13855:2010 [4] was logged.  When the robot did not stop during the light curtain 

activation, the minimum clearance between the robot and the “hand” during the entire 

time that the light curtain was activated, was recorded.  If the robot stopped, the 

minimum clearance during the time between the light curtain being activated and the 

robot stopping was recorded.  Additionally, when the robot stopped, the minimum 

clearance for the entire light curtain activation duration was also recorded. 

The results from this test are shown in Figure 33.  The horizontal axis is simply the 

index of the particular light curtain activation instance and so the results of each of the 

667 light curtain activations during the test run are shown from left to right on the graph.  

Note that the horizontal axis is not equivalent to time since there were arbitrarily long 

time durations between light curtain activations. 
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Figure 33: Robot-to-hand clearance during light curtain activation. 

For each instance of a light curtain activation, one or two points are plotted against 

the vertical axis.  When the robot did not stop, a single point is plotted (a green +) to 

show the minimum clearance achieved.  Since the verifier did not deem the motion to be 

unsafe, all of these points should lie in the positive half of the graph since there should 

have been a clearance between the robot and the worst-case “hand” at all times. 

When the verifier caused the robot to stop, two points are plotted on the graph.  

The first point (a red x) shows the minimum clearance between the robot and the hand 

during the time that the robot was moving.  Again, these should always lie in the positive 

half of the graph since there should be clearance between the robot and the “hand” during 

the time that the robot is moving.   

It can be seen that most of these points lie close to a horizontal line just above 

0.0m.  This is because the verifier has caused the robot to stop only when absolutely 

necessary because a potential collision was impending.  The gap between the points and 

the clearance=0.0 line is due to the assumed latency of the real-world light curtain 

activation (55ms).  In the simulation, the actual light curtain latency is 0ms and so the 

allowance for this assumed latency, combined with a “hand” speed of 1.6m/s results in a 

gap of 0.088m. 
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It can be seen that a few of these point do not lie close to 0 but have moderate 

positive values.  This occurs when the light curtain activation stopped (i.e. the “hand” 

retreated behind the light curtain) in the time between the verifier performing its 

calculations on the motion segment in advance of it being executed by the robot, and the 

robot actually executing it. 

The second point (a grey x) shows the clearance during the total duration of the 

light curtain activation, including time after the robot stopped and so was safe.  Since the 

verifier deemed the motion segment to be unsafe, causing the robot to stop, these should 

always lie in the negative half of the graph in order to have triggered the need to stop. 

Since all the points on the graph lie in the required regions, this demonstrates that 

the verifier was correctly performing its safety function. 

4.3.2.3 Tests validating the safe stop trajectory in simulation 

When the verifier analyses a motion segment it appends a “safe stop” trajectory to it in 

case it is necessary for the robot to stop when the motion segment ends.  The profile of 

the safe stop must meet a number of criteria since it must be within the capabilities of the 

robot to execute it correctly and it must be compatible with holding ingredients in the 

gripper. 

The graphs shown in Figure 34 show an example of the radial, tangential and 

vertical position, velocity, acceleration, and jerk against time when a safe stop is executed.   

It can be seen in this example that the robot stops in a controlled manner without 

exceeding the velocity, acceleration or jerk limits.  Although this is only a single example, 

the simulator constantly monitors, positions limits, velocity limits and acceleration limits 

during execution and would cause a fatal error to be raised if any were exceeded, so, it 

can confidently be stated that a correctly controlled safe stop has been executed many 

times without error. 

4.3.2.4 Tests to measure the efficiency of the system using the verifier alone 

in simulation 

To measure the efficiency of the system using the verifier alone, a long duration 

simulation run (1000 seconds) was performed during which a number of statistics were 

gathered.  During the first run, there were no nearby co-workers and so the robot could 

continue to move without any stoppages.  This represents the best possible efficiency of 

the system. 
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Figure 34: Example movement profile during a safe stop with the red line showing where the safe 

stop starts and the limits are marked in green – simulation. 

In the second test run, simulated co-workers on either side of the robot each break 

the light curtain at a rate of approximately once every 6 seconds.   In this test run, the 

verifier was used to maintain safety by stopping the robot when required to prevent 

collisions. 

In the third test run, simulated co-workers were again present.  However, in this 

case, the verifier was not used to stop the robot intelligently, but instead, the robot was 

stopped whenever the light curtains were activated.  The intention of this test was to 

gather statistics from a system that operates as if a simple E-Stop occurred when the light 

curtain was breached.  However, to make this run more comparable with the data 

obtained when the verifier was used, a very optimistic stoppage time of only 1 second was 

imposed every time the robot stopped even though, in practice, the stoppage time would 

be much longer than that when an E-Stop occurs since the robot would have to be 

restarted and, in many cases, rehomed.  Table 1 shows the results obtained from each of 

these runs. 
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Table 1: Performance figures with/without nearby co-workers – simulation. 

 
Placed 

ingredients 

Number of 
completed 
sandwiches 

Number of 
rejected 

ingredients 

Number of 
interruptions 

Number of 
light 

curtain 
breaches 

Without 
nearby co-
workers 

710 155 0 0 0 

With nearby 
co-workers 
and verifier 

452 89 23 81 344 

With nearby 
co-workers 
and simple 
E-Stop 

119 6 86 167 353 

It can be seen that the efficiency of the system with nearby co-workers is reduced to 

64% (based on number of placed ingredients) when compared to running the system 

without nearby co-workers.  However, this is significantly better than the efficiency when 

a simple E-Stop arrangement is used, which has an efficiency of much less than 17%. 

Using the verifier to intelligently choose when to stop the robot and when the robot 

can continue moving is, therefore, shown to provide much higher efficiency than using a 

simple E-Stop arrangement.  However, the efficiency of the system using the verifier alone 

is still much reduced compared to a scenario in which human co-workers are excluded 

from the workspace of the robot by physical means such as barriers.  In practice, of 

course, the light curtain activation rate by the co-workers would be far lower than was 

used to gather these results, since they would be trained to stay away from the robot 

when it was moving.  However, the indicated trend would still remain true. 

4.3.3 Real-world testing of the verifier 

Similar tests to those described in Section 4.3.2 were repeated using the GRAIL testbed.  

The purpose of these tests was to demonstrate that the performance obtained was similar 

to the results obtained from running the simulation. 

The design of the conveyors used made it difficult to run many ingredients and 

bases through the system continuously and so simulated ingredients and bases were used.  

In this mode of operation the ingredients and bases are generated automatically by the 

software without any input from a vision system.  Of course the ingredients and bases do 

not have a physical realisation, but their virtual representations are simulated to move at 

a rate corresponding to the real movement of the conveyors.  All the activities of the 

robot arm were the same as if real ingredients and bases were used and so there was very 

little loss in experimental fidelity by making this simplification. 
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Additionally, the physical implementation of the system does not contain a right-

hand ingredients conveyor, light curtain or Kinect sensor and so these were also 

simulated.   

A real left-hand Kinect sensor and light curtain were used, and, during the 

experiments, efforts were made by the test co-worker to duplicate the behaviour of the 

simulated right-hand co-worker, as perceived by the sensors, so that the results were 

broadly comparable to the results obtained from simulation. 

4.3.3.1 Tests showing the verifier providing safety activity on the testbed 

A test was performed that was very similar to the test described in Section 4.3.2.2 

with the exception that the GRAIL testbed was used as described above. 

To perform these tests, a video camera was used to record the movements of the 

robot arm and test co-worker when the light curtain was breached.  The video frames 

were then analysed on a frame-by-frame basis to determine if and when the robot stops 

and the distance between the robot and co-worker using the reference distance scale 

placed in the image.  Figure 35 shows the general setup that was used to capture this data 

and illustrates the correction necessary to each measurement due to parallax effects. 

Due to the practicalities of running this test, fewer data points were gathered than 

when the simulation was used.  The values of “overlap after the robot stopped” were not 

recorded since these have no significance unless the human speed is maintained at exactly 

1.6m/s which could not be achieved in practice.   

The test co-worker was instructed to move his hand at speeds between a normal 

pick and place speed and a fast, but not abnormally fast speed. The results obtained can 

be seen in Figure 36.  It can be seen that the clearances were always positive, i.e. there 

were never occasions when a collision between the robot and the co-worker’s hand could 

have occurred.  Again, it can be seen that there are a band of clearances distances 

between 0mm and 100mm that are not seen to occur.  This is due to the 55ms allowance 

(resulting in 88mm clearance at 1.6m/s) made for the worst-case light curtain activation 

latency.  In practice, the light curtain activation speed was much faster than this on 

average, but, for safety, the worst case had to be catered for. 
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Figure 35:  Experimental setup to measure verifier safety. 

 
Figure 36: Robot-to-hand clearance during light curtain activation – testbed. 
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Further tests were performed in which the co-worker tried to move his hand 

towards the robot as fast as possible at speeds in excess of what would be considered a 

“normal” range of movement speeds.  It was found that a few of these tests resulted in a 

negative clearance between the co-worker’s hand and the robot, i.e. a potential collision 

(note that actual collisions did not occur since, for safety, the co-worker’s hand was 

always in front of the robot’s workspace).  For these tests, additional measurements were 

made from the video data to determine the speed of movement of the hand.  Figure 37 

shows the estimated hand movement speed against clearance that resulted from this test. 

It can be seen that all of the tests that resulted in a negative clearance, had a hand speed 

that was significantly greater than the modelled 1.6m/s maximum hand speed.  In fact, 

only for hand speeds in excess of 3m/s were potential collisions (negative clearances) 

actually experienced.  Again, this is due to the 55ms allowance made for the worst-case 

light curtain activation latency. 

 
Figure 37: Human hand speed against human-robot clearance for high-speed moves – testbed. 

4.3.3.2 Tests validating the safe stop trajectory on the testbed 

Similar to the tests described in Section 4.3.2.3, results were captured from the 

testbed when a safe stop trajectory was executed.  In essence this data is no different from 

the data gathered during the simulated test runs since the same software code is used to 

generate the data in both cases, but the test was repeated for completeness and the 

results can be seen in Figure 38.  Again, it can be seen that all dynamic constraints were 

met during the safe stop. 
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Figure 38: Example movement profile during a safe stop with the red line showing where the safe 
stop starts and the limits are marked in green – testbed. 

4.3.3.3 Tests to measure the efficiency of the system using the verifier alone 

on the testbed 

The efficiency of the system running on the testbed was measured in a similar manner to 

that described in Section 4.3.2.4 and results were obtained as shown in Table 2.  A 

human was used for the left-hand co-worker, along with a real Kinect sensor and light 

curtain.  In order to produce results that are somewhat comparable to the results 

obtained from the simulation, the test co-worker attempted to replicate the movements of 

the simulated right-hand co-worker as much as possible so the number of light curtain 

activations and Kinect sensor data was similar. 

It can be seen that the results in the table are broadly similar to the results shown 

in Table 1 that showed the results from the simulation.  In real life, the performance 

reduction to 62% was seen due to the action of the verifier stopping the robot when there 

were nearby co-workers and an efficiency of 25% was measured for the comparable E-Stop 

case. 
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Table 2: Performance figures with/without nearby co-workers.  The numbers in brackets show the 

results scaled to a 1000 second run – testbed. 

 
Placed 
ingredients 

Number of 
completed 
sandwiches 

Number of 
rejected 
ingredients 

Number of 
interruptions 

Number of 
light 
curtain 
breaches 

Without 
nearby co-
workers 

169 (676) 38 (152) 0 (0) 0 (0) 0 (0) 

With nearby 
co-workers 
and verifier 

105 (420) 21 (84) 5 (20) 15 (60) 77 (308) 

With nearby 
co-workers 
and simple 
E-Stop 

43 (172) 5 (20) 14 (56) 41 (164) 75 (300) 

 

4.3.4 Conclusions from testing the verifier alone 

The results of the tests described above, conducted using both the graphical simulation 

and the GRAIL testbed, showed a good general agreement, even though there was 

difficulty in maintaining consistency and making measurements of the co-worker’s 

movements. 

The results showed that the verifier always stopped safely when it was required to 

do so, and didn’t stop when collisions between the robot and co-workers were impossible 

even though the light curtain had been activated.  The verifier therefore meets its primary 

purpose and is always safe as long as the co-worker’s movement speed is limited to 

1.6m/s.  However the verifier, by design, operates in a very pessimistic manner and so its 

operation in the presence of human co-workers that overlap with the robot’s workspace 

still resulted in more stoppages than are desirable. 

Although it was hoped that the verifier would be able to choose appropriate plans 

to execute in the presence of potential collisions with co-workers, in practice this did not 

work very well since the various plans were insufficiently different over the short time 

duration of the motion segments. 

 To resolve this difficulty, a new software architecture was developed that used a 

“plan selector” software module to pre-select the plans that are most likely to be safe 

based on the available sensor data.  Then, this one and only plan could be verified by the 

verifier in the usual manner, but with the expectation that it is less likely to be deemed 

unsafe.  More details of the operation of the plan selector can be seen in Section 4.4. 



4   HUMAN-ROBOT COLLABORATION USE CASE 

Deliverable D5.3 – Report on Application Simulation Data and Experimental 67 
Results 

 

4.4 Increasing the operational efficiency in the presence of human co-

workers 

As described in the previous section, using the verifier alone to choose a safe path resulted 

in an inefficient system that suffered from frequent robot stoppages when there were 

human co-workers in close proximity.  The plan selector module was created to mitigate 

this issue. 

4.4.1 The plan selector 

As described at the end of Section 4.3.4, the plan selector is intended to increase the 

picking efficiency when the motion of nearby operators is predicted to intersect with the 

path of the robot.  The scenario that is under consideration is one in which the GRAIL 

Robot has human operators working on either side of it, each of which could reach into 

the workspace of the robot.  However, it is assumed that the left-hand operator can only 

reach the left-hand half of the robot’s workspace and the right-hand operator can only 

reach the right-hand half of the robots workspace.  This means, for example, that when 

the left-hand operator is predicted to intrude into the robot's workspace, the GRAIL 

Robot Control System can ensure that the robot works in the right-hand half of its 

workspace thereby preventing the need to stop.  The mechanism works in a mirrored 

manner for the right-hand operator. 

It is the responsibility of the plan selector to create this desired behaviour.  It is 

able to do this because there are usually many options for suitable ingredients to pick and 

positions to place them as was shown in Figure 30 in Section 4.3.1 which described the 

verifier. 

At the start of every pick, the plan selector considers all valid plans (ingredients to 

pick with their associated place locations) and determines the best one according to the 

results of an evaluation algorithm (the algorithm is described later in Section 4.4.2).  Note 

that at the time of the pick, both the pick movement and the place movement are 

evaluated using the predicted behaviour of both the left- and right-hand co-workers.  

Once the pick has been completed, the place is re-evaluated since the behaviour of the co-

workers could have changed, and the positions of the ingredients and bases will have 

changed slightly due to the movement of the conveyors. 

Note that there are still occasions when the plan selector will not be able to prevent 

the robot from having to stop such as when there are predicted robot workspace 

incursions from both sides at the same time, or due to the uncertainties involved in 
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predicting the behaviour of the human co-workers over the time duration of a pick and 

place operation. 

The way in which the plan selector fits into the rest of the GRAIL Robot Control 

System is shown in Figure 39. 

 
Figure 39: Flowchart of GRAIL Control System architecture incorporating verifier and plan 
selector. 

An important point to note is that the verifier is still used to ensure safe behaviour when 

there is an impending collision between the robot and a co-worker.  The plan selector is 

intended to choose plans so that collisions are avoided as often as possible in order to 

increase operational efficiency.  It is not intended to increase safety.  Safe operation is 



4   HUMAN-ROBOT COLLABORATION USE CASE 

Deliverable D5.3 – Report on Application Simulation Data and Experimental 69 
Results 

 

already ensured through the use of the verifier.  An advantage of this is that the plan 

selector software and sensors do not form part of the safety system and do not need to 

meet the same high integrity requirements that are required for the verifier and its 

associated sensors. 

4.4.2 Plan selector co-worker motion prediction 

A key requirement for the successful operation of the plan selector is to be able to 

generate accurate predictions of the motion of the co-workers for the time it takes to 

perform a pick or a place operation (in the range of 1 – 2 seconds).  Since the sensors do 

not need to have high integrity, a sensor type that returns high quality, detailed 

information on the movements of the co-workers can be used.  In practice, Microsoft 

Kinect V2.0 3D sensors were used because they provide detailed position information 

about the co-worker’s limbs, head and joints at a 30 fps rate.   Although these are only 

consumer quality devices, many industrial equivalents are available and could be used 

instead to achieve the same results. 

A function of the plan selector is to take the data returned by the Kinect sensor and 

use it to predict the position of the co-worker in 1 second’s time.  To do this it calculates 

the velocity of each of the co-workers joints (here, a joint refers to each of the nodes in 

the human model and so the top of the head is also a “joint”, for example) and then 

extrapolating the position of the joints based on the calculated velocity vector.  As 

described in Section 4.1.2 this has been done by two different methods: determining 

velocity using a Kalman filter and “perfect” prediction. 

4.4.3 Plan selector evaluation function 

The plan selector chooses a plan by passing all the plans through an evaluation function.  

The evaluation function takes a number of factors into account when choosing the best 

plan as follows: 

 Human-robot proximity – the minimum distance between the predicted human 

positions and the robot positions when it is executing the plan in question.  See 

Appendix A for a description of how the calculation is performed.  A higher 

number is better. 

 Path length – the distance that the robot has to move to carry out the plan.  

To make this factor easier to calculate, the amount that the robot’s Joint 1 has 

to move is used as an approximation to the path length.  A lower number is 

better. 
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 Figure of merit - a number calculated by the high-level planner that indicates 

how useful a particular plan is for achieving the system goal of completing 

sandwiches with minimal wasted ingredients.  This is a calculated as the 

product of the fraction of conveyor travel left for both the ingredient and the 

base in question, i.e. it is lower when the ingredient and/or base are closer to 

the ends of their conveyors.  A lower number is better. 

The plan selector combines these factors by creating a weighted sum, each with an 

appropriate sign to take account of whether lower or higher numbers are better.  Note 

that in the remainder of this report an appropriate sign is automatically applied to all the 

weights of these factors so that they can always be considered “better” for more positive 

or least negative values, even if the sign is not explicitly mentioned.   

Unfortunately, the use of this weighted sum leads to the problem of how the correct 

weighting for these factors should be chosen since it is to be expected that there is an 

optimal set of weightings that should be used.  Trials using simulated annealing 

techniques to determine the weightings proved to be ineffectual since it was impractical to 

run the system enough times, and for a long enough duration each time, to arrive at 

optimum weightings.  The shortest practical run of 240 simulated seconds (which resulted 

in the number of successfully placed ingredients being 100 or less) took around 60 seconds 

of real time to run on the fastest available computer, which contained an Intel Xeon E5-

2650 octa-core 2.60GHz processor.  Shorter simulation run times would have resulted in 

large errors due to starting and stopping effects.  Therefore, running the simulation the 

many thousands of times required to locate the optimum values using simulated 

annealing, or any similar technique, for each of the scenarios considered would have been 

impractical, especially since the high levels of noise present in the measurements, when 

these short run times are used, caused a large number of false local maxima in the 

function being optimised. 

It was decided that a more practical approach was to plot the performance of the 

system against weightings and inspection to identify the optimum weightings.  A typical 

result from such a test is shown in Figure 40.  Note that the two horizontal axes on this 

graph are pseudo-logarithmic.  What is meant by pseudo-logarithmic is that for positive 

values, the logarithm of the value is used and for negative values, the negative of the 

logarithm of the negated value is used.  A problem with this approach is that it is unable 

to represent 0.  To overcome this, the positive and negative logarithmic ranges are chosen 
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to go from 0.0001 to 1,000,000 and the zero value is made a special case and is mapped 

directly to 0. 

 
Figure 40: Typical "fitness landscape" of no. of ingredients placed against two weighting factors. 

Since these plots can only show the fitness value against two variables in a 3D plot, 

the third weight has to be fixed.  The value used for the fixed third weight will always be 

shown on the graph.  If the third weighting factor is non-zero and has an effect on 

performance, this also has the advantage of establishing an overall scale factor for the 

graphs.  Without this non-zero fixed weight, any set of weights with the same relative 

values would yield the same results.   

It can be seen that the data in Figure 40 is very noisy and has low resolution (41 x 

41 points).  The noise occurs due to the short duration of each run (240 seconds) resulting 

in only a relatively small number of ingredients placed (approximately 100), leading to 

quantisation errors and errors due to exact the starting and stopping conditions.  The 

quality of the graph could be improved by increasing the number of sample points and 

running multiple trials and averaging the results, or making each simulation run last 

longer so that the signal to noise ratio is increased.  However, since running the 

simulation is computationally intensive, it is impractical to do either of these when many 

data points are required to precisely locate a maximum value. 
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However, even with the noisy data, it can be seen by inspection of the example 

above that the approximate region where the optimum occurs lies along the indicated 

ridge.  This region can then be explored in more detail to determine a more precise 

optimum, although it is clear from the graphs that high precision in the weightings is not 

necessary.   

4.4.4 Optimising the plan selector weightings in simulation 

As described in Section 4.3.4, the plan selector has been adopted in order to increase the 

efficiency of the system when operating in the presence of human co-workers that can 

cause the robot to stop due to their proximity. 

The first task is to arrive at the correct set of weightings for the three factors that 

affect the plan choosing algorithm.  To do this the simulator was used extensively since it 

would be completely impractical to perform the required number of trials using the Grail 

testbed. 

As was mentioned in Section 4.4.3, it was initially hoped that an automated 

optimisation method could be applied to the problem to determine the optimum 

weightings.  To achieve this an optimiser program was developed which would modify the 

settings used during the simulation run as required (all the settings are stored in an xml 

file and so are easy to modify) and then run the  GRAIL Robot Control System in a 

completely simulated environment for a period of time.  To aid this, the GRAIL Robot 

Control System was given additional features including the ability to run for a pre-

determined period of time and then exit, and the ability to count the occurrence of certain 

high-level events such as ingredients placed and sandwiches completed. 

It was decided that the number of ingredient placed on bases in a fixed period of 

time was an appropriate measure of the performance of the system since this number will 

be affected by both the time delay due to any stoppages and by any ingredients that are 

rejected when the robot stops.  The number obtained could then be compared with a 

similar number gathered when there are no co-workers present, and therefore no 

stoppages, to determine the efficiency (loss) of the system. 

Although, as mentioned in Section 4.4.3, simulated annealing was tested as an 

automatic method for determining the optimum weightings failed, it was realised that a 

simpler method could yield the desired results.  Inspection of the “fitness landscape” when 

the performance was plotted against the one or more weight values proved to be both 

simple to implement and more effective.  The first baseline test involved plotting the 

number of ingredients placed against H-R proximity weighting and figure of merit 

weighting with the path length weighting set to 1.0.  The simulated co-workers were 
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placed 5m away from the robot so that they had no effect on performance of the system.  

The results shown in Figure 41 were obtained. 

 
Figure 41: Graph of number of ingredients placed against H-R proximity weighting and figure of 

merit weighting with path length weighting = 1.0. 

This graph shows a number of interesting features.  First, the ridge in the centre of 

the plot occurs when the weighting for path length (which is fixed at 1.0) is dominant.  In 

this region, maximum performance (number of ingredients placed) is obtained. 

Secondly, the region with negative weighting for the figure of merit shows better 

performance than the region with positive figure of merit.  This is unexpected since the 

figure of merit was intended to ensure that ingredients and bases are not wasted when 

they leave the ends of the conveyors.  Although this potentially reduces wastage, the 

graph demonstrates that the figure of merit metric is detrimental to overall efficiency in 

terms of the number of ingredients placed.   

Since the figure of merit metric has higher values for pick locations and place 

locations that are closer to the ends of the conveyors, it can be seen in Figure 42 that if 

the robot preferred to pick and place in these regions, then the robot moves would be 

quite long and so efficiency, in terms of ingredients placed, would be reduced.  The benefit 

gained from higher figures of merit, less wasted ingredients and bases, is not measured by 

the fitness metric chosen.  For this reason, it was decided to set the weighting for figure of 

merit to 0.0 (i.e. the plan selector does not choose plans based on the value of figure of 

merit) for the remainder of the trials. 
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Figure 42:  Depiction of picking and placing regions with high figure of merit factor. 

Initially, to maximise the effect that the H-R proximity was having on the results, 

an idealised version of the system was trialled using a “perfect” prediction of the motion 

of the co-workers using the methods described in Section 4.1.2.  Of course it is not 

possible to get close to this performance in the real world, but it serves as a good initial 

test to establish an upper bound on the results that can be expected. 

Figure 43 shows the results that were obtained.  Note that the two horizontal axes 

are now path length weighting and H-R proximity weighting since the figure of merit 

weighting is fixed at 0.0.  The weight for the H-R proximity factor was varied along the 

approximately left-right axis and the weight for the path length factor was varied along 

the approximately front-back axis.   

As expected, the performance of the system is shown to be very good in the region 

in which the H-R proximity weighting is dominant (shaded blue in Figure 43). The 

performance is also good in the region that is shaded green in Figure 43, which represents 

a condition in which path length is dominant.   

It can be seen that there is a small suggestion of a maximum height ridge that runs 

diagonally from the centre to the back, right-hand corner of the graph (shaded red in 

Figure 43).  A typical point on this ridge corresponds to the case where the weighting for 

the H-R proximity is approximately 10.0 and the weighting for path length is 1.0.  Due to 

the fact that the figure of merit weighting was set to 0.0 and so had no effect, any positive 

multiple of these weightings also produced similar results, which is demonstrated by the 

fact that the ridge has constant height.  This region is where the best performance is 

obtained and is explored further below. 

Regions near to the ends of 
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Robot 

Relatively long robot moves required 
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Figure 43: Graph of number of ingredients placed against H-R proximity and path length with 
figure of merit = 0.0 using perfect predictions. 

Interestingly, the performance is also quite good when the weighting for path length 

is positive and the weighting for H-R proximity it is negative (shown by the yellow 

shading in Figure 43).  This can be explained from a consideration of the geometry of the 

robot, conveyor and co-worker positions as shown in Figure 44.  It can be seen that 

favouring the regions indicated in red and, at the same time, minimising the path length 

will generate highly efficient movements of the robot.  This is especially true since the 

robot’s speed is mostly determined by joint 1 and this joint will have to move least when 

picking and placing towards the limits of its reach.  The negative H-R proximity 

weighting tends to keep the robot working at the limits of its reach which is where path 

length will be generally minimised, whereas using path length alone, although optimum on 

a pick-by-pick basis, does not constrain the robot to stay in the region that is best for 

future picks and places. 

To gain a more detailed insight into the details of what was happening, further 

trials were done in which the path length weighting was fixed at 1.0 with the figure of 

merit still set to 0.0.  Since this then become a 1-dimensional problem it was practical to 

run tests at more sample points (81) and make each one have a longer duration (1000 

seconds).  The results graphed in Figure 45 show the average of 16 separate test runs 

under these conditions.  In the graph the random number generator used to generate 
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ingredient and base positions was seeded with a different number to make the tests 

suitably independent.  

 
Figure 44: Depiction of picking and placing regions with least positive H-R proximity factor. 

It can be seen from the graph that there is a clear optimum value when the H-R 

proximity weighting is around 30, the path length weighting is 1.0 and the figure of merit 

weighting is 0.0. 

Also of note is the local maximum near to a H-R proximity weighting of around -

10.0.  This is occurs when the negative H-R proximity weighting and positive path length 

weighting combine to produce a “super path length” optimisation effect as described in 

the paragraphs above. 

The previous test was then repeated using a realistic human position prediction 

model (using the Kalman filter to determine joint velocities).  This achieved the results 

shown in Figure 46. 

Although not as clear cut as for the “perfect prediction” case, there is a hint of a 

peak along the same diagonal line as before.  Again, multiple 1-dimensional runs were 

performed with the path length weighting set to 1.0 and the figure of merit weightings set 

to 0.0.  The results shown in Figure 47 were obtained by averaging 16 such runs with 

different random number generator seeds. 
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Figure 45: Graph of number of ingredients placed against H-R proximity with path length set to 

1.0 and figure of merit set to 0.0 and using perfect predictions. 

 

 
Figure 46: Graph of number of ingredients placed vs H-R proximity and path length with figure 

of merit = 0.0 using realistic predictions. 
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Again it can be seen that an optimum result occurs when there is a positive H-R 

proximity weighting.  This time it occurs at H-R proximity weighting of approximately 6.  

However, in this case the benefit from using the plan selector is much smaller.  At the 

value on the far right of the graph, where the choosing behaviour is dominated by the H-

R proximity, the performance is no better than when the weighting for the H-R proximity 

is set to 0.0.  However, at the particular weighting value of around 6, the H-R proximity 

weighting and path length weighting combine to produce optimum performance. 

It can also be seen again that there is a local maximum at approximately -10.0 

that is caused for the same reason as described earlier in this section.  This time, however, 

the magnitude of this peak is very nearly the same as the global maximum when H-R 

proximity weighting is 6. 

 
Figure 47: Graph of number of ingredients placed against H-R proximity with path length set to 

1.0 and figure of merit set to 0.0 using realistic predictions. 

4.4.5 Testing the plan selector performance in simulation 

The weighting arrived at in Section 4.4.4 where used to perform a test run of the GRAIL 

System in which various performance metrics were measured.  Table 3 shows the results 

that were obtained.   
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Table 3: Plan selector performance – simulation. 

 
Placed 
ingredients 

Number of 
completed 
sandwiches 

Number of 
rejected 
ingredients 

Number of 
interruptions 

Number of 
light 
curtain 
breaches 

Without plan 
selector 

397 72 26 95 486 

With plan 
selector and 
“perfect” 
predictions 

572 86 8 28 491 

With plan 
selector and 
“real world”  
predictions 

463 52 23 59 495 

With plan 
selector and 
no predictions 

455 57 24 89 497 

It can be seen that when the sensor with “perfect” prediction of human motion is 

used, the plan selector improves the efficiency of the system by nearly 38%.  However, 

when a realistic sensor model is used, the benefits of the plan selector are reduced to 17%.  

However, the final row in the table shows that there is a 7% gain in efficiency without any 

modification to behaviour depending on human motion.  This is because the plan selector 

has the additional benefit of choosing more plans with shorter path lengths. 

It is interesting to note that changes to the efficiency in terms of number of placed 

ingredients are not exactly correlated with the number of sandwiches that are completed.  

In fact, when the system is run without the plan selector active, the second highest 

number of completed sandwiches is achieved even though the performance, as measured 

by the number of ingredients placed, is the lowest.  When the plan selector is not used, 

the figure of merit generated by the high-level controller is responsible for selecting which 

plan to use, and this is optimised to complete as many sandwiches as possible, rather than 

making many that are incomplete.  In practice, the GRAIL System will only be one of 

many workers on the production line, both human and robotic, and so placing as many 

ingredients as possible is more important than producing completed sandwiches since 

downstream workers can do that.  If the GRAIL System is placed at the final position on 

the production line, then optimising for number of ingredients placed will automatically 

result in maximising completed sandwiches since there will be few locations available in 

which to place the ingredients and these will, of necessity, result in completed sandwiches. 
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4.4.6 Testing the plan selector performance in the real world 

Experiments were performed using the physical system to demonstrate the performance 

obtained was similar to the results obtained from running the simulation.  As described in 

Section 4.3.3, limitations of the testbed meant that the right-hand co-worker, light 

curtain, Kinect sensor, ingredients and bases were simulated. 

Although it is harder to get many numerical results, tests were performed in which 

the system was run both with and without the plan selector active.  The results obtained 

can be seen in Table 4.  It can be seen from these results that the plan selector is 

improving the efficiency of the system by approximately 22% (cf. 17% from the 

simulation) based on number of ingredients placed under the specific conditions tested.  

Again it can be seen that similar results are obtained even when no predictions are made. 

Table 4: Plan selector performance. The numbers in brackets show the results scaled to a 1000 

second run – testbed. 

 
Placed 

ingredients 

Number of 
completed 
sandwiches 

Number of 
rejected 

ingredients 

Number of 
interruptions 

Number 
of light 
curtain 
breaches 

Without plan 
selector 

81 (324) 13 (52) 11 (44) 27 (108) 105 (420) 

With plan 
selector and 
“real world” 
predictions 

99 (396) 11 (44) 11 (44) 22 (88) 118 (472) 

With plan 
selector and 
no predictions 

94 (376) 9 (36) 10 (40) 25 (100) 110 (440) 

As noted in Section 4.4.5, the number of completed sandwiches does not exactly 

correlate with the performance results for the performance of the system due to the 

difference in optimisation criteria between the trials. 

4.4.7 Conclusions from testing the plan selector 

The results of the previous section have clearly shown that the plan selector increases the 

efficiency of the GRAIL System when it uses the measured joint velocities of the co-

workers to estimate their future movements during a pick and place operation.  Some of 

this improvement, however, is due to the path length-optimisation rather than predicting 

human motion.  However, testing in simulation using a “perfect” prediction of the future 

movements of the co-workers shows a larger improvement.  This indicates that the 

simplistic prediction methods used in practice, although slightly beneficial, were not very 

good at predicting the co-workers movements.  Future work could investigate whether 
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better prediction methods are available which could approach the performance of the 

“perfect” sensor more closely. 

4.5 Meeting the required safety integrity level 

The current implementation of the GRAIL System does not meet high safety integrity 

level requirements.  Meeting these requirements in a development environment is not 

necessary since different assumptions on the competency of the users can be made and 

additional protection measures can be used, compared to a production environment.  

When the GRAIL System is used in a production environment, however, much higher 

requirements will have to be met. 

As first described in Appendix A.4 of Deliverable 5.1[1], the implementation of the 

GRAIL System is highly constrained by the safety requirements imposed by legislation.  

The safety-related parts of the GRAIL System are classified as a “protective device” and 

so must meet the requirements of performance level “d" (PL=d) as defined within EN ISO 

13849-1:2008 [3].  Unfortunately, the provable safety of the control algorithms alone is not 

enough to ensure that the system always operates safely.  Additionally, both the hardware 

and software implementations of the system must be designed to meet the requirements of 

PL=d. 

To meet these requirements, certain safety features must be present in the design.  

In particular, single faults must not permit an unsafe condition to occur and there must 

be a means to monitor and detect faults in the safety system before they occur.   A first 

step in achieving this is to identify which parts of the system are parts of the safety 

system and so must conform to PL=d.  Figure 48 shows an overview of the software and 

hardware architecture of the GRAIL System with the parts that need a high safety 

integrity level highlighted. 

It can be seen that all of the higher level parts system, including the plan selector 

and associated Kinect sensor, are not safety critical.  The plan selector software module 

and associated Kinect sensor do not need to have a high safety integrity level since safety 

is still maintained by the verifier if the plan selector or its sensors should malfunction.  

The only detrimental effect is a reduction in the throughput of the system if the plan 

selector should fail to select the best plan. 
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Figure 48: GRAIL System architecture showing safety critical components. 

The verifier software module and its associated sensors (light curtains) are 

responsible for making the robot stop when a hazardous condition occurs.  For this 

reason, they are safety critical and must be implemented in a manner that meets the 

PL=d safety integrity level.   

The robot itself and its joint controllers also need to have high safety integrity level 

to ensure that the robot always carries out its intended motion.  A failure in a position 

feedback device, for instance, could cause an extreme uncontrolled movement, which could 

present a hazard. 

It is noteworthy that parts of the low-level controller are safety critical and other 

parts are not.  Parts of the software that are responsible for acting on the results 

produced by the verifier and passing the motion segments which are deemed to be safe by 

the verifier to the robot joint controller are clearly safety critical, however, other parts of 

the low-level controller do not affect safety.  Conveyor tracking, for instance, is not safety 

critical since its effects on the robot motion are checked by the verifier and so cannot 

result in unsafe behaviour. 

In general, the required safety integrity level will be met through redundancy and 

cross checking.  Figure 49, which was first presented in “D5.1 – Report on Application 

Models“ [1], shows how the low-level controller and safety system (the verifier) can be 

made safe though duplication of functional modules and appropriate cross-checking 

between the two systems.  Redundancy and cross-checking is only effective if there is an 

assurance that there are no common mode failures between the two systems that could 

result in an unsafe collision.  A common way of achieving this is through the use of 
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independent development teams for each duplicated subsystem with as much diversity as 

possible in their development processes. 

Of course, it is also very important to ensure that the non-safety related parts of the 

control system do not compromise the safe operation of the critical parts.  In practice this 

means that the non-safety related software must be executed on a separate processor so 

that, for example, the memory used by the safety critical parts cannot be corrupted.  The 

communication with the safety-critical parts of the system must be rigorously specified in 

order to avoid any possibility of a fault trickling down into the safety-related parts of the 

system. The software within the GRAIL System has been written in a modular manner 

with well-defined and minimal interfaces between its component parts so that this can be 

achieved.  In summary, the implementation of the UnCoVerCPS online verification 

approach within the GRAIL robot system with the required safety integrity level 

represents a significant, but not unreasonable, development overhead.   

 

 
Figure 49: Implementation of the safety-related parts of the control system using duplication and 

cross-checking. 
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5. MOBILE ROBOTICS USE CASE

5 Mobile Robotics Use Case

Within UnCoVerCPS, Bosch introduced the new use case of mobile service robots. In

cooperation with Prof. Althoff (TUM), the goal was to evaluate the UnCoVerCPS online

verification methods on this use case as well as to perform conformance testing of a pedestrian

model.

Regarding the pedestrian model, an abstract pedestrian model was developed which was

then tested regarding reachset conformance to a labeled video source of a street scene in

Zurich, Switzerland [33]. The pedestrian model was then used to predict pedestrian behavior

within the implementation of the UnCoVerCPS online verification method. Here, a ROS

simulation was used to evaluate the UnCoVerCPS approach against to other state-of-the-art

approaches for three different scenarios. The results showed that, using the UnCoVerCPS

online verification method, the robot can maneuver in large and dense groups of people

significantly more efficiently than the compared state-of-the-art methods. All details on the

performed work can be found in the UnCoVerCPS deliverable D5.2 [2] as well in the joint

publication [28].

In addtition to this work, Bosch extended the ROS simulation setup with online confor-

mance monitors for trace and reachset conformance. The goal of these monitors is the use

of online reachability computation for checking the plausibility of object classifications from

perception algorithms. If an object classified as a walking person shows physical behavior

that does not agree with that classification, this information can be used to trigger fallback

behavior or improve the classification algorithm.

In particular, to evaluate this use of online reachability analysis, a new class of human

behavior was added to the already existing class of pedestrians: joggers. The physical model

of new class “jogger” is an extension of the pedestrian model and was again conformance

tested against the labeled data of the street scene in Zurich [33]. The new model of a jogger

now also captures behavior that was not included within the pedestrian model (i.e., higher

accelerations and velocities). In the ROS-based simulation setup, online reachset conformance

checking based on precomputed reachable sets was used to classify the physical behavior of

pedestrians either as walkers or joggers. This work realizes the important task of also being

able to do online conformance monitoring, in order to detect deviating behavior that was not

foreseen at the design time of a system.

Deliverable D5.3 – Report on Application Simulation Data and Experimental
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6 Overall Conclusions 

This report described the results that were achieved by applying the methods developed 

within the UnCoVerCPS project to the four diverse domains of automated driving, 

human-robot collaboration, mobile robot navigation and smart grids.  It also presented 

results showing how the achievements were demonstrated though experimental testing. 

Taken together, these results show the potential for the wide application of the 

UnCoVerCPS approach. 

For the automated driving use case, a linear model predictive approach with a 

decoupled lateral and longitudinal model was successfully demonstrated and provided the 

capability for successful lane keeping, lane changing and overtaking manoeuvres.   

The human-robot use case example demonstrated how the UnCoVerCPS online 

verification approach was adopted into a practical realisation of a robot control system 

and offered significant benefits over more traditional safety approaches such as physical 

barriers or simple systems that cause the robot to perform an emergency stop every time 

a co-worker is too close. 

The mobile robots use case also used the UnCoVerCPS online verification methods 

and demonstrated increased performance of mobile service robots compared to standard 

approaches. Results were achieved that successfully demonstrated that, especially in dense 

environments with large, dense groups of people and other obstacles, the mobile robots 

were able to reach their destinations considerably faster than would be possible using 

other approaches. In order to apply the UnCoVerCPS approach, a conformant pedestrian 

model was identified using CORA and the conformance checking methods developed 

within earlier WP5 tasks (see Deliverable D5.2 (2)). 

Within the smart grid use case a solution is proposed that uses a novel data-driven 

approach with probabilistic guarantees to address the design of a disturbance compensator 

that tries to moderate the fluctuations of the energy production due to solar energy.  

Results from trials were presented which demonstrated that this approach has significant 

benefits. 

These applications, while each utilising differing sub-sets of the full UnCoVerCPS 

toolbox demonstrate the wide capabilities the UnCoVerCPS approach when appropriately 

applied. The fact that the methodologies developed within the UnCoVerCPS project have 

been successfully applied to each of these diverse use cases further demonstrates that the 

de-verticalisation goals of the UnCoVerCPS project have been met. 
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Appendix A – Human-Robot Distance Calculation 

A.1 Statement of problem. 

To allow the GRAIL System to construct sandwiches efficiently, it is necessary to 

determine the distance between the predicted motion of any nearby co-workers and any 

particular pick and place plan.  Since the robot motion follows trajectories that linearly 

interpolate both the robot’s angle and radial distance during the execution of a plan, the 

robot arm trajectory comprises a segment of an Archimedes spiral which passes through 

the two given points in space (in this case, the pick and place locations). 

When a co-worker interrupts the light curtain, the human proximity is represented 

by a plane parallel to the light curtain.  The distance between this plane and the light 

curtain is called the “incursion distance”.  The distance between the robot and the light 

curtain (called the “barrier” in the remainder of this Appendix) is then calculated using 

the method presented below.  By subtracting the incursion distance from the robot to 

barrier distance, any potential overlap (negative result) or clearance (positive result) 

between the predicted motion of the co-worker and the robot can be determined and used 

to optimise the choice of plans. 

A.2 Initial discussion 

There are in general two Archimedes trajectories which pass through any two given 

points, as shown in Figure A.1: 

 
Figure A.1: Two Archimedes spirals passing through two common points. 
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In practice, we assume that the robot is not capable of executing trajectories for 

positions exceeding 170° away from the x-axis. This always removes one of the two tracks 

from further consideration; in the figure above this would eliminate the green track, but 

not the red track (as the red path between the two endpoints stays between -45 and +45 

degrees). 

 
Figure A.2: Circular trajectory. 

Figure A.2 shows an example where the radii of the two end-points (in black) are 

the same so the trajectory (shown in green) is circular. The barrier is shown in red, and 

the normal line from the origin to the barrier is shown as a dotted red line.  

The blue line is parallel to the barrier and indicates the point of closest approach to 

the barrier. The distance between the blue line and the barrier is the minimum distance 

required. 

It is noted that, at the point of closest approach, the trajectory is running parallel 

to the barrier (so the end-effector is neither moving towards nor away from the barrier), 

and the tangent touches at the same point that the dotted red line (the barrier normal) 

crosses the trajectory line. This is to be expected with a circular track but is not the case 

with a non-circular track. 

For example, in Figure A.3, the (red dotted) barrier normal line crosses over the 

green trajectory line at a different point to the closest approach point (where the blue line 

touches). When the robot arm ‘points towards’ the barrier it will not be at the point of 

closest approach as it is still approaching the barrier. Note however that the point of 

closest approach still lies along the path between the endpoints in this case. 
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Figure A.3: A non-circular path. 

 
Figure A.4: Touch points outside path. 

 
Similarly, in Figure A.4 the barrier normal line is at the end of the path, but 

because the end-effector is still approaching the barrier at that point, the point of closest 

approach of the Archimedes trajectory moves out beyond the path. In this case, the 

closest point of approach of the path to the barrier is the path endpoint itself. 
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Figure A.5: Touchpoint in path, normal outside path. 

Figure A.5 shows another case, where the point of closest approach is within the 

path, but the normal to the barrier is well outside the path. 

Note that in all four scenarios above, the path between the start and end points 

misses the barrier. 

 

Odd Cases  

 
Figure A.6: Case where point of closest approach is not the tangent line. 
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Figure A,6 shows a case where the tangent point in the trajectory is not the closest 

point in the trajectory to the barrier. In this case, one end-point is closest (as it happens 

the robot is at its limit at that point too).  

 
Figure A.7: Multiple cycles of trajectory between robot and barrier. 

Also, it is necessary to be careful that the correct part of the Archimedes trajectory 

is used to calculate the point of closest approach. Figure A.7 shows a case where the path 

cycles round more than once between the robot and the barrier. It is important to choose 

the portion of the path parallel to the barrier closest to the robot. 

 

Straight line (radial) trajectories. 
In the case of a trajectory which is purely radial (i.e. the polar angles of the endpoints are 

the same), then the only test that is needed is to compute the distance to the barrier of 

the endpoints as there is no tangent point. The closest endpoint represents the closest 

point in the trajectory. If one distance is negative, then the path crosses the barrier. 

Therefore, the algorithm to use is: 

1. Identify the correct tangent point and if this is between the endpoints. If so 

identify where it is and how far it is from the barrier. 

2. Compare the distance to the barrier of the tangent point with both end-

points of the path. 

3. Of three options (end points and tangent point), choose the point closest to 

the barrier. 
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Finding the tangent point 
The first task is to determine whether the tangent point (where the trajectory is parallel 

to the barrier) lies between the endpoints. 

 
 

Figure A.8: Various trajectory angles 

It is possible to determine whether the point of closest approach is within the 

trajectory without actually knowing where it lies in the trajectory. Figure A.8 shows a 

trajectory (in green) under consideration. The start and end points are each characterised 

by two vectors: - a) The radial directions (in black dotted lines) and b) the normal to the 

trajectory paths (in dark blue and light blue). 

The barrier normal is denoted by the dotted red line. The yellow dotted line denotes 

the point where the trajectory is parallel to the barrier and so the trajectory normal is 

parallel to the barrier normal. 

The two blue lines denote the bounds of the normals of the trajectory path, while 

the black dotted lines denote the polar angles of the endpoints (and also the actuation 

angles of the robot arm at the endpoints).  

If the barrier normal angle lies within the bounds of the blue endpoint normal 

angles, then the tangent point lies between the two endpoints. 

α 

β 
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The trajectory normals at the endpoints can be computed by subtracting the ‘skew 

angles’ α and β from the polar angles of the trajectory points. These are computed as 

follows: 

An Archimedes trajectory is best described in polar coordinates: - 

  r = a + b.θ           (A.1) 

The parameters a and b determine the shape and orientation of the trajectory. The 

radius r is then determined as a function of θ. Given two points through which the path 

must pass (r0, θ0) and (r1, θ1), then  

  r0 = a + b.θ0 and       (A.2) 

  r1 = a + b.θ1 

which leads to 

  b = (r1 - r0)/(θ1 - θ0)      (A.3) 

and  

  a = r0 – b.θ0 = r0 - θ0(r1-r0)/(θ1-θ0)    (A.4) 

differentiating equation (A.1) 

  dr/dθ = b        (A.5)  

   

Suppose we move along the trajectory by distance dθ. Then, the change in radial 

distance is  

dr = b.dθ (from equation (A.5)).  The change in angular distance is r.dθ (when dθ 

is expressed in radians, only). This can be viewed as a right-angle triangle where the 

adjacent side is of length r.dθ and the opposite side is of length b * dθ. The tangent of 

the angle is then (b.dθ) / (r.dθ) = b/r.  Therefore the ‘skew’ angle is arctan(b/r); this is 

the angle α or β in Figure A.8. 

  skew angle = arctan(b/r)      (A.6) 

In the example shown in figure 8, the polar coordinates of r0 are (0.5, 10°) and point 

r1 (1.0, 80°). 

Thus, b=0.4091 (note: this requires θ1 - θ0 to be expressed in radians). 

The skew angle α = arctan(b/0.5) = 39.3° and β = arctan(b/1.0) = 22.25°.  

Therefore: 

the angle of the r1 line is 80° - 22.25° = 57.75°  

  the angle of the r0 line = 10° - 39.3° = -29.3° 

The angle of the barrier normal line is 45°. This lies between the limits 57.75° and -

29.3°, so we can deduce that the tangent line lies between the endpoints (although as yet 

we do not know exactly where). 
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Initial computation of tangent line position. 
The position of the tangent point can be estimated using linear interpolation. 

Set Ф as the polar angle of the tangent point, and Γ as the polar angle of the barrier 

normal. 

Set Θ = θ1 - β = the angle of the trajectory normal at r1 (Θ is the angle of the 

light blue line in Figure A.8). 

Set Ω = θ0 - α = the angle of the trajectory normal at r0 (Ω  is the angle of the 

dark blue line in Figure A.8). 

Then the tangent point is in the trajectory if  Θ >= Γ >= Ω . 

Using linear interpolation, assume 

  (Γ-Ω)/(Θ-Ω) = (Ф-θ0)/(θ1-θ0)     (A.7) 

For example, if the barrier angle Γ is a third of the angular distance between the 

endpoint trajectory normals Θ and Ω, then set as an estimate Ф = a third of the angular 

distance between θ1 and θ0. 

This leads to 

  Ф ≈ θ0 + [(Γ-Ω)(θ1 - θ0)]/(Θ-Ω)     (A.8) 

For the example in Figure A.8 above this gives 

Θ = 57.75° 

Ω = -29.3° 

Γ = 45° 

θ1 = 80° 

θ0 = 10° 

Ф ≈ 10° + [(45° - -29.3)*(80° - 10°)]/(57.75° - -29.3°) 

   = 10° + 59.74° = 69.74° 

This compares well with the actual angle of 68.95°. The estimated distance to the 

barrier is very accurate using the estimated value for Ф, because the trajectory near this 

point is very nearly parallel to the barrier and so distance to the barrier is insensitive to 

small changes in position of the manipulator along the track. 
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Refining the tangent line position 
Once an estimate of the tangent position has been determined, a final (accurate) figure 

can be obtained by Newton-Raphson iteration, as follows: 

The tangent position will be found when Ф = Γ. 

 

This can be expressed as 

    Ф - Γ = 0      (A.9) 

or 

   f(θ) = θ  - arctan(b/r) - Γ = 0 

but r= a + bθ, so 

   f(θ) = θ  - arctan(b/[a + bθ]) -  Γ = 0          (A.10) 

differentiating wrt θ 

   f’(θ) = df/dθ = 1 + b2/(r2 +b2) 

                                             = [(r2+ b2) + b2]/(r2 + b2) 

                                             = (r2 + 2b2)/(r2 + b2)          (A.11) 

 

Using the NR iteration method 

   θn+1= θn - f(θ)/f’(θ)             (A.12) 

then 

   θn+1 = (θn  - arctan(b/rn) -  Γ)(rn
2 + b2)/(rn

2 + 2*b2),  

   where rn = a + bθn             (A.13) 

In the example above, the Newton-Raphson iteration converges in one step to the 

answer θ = 68.9558° (compared with a start estimate of 69.74°). The initial estimate of 

distance to the barrier is 0.89625 units, while the final distance is 0.893921 units, a 

difference of 0.0023. 
 

Computing distance to the barrier from any given point 
The computation of the distance to the barrier for a given point is best done in Cartesian 

coordinates, using scalar products. 

Given a point D and a point B and a barrier normal Ñ, where 

D is the point whose distance to the barrier is needed 

Ñ is the barrier normal unit vector. 
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B is the point on the barrier which is closest to the origin - i.e. the point at which 

the normal vector crosses the barrier. 

Then the distance d is determined as follows: 

 

  d = (D-B).Ñ               (A.14) 

 

if d is negative or zero, then the point D is on the same (safe) side of the barrier as 

the robot (or origin). Otherwise it is not. 
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