
 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page i

DRAFT RESEARCH INFORMATION LETTER 1101:
Technical basis to review hazard analysis of digital safety systems

1 Executive Summary
This research information letter (RIL) provides the US Nuclear Regulatory Commission (NRC)’s
licensing staff the technical basis to support the exercise of judgment in their review of hazard
analysis (HA) performed on a digital safety system by an applicant seeking design certification
or a license amendment.

The RIL is prepared in response to a user need request from the Office of New Reactors (NRO),
dated December 8, 2011, asking the Office of Nuclear Regulatory Research (RES) for
assimilation of the technical basis to support regulatory review of an applicant’s HA relevant to
digital instrumentation and control (DI&C) safety systems in nuclear power plants (NPPs). NRC
does not have explicit guidance on review of HA; therefore, NRO intends to use this RIL to
develop and support review guidance for piloting in a project proposing new digital technology
for a small modular reactor. From this learning cycle, NRC expects to identify needs for future
improvements in its review guidance, regulatory guidance, and the underlying technical basis.
Thus, this RIL is intended for these early adopters.

The RIL has been focused on issues encountered in NRO’s recent licensing reviews –
particularly hazards which are rooted in systemic causes such as inadequacies in engineering;
these causes are called contributory hazards in the RIL. The technical basis is focused on
evaluation of an applicant’s HA rather than performing HA.

Digital safety systems are becoming more difficult to analyze and evaluate for safety, due to
rapid changes in the nature of systems and the underlying technologies, increasing inter-
connectivity and interactions across systems, and resulting shortening of relevant accumulated
experience. Unwanted interactions and side effects are becoming significant contributors to
hazards in many critical application domains of digital technology. In contrast to a hardware
failure event, which, typically, occurs in a particular component, engineering deficiencies in
complex digital systems tend to be pervasive in nature. Traditional techniques of hazard
analysis (e.g, failure modes and effects analysis; fault tree analysis; event tree analysis) are
rendered ineffective when the causes are systemic and pervasive. Typically, uncertainty from
such hazards is best addressed by rooting out the causes. However, often, the causes are hard
to find. RIL-1101 identifies some common hazard contributing scenarios and, for each,
examples of conditions that reduce the respective hazard spaces. These cause-effect
relationships form the core of the technical basis in RIL-1101, which the staff assimilated from
existing knowledge through a combination of literature search and expert-consultation. These
causal relationships also serve as a safety goal focused organizing framework for an applicant’s
analysis, whether it is for a new system in a new reactor or modification of a module in an
existing system.

The broader hazard analysis approach covered in RIL-1101 can be applied first on an early-
stage functional concept and iterated as the development progresses on the successive work
products. The resulting design criteria and design bases include constraints to avoid conditions
contributing to hazards. Identification of such conditions early in the development lifecycle to
drive subsequent engineering helps avoid problems downstream. It not only reduces uncertainty
about safety, but also improves lifecycle economics.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page ii

Contentsc
Page #

1 Executive Summary .. i

2 Introduction .. 1

2.1 Regulatory basis ... 1

2.2 Work authorization .. 1

2.3 Relationship with licensing experience ... 1

2.4 Significance of the technical basis in licensing reviews .. 2

2.5 Background .. 2

2.6 Purpose and intended audience ... 3

2.7 Scope ... 3

2.7.1 Immediate scope limited to learning cycles ... 3

2.7.1.1 Assumptions about areas not well understood .. 4

2.7.1.2 Extrapolation from recent licensing experience ... 4

2.7.1.3 Support for application-specific customization of the SRP Chapter 7 4

2.7.2 Focus on evaluation rather than performance of hazard analysis 4

2.7.3 Focus on licensing reviews of safety automation .. 4

2.7.4 Focus on safety related systems for NPPs ... 5

2.7.5 Types of systems intended in scope ... 5

2.7.6 Focus on contributory hazards rooted in systemic causes 5

2.7.7 Scope excludes risk quantification .. 6

2.7.8 Relation between hazard analysis and safety analysis ... 6

2.8 Organization of RIL-1101 ... 8

3 Considerations in evaluating Hazard Analysis ... 9

3.1 Evaluation of Overall Hazard Analysis ... 12

3.1.1 Considerations for hazards within the system being analyzed 14

3.1.2 Considerations for hazards contributed through processes 15

3.2 Evaluation of hazard analysis - organizational processes .. 16

3.3 Evaluation of hazard analysis - technical processes .. 19

3.4 Evaluation of Hazard Analysis - System Concept .. 21

3.4.1 Hazards associated with the environment of the DI&C system 21

3.4.1.1 Hazards related to interaction with plant .. 22

3.4.1.2 Contributory hazards from NPP-wide I&C architecture 27

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page iii

3.4.1.3 Contributory hazards from human machine interactions 29

3.4.2 Contributory hazards in conceptual architecture ... 30

3.4.3 Contributory hazards from conceptualization processes 31

3.5 Evaluation of hazard analysis - Requirements ... 31

3.5.1 System Requirements ... 31

3.5.1.1 Quality requirements .. 32

3.5.1.2 Contributory hazards through inadequate system requirements 36

3.5.1.3 Contributory hazards from system requirements engineering 39

3.5.2 Software Requirements ... 41

3.5.2.1 Contributory hazards in software requirements ... 43

3.5.2.2 Contributory hazards from software requirements engineering 44

3.6 Evaluation of hazard analysis - Architecture .. 44

3.6.1 Contributory hazards in System Architecture .. 44

3.6.2 Contributory hazards from system architectural engineering 47

3.6.3 Contributory hazards in Software Architecture .. 49

3.6.4 Contributory hazards in Software architectural engineering 50

3.7 Evaluation of Hardware-Related Hazard Analysis .. 51

3.8 Evaluation of Hazard Analysis related to Software Detailed Design 53

3.9 Evaluation of Hazard Analysis related to Software Implementation 54

4 Discussion of regulatory significance ... 55

5 Conclusions ... 56

6 Future research, development and transition .. 57

6.1 Transition, knowledge transfer and knowledge management 57

6.2 Integration of safety significant information from NPP level analysis 58

6.3 Harmonization and disambiguation of vocabulary .. 58

6.4 International harmonization .. 58

6.5 Learning from other application domains and agencies ... 58

6.6 Analysis earlier in the system development lifecycle .. 58

6.7 Risk-informed evaluation .. 59

6.8 Integrated hazard analysis for safety, security and other concerns 59

6.9 Integrated assurance framework .. 59

6.10 Ideas received through review comments .. 59

7 Abbreviations and Acronyms ... 60

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page iv

8 References .. 61

Appendix A: Glossary ... 64

Appendix B: Technical Review Process ... 82

Appendix C: Evaluating Hazard Analysis - State of the Art .. 84

Appendix D: REFINEMENT .. 105

Appendix E: Checklists to assist hazard recognition .. 112

Appendix F: Organizational qualities to support safety ... 121

Appendix G: Example case studies .. 133

Appendix H: Example checklist of NPP modes .. 136

Appendix I: EVALUATION OF TIMING ANALYSIS .. 137

Appendix J: ASSUMPTIONS .. 141

Appendix K: DEPENDENCY ... 144

Figures

Page #

Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis 7

Figure 2: Example of a dependency structure (cyclic graph) .. 10

Figure 3: Contributory hazard space in focus ... 11

Figure 4: Factors influencing the work product of development ... 16

Figure 5: Regions of state space for hazard analysis ... 25

Figure 6: NPP-wide I&C architecture - allocation of functions in concept phase 28

Figure 7: Quality requirements should be explicit ... 32

Figure 8: Quality characteristics to support safety .. 33

Figure 9: Hazard analysis in relation to development lifecycle and verification activities 87

Figure 10: Structure to reason about the contribution to a hazard .. 94

Figure 11: Stepwise refinement: design decisions are made in small steps 106

Figure 12: Example of architectural refinement .. 111

Figure 13: Example from event on June 7, 2011 at Ft Calhoun NPP 134

Figure 14: Example of semi-formal statement of an assumption .. 141

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page v

Tables

Page #

Table 1: Considerations in broadly evaluating hazard analysis .. 12

Table 2: Organization’s culture: Examples of contribution to hazards .. 17

Table 3: Technical processes: Examples of contribution to hazards .. 20

Table 4: Interaction with plant: Examples of contribution to hazards .. 22

Table 5: Interdependencies: Examples of contribution to hazards ... 26

Table 6: Human machine interactions: Examples of Contribution to hazards 29

Table 7: Human machine interaction engineering: Examples of Contribution to hazards 30

Table 8: Constraints derived from quality attributes: Scenario-based examples 33

Table 9: Inadequacy in system requirements: Examples of contribution to hazards 36

Table 10: Inadequate system requirements engineering: Examples of contribution to hazards . 39

Table 11: Inadequacy in software requirements: Examples of contribution to hazards 43

Table 12: Inadequate software requirements engineering - contribution to hazards: Examples 44

Table 13: Interference: Example scenarios and conditions that reduce the hazard space 45

Table 14: Inadequate system architectural engineering: Examples of contribution to hazards .. 47

Table 15: Contribution to hazards through software architecture: Examples 49

Table 16: Hazards through inadequacy in software architectural engineering: Examples 50

Table 17: Hardware: Examples of contribution to hazards ... 51

Table 18: Inadequate hardware engineering: Examples of contributory hazards 53

Table 19: inadequate detailed design of software: Examples of contribution to hazards 54

Table 20: Hazards contributed in software implementation: Examples 54

Table 21: HA activities and tasks - a reference model .. 88

Table 22: Characterization of information richness in phase work products 97

Table 23: Salient features of techniques relevant to NPP digital safety systems 98

Table 24: Simple examples of refinement ... 106

Table 25: Some categories of hazard origination ... 112

Table 26: Checklist of hazard sources in semiconductor manufacturing equipment 117

Table 27: Different types of assumptions which could be stated in XML 142

Table 28: Examples of assumptions for different purposes .. 142

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 1

2 Introduction
This research information letter (RIL) provides the US Nuclear Regulatory Commission (NRC)’s
licensing staff the technical basis to support the exercise of judgment in their review of hazard
analysis (HA) performed on a digital safety system by an applicant seeking design certification
or a license amendment. Section 2.5 provides a brief background on HA, supported with
elaboration in Appendix C. Section 2.6 states the purpose and intended audience.

2.1 Regulatory basis
Hazard analysis of a digital safety system could address clauses 4.8 and 5.6 in [3] and the
analysis aspect of 10 CFR 50.34(a)(3) [35] and 10 CFR 52.47(a)(2) [36]. In support of
requirements in 10 CFR 50.34(a)(3)(i) and 10 CFR 52.47(a)(3)(i), hazard analysis could support
developing principal design criteria. In support of requirements in 10 CFR 50.34(a)(3)(ii) and 10
CFR 52.47(a)(3)(ii), hazard analysis could lead from principal design criteria to design bases.
Section 4 discusses the regulatory significance of this work further.

2.2 Work authorization
The RIL is prepared in response to a user need request from the Office of New Reactors (NRO),
dated December 8, 2011, asking the Office of Nuclear Regulatory Research (RES) for
assimilation of the technical basis to support regulatory review of an applicant’s HA relevant to
digital instrumentation and control (I&C) safety systems in nuclear power plants (NPPs). The
user need arose, because NRC does not have explicit guidance to review HA for a digital safety
system of the kind seen in recent licensing reviews.

2.3 Relationship with licensing experience
The RIL has been focused on issues encountered in NRO’s recent licensing reviews –
particularly hazards, which are rooted in systemic causes such as inadequacies in engineering;
these causes are called contributory hazards in the RIL. The technical basis is focused on
evaluation of an applicant’s HA rather than performing HA. Thus, the RIL is not intended to be a
self-contained, comprehensive, and complete stand-alone technical reference for reviewing HA
of digital safety systems in NPPs. Section 2.7 elaborates the scope. Section 2.8 explains the
organization of the RIL.

Digital safety systems are becoming more difficult to analyze, due to many factors, such as the
following:

• Rapid changes in the nature of systems and the underlying technologies. (H-OTproc-7)

• Increasing inter-connectivity. (Section 3.4 H-ProcState-5)

• Resulting shortening of accumulated experience relevant to a new system. (H-OTproc-7)

Examples of associated contributory hazards include the following:

• Inadequately constrained interactions of the digital safety system being analyzed with other
systems and elements in its environment.

• Incorrect decomposition and allocation of NPP-level safety functions into NPP-wide I&C
architecture and then to the digital safety system being analyzed.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 2

• Inadequate identification of the quality properties1 (e.g.: safety assurability; verifiability;
analyzability) associated with safety functions.

• Incorrect flow-down into constraints on the architecture of the system and then the
architecture of the software or other forms of logic.

• Inadequate flow-down to identify requirements and constraints on technical processes,
supporting processes, organizational and processes.

• Declining supply and replenishment of requisite competence. (Section 3.1 H0-2).

• Longer less track-able supply chains. (Section 3.1.2 item 2 under note for H0-9)

• Inadequate quality of cross-organizational cross-disciplinary communications, etc. (Section
3.2 H-culture-9)

2.4 Significance of the technical basis in licensing reviews
For each “contributory hazard scenario” (which illustrates some hazard space2) the RIL provides
examples of conditions that reduce the hazard space. These cause-effect relationships form the
core of the technical basis in RIL-1101, assimilated from existing knowledge, acquired through a
combination of literature search and expert-consultation. These causal relationships also serve
as a safety goal focused organizing framework for an applicant’s analysis.

To suit project-specific needs, NRC’s licensing offices can select “contributory hazard
scenarios” and corresponding conditions to reduce the respective hazard spaces, and transform
these conditions into review criteria; NRO’s mPower design specific review standard (DSRS)
Appendix A [1] is an example.

2.5 Background
A hazard, in general, is defined as “potential for harm.” In RIL-1101, the scope of “harm” is
limited to the degradation of the performance of an NPP safety function allocated to the system
to be analyzed.

Hazard analysis (HA), a systems engineering activity3, is the process of examining a system
throughout its lifecycle to identify inherent hazards and contributory4 hazards, and requirements
and constraints to eliminate, prevent, or otherwise control them.

HA is a subset of safety analysis; its evaluation is a subset of safety evaluation – the
relationship is explained in Section 2.7.8.

Current practice exhibits a wide variation in usage of the terms, hazard and hazard analysis. For
example, some experts distinguish between a hazard, its source, and its cause. To avoid
confusion, RIL-1101 bounds the scope of HA as follows:

1 In common practice, these are treated as “non-functional” requirements.
2 Hazard space: All the possible combinations of specific conditions, relevant to a scenario that could lead
to the degradation of a safety function.
3 This implies use of systematic and replicable methods in performing HA.
4 It includes causal factors

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 3

1. NPP-level safety analysis (including NPP-level HA5) identifies functions required for NPP-
level safety (known as safety functions) and correctly identifies the functions to be
allocated to the I&C level.

2. All hazards leading to the degradation of a safety function allocated to the I&C level are
identified.

3. Causes, including contributory causes, (collectively known as contributory hazards) are
identified.

4. Commensurate requirements and constraints6 are identified.

2.6 Purpose and intended audience
The purpose of this research information letter (RIL) is to provide the technical basis to support
NRC I&C staff in the exercise of judgment during licensing reviews they7 perform on an
applicant’s hazard analysis (HA) of a digital safety system in a nuclear power plant (NPP).

Since NRC does not have any relevant explicit guidance on review of HA, this RIL is intended
for NRO’s early adopters, to support their development of review guidance to be piloted in a
new project applying new technology in a digital safety system for a small modular reactor. This
application will serve as a learning cycle, from which NRC expects to identify needs for future
improvements in its review guidance, regulatory guidance, and the underlying technical basis
(i.e., successors to RIL-1101).

The RIL is not intended as an interim or surrogate regulatory guide to licensees or applicants.
However, as a technical basis for the limited scope described in the next subsection, it may also
be useful to stakeholders outside the NRC.

2.7 Scope
The RIL is a response to NRO’s user need request for supporting a specific project. However,
the content is sufficiently generic to evolve a successor for broader application, after learning
from NRO’s first experience [Section 2.7.1]. Content has been selected to support evaluation
rather than performance of HA [Section 2.7.2] for NPP safety automation [Sections 2.7.3-2.7.5].
Content is focused on hazards contributed through systemic causes, especially inadequacies in
engineering [Section 2.7.6]. Content is focused on supporting a deterministic review process
[2.7.7].

2.7.1 Immediate scope limited to learning cycles
Although the content provided in RIL-1101 is intended to be more broadly applicable, the
adequacy for broader application has to be validated through experience. Known limitations are
identified below.

5 The technical basis for evaluating NPP-level HA is outside the scope of RIL-1101. The interactions
between a digital safety system and its environment (the plant) are within scope.
6 Specifically, in its scoping of HA, RIL-1101 leaves the creation of constraint-satisfying solutions to the
primary development activities. See Appendix C.2.
7 It includes their agent or a third party

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 4

2.7.1.1 Assumptions about areas not well understood
Within the scope described above, RIL-1101 focuses on areas that are not well understood or
recognized (e.g., those rooted in systemic causes and contributed through engineering
deficiencies in system development). To quote from [2]:

“Common underlying factors8 involve organizational culture, safety culture, fatigue, other fitness
for duty issues, training, experience, habit, habituation, dysfunctional schedule pressure, adverse
ambient conditions, work-related distractions, and the like. Nevertheless, addressing ineffective
hazard recognition instances, addressing the factors that resulted in them, and addressing their
extents would be a highly cost-effective initiative.”

Judgment used in the selection of coverage of the subject matter is based on assumptions
about what is not well understood. Such assumptions should be re-evaluated through learning
cycles, before broader application of RIL-1101.

It is assumed that hazards internal to the DI&C system, contributed by hardware elements are
well understood. Therefore, review of hardware-related HA is addressed in Section 3.7 only
briefly9.

2.7.1.2 Extrapolation from recent licensing experience
Subject matter (e.g., contributory hazard scenario) was selected in consideration of issues
experienced by the licensing offices in the last several review projects, with the assumption that
those issues were indicative of a trend. It is possible that new issues10 surface in upcoming
reviews that were not explicitly addressed in RIL-1101. Its adequacy should be tested through
several learning cycles, before broader application.

2.7.1.3 Support for application-specific customization of the SRP
Chapter 7

Selection and extent of treatment of subject matter is further narrowed to support customization
of the SRP Chapter 7 specific to the needs foreseen for the mPower project.

2.7.2 Focus on evaluation rather than performance of hazard analysis
RIL-1101 is focused on providing the technical basis for exercising judgment during licensing
review activities. RIL-1101 is not intended as an interim or surrogate regulatory guide to
licensees or applicants. RIL-1101 is not intended to provide guidance on how to perform HA.

Prevalent public standards and guides on HA elaborate on techniques to perform HA, but there
is little information available on criteria for evaluating the results of HA, even though the
systematization of hazard analysis is over four decades old.

2.7.3 Focus on licensing reviews of safety automation
Although results from HA, in general, include requirements for aspects outside the initially
commissioned DI&C safety system (e.g., training, maintenance, and operational and
maintenance environments), RIL-1101 does not provide the technical basis to evaluate
requirements concerning operation and maintenance and the people engaged therein.

8 RIL-1101 scope does not include all the quoted factors.
9 Appendix C leads to more information through links to supporting references.
10 Example: Ha

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 5

In keeping with the scope of the SRP Chapter 7, the scope of RIL-1101 is limited to the safety
automation. The human, the human-automation interface, and the associated control room are
treated as part of the environment (Section 3.4.1) of the system in scope.

2.7.4 Focus on safety related systems for NPPs
Prevalent public standards [3] and guides [5], [6], and [7] on HA are oriented to the general case
of a system implementing a variety of functions with varying degrees of criticality. In contrast,
RIL-1101 focuses on safety related systems for NPPs, where the consequence of a mishap,
unwanted release of radioactivity into the environment (known in HA vocabulary as the loss), is
of the highest degree of severity. The scope includes a system realizing a safety function, as
well as any system or element on which the correct timely performance of a safety function is
dependent (see Appendix K).

Review of analysis for hazards external to the DI&C system, in general, is covered in other parts
of NRC’s standard review plan [8]. RIL-1101 considers external hazards primarily from the
perspective of issues with interfaces and interactions that can affect a safety function allocated
to the system being analyzed.

RIL-1101 does not elaborate on reviewing the analysis of hazards from the physical
environment (Section 3.4.1; Appendices E.4 and E.5)), because these are not new
considerations.

2.7.5 Types of systems intended in scope
RIL-1101 describes the evaluation of an applicant’s HA associated with digital safety systems
for new and advanced reactors. The scope of this RIL is limited to a system realizing a safety
function or on which the correct timely performance of a safety function is dependent (see
Appendix K). Other elements interfacing with, interacting with or affecting the DI&C safety
system are treated as parts of its environment; to that extent, such environment is also within
the scope (see Section 3.4.1).

The scope treats any change to a previously analyzed DI&C safety system as a new hazard
analysis review cycle.

2.7.6 Focus on contributory hazards rooted in systemic causes
The RIL is focused on hazards rooted in systemic causes such as inadequacies in engineering
(elaborated in Sections 3.1-3.6 and 3.8-3.9).

Systemic causes are a special kind of common causes of failure11 (CCF), such that, often, their
propagation is pervasive; that is, there could be many propagation paths, and these are not
easy to discover and analyze. (In contrast, the propagation path from a CCF due to the
breakdown of a component in a hardware system is relatively easier to identify and analyze). In
a system with complex logic12, recognizing and understanding the cause-effect relationships or
influence paths well enough requires explicit identification of a variety of dependencies (see
Appendix K). Some dependencies can be recognized in the analysis of the system itself (e.g.,
Sections 3.4.2, 3.6.1, 3.6.3). Some can be recognized through analyzing interactions of the
system with its environment (e.g., Section 3.4.1). Many other dependencies occur through
organizational processes (e.g., Section 3.2), technical processes (e.g., Sections 3.3, 3.4.3, 3.5,

11 Meaning in this context: Loss of the top-level safety goal.
12 For example, in the form of software.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 6

3.6.2, 3.6.4), and supporting or auxiliary processes. RIL-1101 does not enumerate all
contributory factors and relationships exhaustively, but uses examples: Scenarios to illustrate
certain hazard spaces and examples of related conditions that reduce the respective hazard
spaces. These relationships are causal dependencies, known in the respective underlying
scientific disciplines and have been validated through expert reviews of RIL-1101.

2.7.7 Scope excludes risk quantification
Given the focus on hazards rooted in systemic causes, the scope excludes quantification13 of
severity of consequence and probability of occurrence14 for the following reasons:

1. The consequence of the failure of a safety function is treated at the highest level of severity.

2. Logic15 leading to a safety function must execute correctly or the consequence is of the
same level of severity as the DI&C safety system - no mitigation is possible.

3. A safety system in an NPP is an independent layer of defense; no credit for meeting the
allocated safety requirements is assumed from another layer of defense16.

4. Contributory hazards originating in the system development lifecycle or rooted in systemic
causes17 are pervasive (permeating) in their effects. The governing variables are not
sufficiently controlled in the current state of practice even to identify the contributors, their
contribution paths, and the effects of their interactions. The relationships of the systemic
causes to the degradation of a safety function are not linear.

5. Since design certification for DI&C platforms, tools, processes, etc. allows multiple future
applications, the same elements could be replicated for different NPP functions, multiplying
vulnerability to the same contributory hazard. This multiplication effect is not bounded.

2.7.8 Relation between hazard analysis and safety analysis
Hazard analysis is an intrinsic part of safety analysis (see Appendix C.2).

Figure 1 shows the relationship of HA18, as treated in RIL-1101, to other activities contributing to
the applicant’s safety analysis report (SAR), as explained below:

1. The result of HA activities (depicted in the upper left sector of Figure 1) is a set of safety
requirements and constraints (included in the design bases), which are verifiable
independently by a third party not involved in the development of the safety system. Also
included are derived requirements and constraints on the design and implementation of the
safety system. This set of requirements and constraints is intended to be a part of the
licensing basis.

2. Activities in the scope of inspection, tests, analyses, and acceptance criteria (ITAAC)
(depicted in the upper right sector of Figure 1) verify that these requirements and constraints

13 Scope also excludes qualitative classification or gradation.
14 Exception: Section 3.7 pertaining to hardware components.
15 Example: Software
16 An independent layer of defense protects against the unknowns and uncertainties in the other layers of
defense.
17 The focus of RIL-1101

 18 Figure 1 is a simplified depiction, See note.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 7

have been satisfied. These verification activities are not a part of reviewing hazard analysis,
as delineated in RIL-1101.

3. Figure 9 shows the relationships of HA activities with mainstream system development
activities and verification activities.

4. Whereas each verification activity yields corresponding evidence (e.g., that a certain item,
such as hardware or firmware or software has met the requirements and constraints
allocated to it), overall verification includes the integration of all the various evidence items
(depicted in the lower sector of Figure 1) in a way that demonstrates that the overall safety
requirements and constraints of the system have been satisfied. These activities are also
not a part of hazard analysis, as delineated in RIL-1101.

5. Safety analysis (SAR), depicted by the circle in the center of Figure 1, includes the validated
results of HA (i.e., validation that safety requirements and constraints have been identified
correctly, completely, consistently, and unambiguously), as well as the results of verification
(i.e., the former have been satisfied).

Note: Figure 1 is simplified for illustrating the relationship with the overall safety analysis,
omitting the following:

1. HA is iterated at each phase in the development lifecycle of a system (see Figure 9) and the development lifecycle
of each of its elements.

2. Iteration at any phase may reveal that the phase has introduced a new hazard.

3. The corrective action may simply be a revision within that phase or it may require a change in a preceding phase,
invalidating the result of the preceding phase.

4. The latter case may require multiple iterations and tradeoffs, making the analysis correspondingly more difficult.

5. V&V activities during the mainstream system development are also iterative (discovery of anomaly; identification
of root cause(s); corrective action on the artifact; corrective action on the process), with each change generating
another iteration. Examples of activities included in corrective actions: An additional constraint is identified; an
assumption is made explicit; a task is formulated to validate an assumption.

Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 8

2.8 Organization of RIL-1101
Section 3 provides the technical basis to support NRC I&C staff in exercising judgment during
the review of an applicant’s HA. As requested by NRO (the sponsoring User), supporting
explanatory information is in the appendices. For example, Appendix C, which is incorporated
by reference in Section 3.1 Table 1 item H0-1G, summarizes the state-of-the-art in HA.

Section 3 is organized by groups of contributory hazards, as explained below.

1. These groupings serve as different perspectives on (or projections of) intertwined19 issues,
and are not intended to be mutually exclusive partitions.

2. Subsections 3.1 - 3.3 group contributory hazards that are applicable to all phases of the
development lifecycle; typically, these are controlled before starting the development of a
particular system.

3. Subsections 3.4 - 3.9 group contributory hazards from the perspectives of individual phases
of the development lifecycle.

4. While contributory hazards might manifest themselves or might be discovered in any of
several phases of the development lifecycle or levels of integration of a digital safety
system, the RIL attempts to place the item in a group corresponding to the earliest
prevention opportunity.

5. Relationships between scenarios of contributory hazards (illustrating corresponding hazard
spaces) and conditions that reduce these hazard spaces are organized in tables as follows:

5.1. The table title (explained in the narrative introducing it) bounds the scope and context of
entries in the rows of the table.

5.2. In a particular row, the left cell includes an example of a scenario20 illustrating some
hazard space.

5.3. A right cell, associated with a contributory hazard in a row, includes an example of a
condition that reduces the respective hazard space. Many such conditions could be
associated with a particular scenario.

5.4. Each contributory hazard is uniquely identified with a label of the type “H-alpha-<i>”

5.4.1. The “H-alpha-” part of the label is in the column title, applicable to each row, but
not repeated. Examples: H-0-; H-culture-; H-OTproc-.

5.4.2. The <i> portion of the label is a numeric, unique to each scenario of contributory
hazards.

5.4.3. For example, H-SAE-1 is a complete label for a scenario of contributory hazards.

5.5. A label of the type “H-alpha-<i>-G<j>” identifies a condition G<j> that reduces the H-
alpha-<i> space.

5.5.1. For example, H-SAE-1G1 is a condition: associated with H-SAE-1.

6. Hyperlinks are used selectively to identify other salient relationships of the following kinds:
6.1. between scenarios of contributory hazards - possibly across groups (tables)
6.2. between scenarios and conditions reducing the respective hazard spaces
6.3. between conditions reducing the various hazard spaces.

19 “Many-to-many” interrelationships exist.
20 In many cases, the scenario is described as a class or category of scenarios.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 9

7. The symbol ↑ as used in the form [H-culture-8↑] in a cell indicates that the item in the cell
“contributes to” or is “derived from” the linked item (e.g., H-culture-8).

8. The symbol ↓ as used in the form [H-S-1.1G1↓] in a cell indicates that the item in that cell
“requires” the linked item (e.g., H-S-1.1G1).

9. All of the many-to-many relationships are not hyperlinked.

10. Where needed, a note structure, distinguished by indentation, font type and size provides a
brief explanation or example for an “H-alpha-<i>” or “H-alpha-<i>-G<j>” paragraph.

11. A link to an item in an appendix leads to further elaboration and background.

Section 4 explains how HA-review fits in the regulatory framework.

Section 5 summarizes the contribution of RIL-1101 and Section 6 outlines the follow-on
research and development (R&D) identified in the course of this work (e.g., unresolved review
comments).

Where a word or expression is used in a meaning more specific than or different from the
common usage defined in mainstream dictionaries, it is defined in Appendix A: Glossary. Its first
occurrence is hyperlinked to that definition.

3 Considerations in evaluating Hazard Analysis
RIL-1101 addresses primarily factors contributing to the degradation of a safety function, rooted
in engineering21. These factors are part of a network of causes or dependencies (see Appendix
K) that result in some defect or deficiency in the system, which could lead to the degradation of
a safety function. RIL-1101 refers to these factors as contributory hazards.

21 rather than random hardware failures during operation

Controller
(organization;

team; individual; automation)

Controlled entity, e.g.:

Process; system; device

Control signal

(command; corrective action; actuation)

Process state

(sensed; measured; estimated; assessed)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 10

However, recent experience has revealed that propagation paths of hazards are not always
linear, and cause-effect relationships are not always direct chains. The indirect propagation of
effects (e.g., degradation of a safety function), contributory interactions and propagation paths
are not well understood. For example, [11] characterizes these as “issues that transcend the
functions of individual components and involve interactions between components within the
system as well as the interaction of the system with the environment.” Traditional techniques for
hazard analysis, as used in common practice, such as fault tree analysis (FTA) [12][13], and
failure modes and effects analysis for design (DFMEA) [14][15], do not support the discovery of
such contributory hazards well. RIL-1101 is intended to address these gaps.

Experience with complex systems in general [16] and with digital systems for critical functions in
diverse application sectors has revealed that common practice does not assure absence of
conditions contributing to hazards.

The difficulties NRO experienced (e.g., as reported to ACRS [17]) are examples of the more
general trends of increasing system complexity and increasing contribution of systemic causes
towards malfunctions. Generally accepted engineering standards22 do not provide sufficiently
specific guidance to ensure their technically consistent, efficient application to digital systems
with such complexity. Such reviews require significant additional information [17] from the
applicant, significant additional review effort and reliance on judgment, in order to address the
gap in the existing review guidance. These gaps were identified in [19] as uncertainties in the
assurance of digital safety systems. As depicted in Figure 3, RIL-1101 focuses on the challenges
from these uncertainties, characterized as contributory hazards, and identifies corresponding
conditions that reduce the respective hazard spaces.

22 This expression is mentioned in 10 CFR 50.34(a)(ii)(B); examples are referenced in NRC’s regulatory
guides.

Figure 2: Example of a dependency structure (cyclic graph)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 11

Figure 3: Contributory hazard space in focus

Residual
Uncertainties*

(reported in previous NRC report)

“Good” design practice

Size of contributory hazard space

NRC’s regulatory guidance
framework

Focus of RIL-1101

Conformity

assumed

Unconstrained “creativity”

C
on

st
ra

in
ts

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 12

3.1 Evaluation of Overall Hazard Analysis
From the wide range of approaches, methods and techniques to perform hazard analysis, the
selection should be well-matched to the object23 being analyzed. The performers (typically a
team) should have the requisite24 competence. Obscure hazardous conditions are difficult to
identify. The corresponding hazard controls should be adequate. The analysis should flow down
to all the elements and factors upon which the safety function or its integrity depends. Table 1
includes such overarching considerations in evaluating the HA of a digital safety system. As
these factors affect the quality of HA broadly, they are treated as contributory hazards in Table 1.
Key considerations are explained in notes after the table and in Appendices C and F.

Table 1: Considerations in broadly evaluating hazard analysis
Contributory hazard Examples of conditions that reduce the hazard space
ID
H-0-

Description ID
H-0-

Description

1 HA approach is not suitable to
the system, element,
intermediate-phase work
product, process or activity
being analyzed.

1G The selected HA approach is well-matched to the system
aspect, element, development phase, or work product being
analyzed, with considerations discussed in Appendix C.

2 Competence in performing HA
is not adequate for the system
being analyzed.
(Also see H-SRE-1)

2G1 The HA is performed with the requisite complement of
competence; see Appendix C.4
and [H-culture-6G2].
Also see Appendix F.4

3 Validation is inadequate –
impaired, because people in the
developer’s organization are
unable to think independently.
Intra-organizational reviews
suffer from “GroupThink.”
See Appendix F.4.4

3G1 The HA, including elements upon which it is dependent
(see: H0-8; H0-9; Appendix K)↓) and the resulting
requirements and constraints, is validated (in [21] common
position (CP) 2.1.3.2.6) independently, without exacerbating
H-culture-9. Also see Appendix F.3.
1. The HA-validation team has the requisite competence

[H0-2G1].
2. The HA-validation team provides perspectives and

background different from the team performing the HA.
3G2 See Appendix F.2 (diversity and independence) and F.4.4

(GroupThink)
6 Hazard controls needed to

satisfy system constraints
(which prevent hazards) are
inadequate

6G1 Hazard controls are identified and validated to be correct,
complete, and consistent.
[H0-7G1↓]

7 Flow down from the controls
[H0-6-G1↑] to verifiable
requirements and constraints is
inadequate.

7G1 Requirements and constraints [H0-6G1↑] are formulated and
validated to be correct, complete, and consistent in
consideration of the preference25 order 1-4 as follows:

1. Prevent hazard

2. Eliminate hazard

3. Contain hazard (prevent propagation) [H-SR-4G4↓]

23 For example, techniques in common practice such as FTA, FMEA) may not be very helpful in a
situation confounded with interactions and feedback paths.
24 Proficiency only in FMEA for random hardware failures may not suffice.
25 It is based on extent of reduction of hazard space, potential fault space, and uncertainty space.

http://www.psysr.org/about/pubs_resources/groupthink%20overview.htm

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 13

Contributory hazard Examples of conditions that reduce the hazard space
ID
H-0-

Description ID
H-0-

Description

4. Monitor, detect and mitigate26 hazard

4.1. Monitor [H-SR-4G1↓]

4.2. Detect [H-SR-4G2↓]

4.3. Intervene [H-SR-4G3↓]

4.4. Notify (some independent agent)27 [H-SR-4G5↓]

4.5. (Recipient28 of the notification) Perform safety-
supporting function

4.6. Confirm safe state

8 The analysis is not
propagated to elements in an
NPP on which the system
being analyzed depends or
the safety functions
allocated to it depend.
See in Table 4
 H-ProcState-5

8G1 All dependencies (see Appendix K) (see: Appendix C Section
C.1.1) are identified and analyzed, to confirm that a safety
function is not degraded.
Also see H-culture-12G2.

9 The analysis is not propagated
to processes and process
activities on which the integrity
of the system being analyzed
depends or the safety functions
allocated to it depend.
See in Table 4

H-ProcState-6↓
H-ProcState-7↓
H-ProcState-8↓

9-G All dependencies are identified and analyzed, to assure that a
safety function of the engineered system is not degraded.
Processes include organizational processes, management
processes, supporting processes, and technical processes.
Also see H-culture-12G2.

10 Propagated effect of changes
introduces inconsistencies,
invalidating previously
performed HA.

10G1 Starting from the initial HA performed on the functional
concept (in [21] CP 2.1.3.2.3) the HA is revised at every
phase29 in the development lifecycle, with change control
management and configuration management.
Examples of contributory hazards that may be discovered
include:
1. Hardware faults
2. Unanalyzed conditions [H-S-1.1.1G1↑].

10G2 The HA has been iterated until no new hazards are identified
[H0_8G1↑].

1. Added monitoring, detection, mitigation or other
requirement has not introduced some new hazard.

2. Some complexity-increasing side effect from the change

26 Maintain safe state
27 e.g.: Operator; another automation device or system.
28 e.g.: Operator; another automation device or system.
29 Also apply these considerations to successive phases of the system development lifecycle.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 14

Contributory hazard Examples of conditions that reduce the hazard space
ID
H-0-

Description ID
H-0-

Description

has not introduced some other, yet-unanalyzed hazard.
10.1 Hazard-introducing effect of

iterations is not well
understood.

10.1G H0-9.1{G1 – G7}↑
H0-10-G1↑
H0-10-G2↑

11 Required hazard control action
is degraded.

11G1 Each required control action is analyzed for ways it can lead
to the hazard; for example:

1. Not provided; for example:
1.1. Data sent on a communication bus is not delivered.

2. Provided when not needed

3. Incorrect state transition (e.g., combination of 4-5
below).

4. Incorrect value provided; for example:
4.1. Invalid data
4.2. Stale input value is treated inconsistently.
4.3. Undefined type of data
4.4. Incorrect message format
4.5. Incorrect initialization

5. Provided at the wrong time or out of sequence

6. Provided for too long a duration (e.g., for continuous-
control functions).

7. Provided for too short a duration; for example:
7.1. Signal is de-activated too early (e.g., for

continuous-control functions).

8. Intermittent, when required to be steady; for example:
8.1. Chatter or flutter
8.2. Pulse; spike
8.3. Degradation is erratic

9. Interferes with another action; for example:

9.1. Deprives access to a needed resource; for example:
9.1.1. “Babbling idiot”
9.1.2. Locking up and not releasing resource

9.2. Corrupts needed information

10. Byzantine behavior
12 Hazards in modes of operation

other than the “at power”
normal mode, or in transition
from one mode to another are
not adequately understood or
analyzed.

12G1 HA is performed for all modes of operation (in [21] CP
2.1.3.2.7) and corresponding requirements & constraints are
derived (e.g., see checklist in Appendix H).

As HA evaluation progresses further, the selection of information from Sections 3.2-3.9 will be
case-specific, depending upon the nature of the object and completeness of product-based
analysis.

3.1.1 Considerations for hazards within the system being analyzed

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 15

Referring to Table 1, the following notes explain certain contributors to hazards within the system
being analyzed:

H0-{6-7; 11}: These factors address the flow down from direct hazards to system
constraints to required controls to verifiable requirements and constraints. Sections 3.2-
3.9 elaborate on hazard-contributors encountered in the flow down.

H0-{8,9}: Whereas “ineffective hazard recognition” has been recognized as a serious
issue [2], unrecognized dependencies (see Appendix C Section C.1.1) are an increasing
contributor to this issue, as the complexity of organizations, processes, and systems
increases. In addition to the lack of awareness, lapses could occur because of inability to
track and maintain a consistent understanding of the dependencies.

H0-8: The extent of dependencies in a system and its elements may not be fully
understood or may not be understood in the same way across all parties engaged in
developing the system or multiple changes might introduce obscurity. The intent of
reviewing for dependencies is to check that the system on which HA is to be performed
and its context (environment) are correctly identified, the dependencies correctly
understood, conditions that may degrade a safety function (external and internal) are
identified, and the commensurate constraints are formulated.

3.1.2 Considerations for hazards contributed through processes
When absence of hazards cannot be ascertained from HA of the system, certain residual
uncertainties are addressed by extending HA to the corresponding process-
dependencies. When HA has to be extended to processes, a third party certification of
the system could provide the requisite confirmation that all process-related dependencies
have been identified and their effects analyzed.

H0-9: The extent of dependencies on processes, including the physical processes in the
plant, may not be fully understood. For example, Figure 4 depicts an abstraction of
process-related direct dependencies. Figure 4 is an example of a generic dependency
structure, illustrating how the transformation of a work product depends upon the process
activity and factors upon which that activity depends. This process dependency structure
can be applied to organize and understand the contribution of organizational processes
(Section 3.2), as well as technical processes (Section 3.3). This process dependency
structure is also applicable to any other creative, but deterministic, activity, from which
predictable, verifiable, analyzable results are needed. Each activity step is affected by the
procedures and resources, such as competence (e.g., H-culture-6G2), information, tool,
or other aid) employed in performing that activity. The quality of the work product
depends upon the quality of the procedures, resources and their utilization, that is, any
deficiency is a contributory hazard). Following are examples, indicating less than
adequate controls and thus less than adequate understanding of inter-dependencies
across processes.

1. Organizational processes lack such controls; or

2. The organization does not apply such controls to the feeder processes or food chain
or supply chain; or

3. The organization does not plan for such understanding at the system concept phase
of the lifecycle.

H0-10.1: When HA is performed at some stage in the development lifecycle of the system
and its elements, additional safety requirements and constraints could be discovered.
Inclusion of those requirements30 could change the system concept or design, requiring
another HA cycle to evaluate the impact of such changes. The cumulative and cascading

30 Incorrect, incomplete, inconsistent, or ambiguous safety requirements can lead to hazards.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 16

effects of these iterations may not be well understood, with the potential to miss subtle
implications of a change.

Figure 4: Factors influencing the work product of development

3.2 Evaluation of hazard analysis - organizational processes
Organizational processes include management processes, infrastructural processes, and other
supporting processes. The term, “supporting processes” includes change impact analysis
process and maintenance processes upon which the system design is predicated.

The culture of an organization with respect to safety engineering and the processes of
managing and engineering safety (included within “organizational processes”) have pervasive,
permeating effects, that is, the contribution of culture-dependent factors cannot be analyzed31
as causal events. In software-dependent systems, where the hazard space is much larger than,
say, in engineered mechanical structures, these contributors can render the hazards
unanalyzable.

31 This aspect of HA roughly corresponds to but is significantly broader than the HA mentioned in [6]
Table 1a.

Intent, needs, requirements, specifications, procedures, constraints

Incoming item, e.g.:
work product of preceding phase

Process
activity Work Product

Resources

applied to

Aids

Information

Others

Tools

Human

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 17

Table 2 identifies some common concerns.

Table 2: Organization’s culture: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
culture-

Description ID
H-
culture-

Description

1 The reward system favors short-term
goals, placing cost and schedule over
safety and quality (sliding on a
slippery slope, not fully cognizant of
the cumulative effect of
compromises).
(Adapted from Annex B in [25])

1G1 The reward system supports and motivates the
effective achievement of safety. Safety is the
highest priority.
Also see Appendix F.3.

1G2 The reward system penalizes those who take
shortcuts that jeopardize safety or quality.

1G3 The organization has integrity32.
1G3.1 The process33 state is consistent between reality

and its representation.
1G4 Lifecycle economics supporting safety and quality

drive the organization.
2 Accountability (e.g., as illustrated in

Figure 2 and Figure 4) is not
traceable; achievement of safety
cannot be assured.
Individual accountability becomes
lost, because (often without careful
reflection) individuals make decisions
and evaluate information based on the
master premise of the organization.
See Appendix F.2.

2G1 The process assures the accountability for effective
achievement of safety.

2G1.1 Influencing factors are organized in an effective
control structure34 (Figure 2), without exacerbating
H-culture-9. Also see Appendix F.3.

2G2 Management commitment to safety motivates
effective achievement of safety.

3 Personnel assessing safety, quality,
and their governing processes are
influenced unduly by those
responsible for execution [H-culture-
1↑]

3G1 Although information in the processes for safety,
quality, verification & validation, and configuration
management should be functionally integrated with
the main development process to prevent
information-loss, the performing personnel are
independent (free from undue influence) without
exacerbating H-culture-9. Also see Appendix F.3.

4 Personnel feel pressure to conform:
1. "Stacking the deck" when forming

review groups.
2. Dissenter is ostracized or labeled

as "not a team player"
3. Dissent reflects negatively on

performance reviews.
4. "Minority dissenter" is labeled or

treated as "troublemaker" or "not a
team player" or "whistleblower."

5. Concerned employees fear
repercussion. [H-culture-1↑]

4G1 Such behavior is discouraged and penalized. See
Appendix F.4.4.

4G2 The process uses diversity to advantage.
1. Intellectual diversity is sought, valued, and

integrated in all processes.
2. “Speaking up” (raising safety concern) is

rewarded.
3. See Appendix F.4.2 and F.4.4.

4G3 Supporting communication and decision-making
channels exist and the management encourages
their usage (e.g., individual can express safety
concern directly to those ultimately responsible).
See Appendix F.4.2.

32 Integrity: Honesty and strength of will to make a safety conscious decision even when it is not popular.
33 Applicable to any activity in any process in the organization, influenced by its management.
34 It is a comprehensive safety governance structure, including the higher levels of management.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 18

 4G4 Each identified hazard is logged and tracked to its
closure, as explained in Appendix C.3.2-C.3.3.
See Appendix F.

4.1
Diminished team ability to seek and
use intellectual diversity.

4.1G1 Avoid negative behavior and encourage expression
of diverse viewpoints, as explained in Appendix
F.4.3.

5 Management reacts only when there is
a problem in the field.
(Adapted from Annex B in [25])

5G1 Safety and quality issues are discovered and
resolved from the earliest stage in the product
lifecycle. See Appendix F.

5G2 The organizational culture has a strongly
established master premise of “safety” as the basis
for decisions and daily activity. This becomes the
guiding premise for analyzing and reducing the
hazard space. See Appendix F.

6 The required resources (quality;
quantity) are not planned or allocated
in a timely manner.

6G1 Resources required35 are estimated with adequate
accuracy36 in a timely manner.

6G2 The required resources are allocated in time.
6G3 Skilled resources have the competence

commensurate to the activity assigned. [H0-2G1;
H-SRE-1G{1,2,3}]

6G4 Teams ensure that their knowledge and mental
models are properly considered by using
communication processes that improve collective
mindfulness. See Appendix F.4.

7 A critical cognitive task is interrupted
to switch its assignee across multiple
tasks; such interruptions could
increase the potential of mistakes,
thereby increasing the potential fault
space or contributory hazard space.
(Adapted from Annex B in [25])

7G1 Run critical cognitive tasks to completion (default
practice of the organization). Interruption is
allowed only when the task has progressed to a
stable, well-understood state, such that the
interruption does not increase the hazard space.

8 Processes do not produce
deterministic, predictable results.

8G1 A defined, documented, disciplined process is
followed in all dimensions at all levels, as needed
for consistent achievement of safety; for example:

1. Management
2. Engineering
3. Procurement
4. Verification
5. Validation
6. Safety assessment
7. Safety audit

8G2 The organization follows disciplined
communication and cognitive processes to achieve
collective mindfulness and know when to adjust
and adapt the standardized processes, and learn
from the shortcomings. See Appendix F.2 and F.4.

9 When system lifecycle activities are
distributed across multiple
organizations or parts of the same

9G1 Cross-organizational dependencies are understood
clearly..
Also see H-culture-8G2.

35 Example: Type of competence; degree or level of competence or proficiency; amount of effort time
36 Implied constraint: Processes are adequately designed and controlled. [H0-9.1G1; H-culture-8G1; H-
OTproc-1G]

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 19

organization, safety-relevant
information37 is not communicated
efficiently, letting key items of
information “fall through the cracks.”
See note at end of table.
[H-SRE-7↓]

9G1.1 The organization maintains cross-organizational
connections that improve collective mindfulness;
for example, using working groups. See Appendix
F.

9G2 Organizational culture promotes open collaborative
communications across boundaries to realize a
system that achieves its safety goals.
See H-culture-{12G2, 12G3}.

9G3 Decomposition of safety goals from NPP level
analysis and allocation to safety related systems is
complete, correct, and consistent and unambiguous.

10 Mistakes repeat. 10G1 Continuous improvement is integral to all
processes. See Appendix F.4.

11 Heavy dependence on testing38 at the
end of the product development cycle.
By that stage:
1. It often becomes infeasible to

correct the problem soundly.
2. Patches increase complexity and

impair verifiability.

11G1 H-culture-5G1
11G2 Technical processes are designed to prevent safety

and quality issues as early in the development
lifecycle as possible.
See Appendix F.

11G3 Processes for safety, quality, V&V and
configuration control are planned39 and designed to
prevent and discover safety and quality issues as
early in the development lifecycle as possible.
See H-culture-12G2, 12G3} and Appendix F.2.

12 Dependence on implicit information,
e.g. implicit assumptions. [H-
ProcState-4H0_5↑]
[H-OTproc-8↓]
[H-SR-11↓]

12G1 All information upon which assurability of safety
depends is explicit and configuration controlled.

12G2 Even while making information explicit and
unambiguous, the organization maintains collective
mindfulness by persisting in the evaluation of
mental models and the development of more
accurate and nuanced mental models. This
necessarily involves continuous situation awareness
of the context and the cultivation of diverse
perspectives. See Appendix F.

12G3 The organization establishes a system for tracking
the basis and premise for engineering decisions.
See Appendix F.2 and Appendix J.

Note for H-culture-9: Cross-disciplinary, cross-organizational communications quality is affected by stretched lines
of communication across the NPP operator (the utility-licensee), the supplier of the plant, the supplier of the DI&C
system, and the supplier of components of the DI&C system.

3.3 Evaluation of hazard analysis - technical processes

Improperly designed or executed technical processes can lead to defects in a system.
Examples of technical processes include, but are not limited to the following:

• Requirements engineering – see Section 3.5.
• Architecture engineering – see Section 3.6.

37 Implied constraint: H0-9G
38 It is unlikely that testing as the only means of verification will suffice.
39 Examples of work products: Safety plan; quality plan; V&V plan, demonstrating completeness of
coverage.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 20

• Detailed design - see Section 3.8.
• Implementation - see Section 3.9.
• Verification activities by those performing these development activities.
• Third party verification.
• Process assessment.
• Process audit.

Examples of some general contributory hazards and conditions to reduce the respective hazard
spaces are given in Table 3 (adapted from Appendix A.1 in [19]), premised on the satisfaction of
constraints identified in Table 2.

Table 3: Technical processes: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
OTproc-

Description ID
H-
OTproc-

Description

1 Technical processes are not
deterministic [H-culture-8↑], that
is, correctness of results cannot be
assured.

1G The organization’s technical processes are defined to a
level of detail such that for each work element
involved, there is a specification of the competence,
tools, information, and other resources required (see
Figure 4) to execute that work element correctly and to
integrate results of such work elements correctly. [H-
culture-8G1↑].
Also see H-culture-8G2.

2 Any process variable in any work
element may contribute to some
defect, if not adequately
controlled.
[H-OTproc-1↑]

2G Each process variable in each work element is
controlled and supported with commensurate methods,
tools, and competence to execute that work element
correctly and to integrate results of such work
elements correctly..
[H-OTproc-1G↑] (Figure 2; Figure 4)

3 Cognitive load (or intellectual
complexity) imposed by a
specified work element exceeds
the capability of assigned
personnel. See Note.
 [H-culture-6↑]

3G1 The cognitive load imposed by a specified work
element, including an integration activity, is assured to
be well within the capability40 of personnel available
to perform that activity.
Also see H-culture-6G4.

3.1 Difficulty of understanding the
architecture is a contributor to the
cognitive load. Example:
Inadequate description.

3G2 The system architecture is analyzable and
comprehensible. [H-OTProc-3G1↑].
[H-S-1.1G1↓; H-S-2G6↓]

4 Mistakes (leading to defects)
occur41; however, technical
processes are not designed with
the commensurate robustness and
resilience to protect from such
mistakes.

4G1 The organization’s technical processes include
processes to detect and recover from mistakes (e.g.,
verification, audit).

4G2 H-culture-8G2.

5 The organization believes
incorrectly that its processes are
adequate, exposing it to unknown
sources of defects, for which it

5G1 The process is assessed and certified independently.
5G2 Qualified independent resources assess the process.

[H-culture-6G1; H-culture-6G2]
5G3 H-culture-8G2.

40 This may require certification of personnel through a standardized process.
41 Perfection in human performance is not achievable – at least, not in a sustainable manner.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 21

cannot identify the causes. [H0-
9.1↑; H0-9.3↑]

6 The processes in real-life
execution deviate from the
designed processes, resulting in
exposure to unknown sources of
defects, for which it cannot
identify the causes.

6G1 [H-culture-{1G3.1; 2G1.1}
6G2 The process in execution is audited independently.
6G3 Qualified resources are available to audit the process.
6G4 H-culture-6G4 H-culture-8G2.

Also see and Appendix F.4.

7 Less accumulated experience and
reusable results than in previous
generation systems,; for example,
shorter lifecycles of implemented
systems or configurations leading
to
• Less accumulated experience

on the same item
• Changing environments for

the same item

7G1 H0-9G
H-culture-{2G1.1; 8G1}
H-OTproc-{1G; 2G}

7G2 More rigorous analysis – see Table 1,
Table 2.

Commensurate conservatively derived requirements
and constraints.

7G3 H-culture-{8G2; 12G2; 12G3}

8 Engineering models lack
adequate fidelity to reality, i.e.
modeling abstractions are not
sound.

8G1 Modeling abstractions are validated.
8G2 H-culture-8G2

Note for H-OTproc-3: Increasing complexity [16] of systems, processes, and organizations, involving people from
multiple organizations, multiple disciplines, multiple locations, and increasing content of software (or other
implementation of logic) are increasing the contribution to hazards from engineering activities; for example:
• Requirements engineering (elaborated in Section 3.5; HA results in safety requirements & constraints).
• Architecture engineering (elaborated in Section 3.6)
• Software engineering, elaborated in Sections 3.6.4 and 3.8

3.4 Evaluation of Hazard Analysis - System Concept
The system concept, sometimes known as the functional concept (of the intended system), is
described in terms of the initial requirements associated with it and its relationship with its
environment, including the boundary and the assumptions (see Appendix J) on which these are
based. Sometimes, the associated requirements are embodied in a “concept of operations”
document. Sometimes HA42 of a functional concept is called preliminary hazard analysis
(PHA43) – (also see Appendix C-2.

In practice, the degree of specificity of a system concept varies over a wide range; sometimes
the initial concept is so vague that it leads to misunderstandings, lapses, or inconsistencies,
which contribute to hazards. Application and evaluation of HA (Section 3.1) is most effective in
the concept phase of a system development lifecycle. Avoidance of these contributors to
hazards (see Table 1; Table 21 tasks T1-T3.) requires clear description and tracking of the
evolving system concept and its relationship with its environment, as discussed in this section.

3.4.1 Hazards associated with the environment of the DI&C system
Hazards can be contributed through an ill-understood relationship between the conceived
system and its environment, some examples of which are given in Table 4, Table 6, and Table 7.
These tables also identify conditions that reduce the respective hazard spaces.

42 It roughly corresponds to but is significantly broader than the HA mentioned in [6] Table 1b.
43 These are good candidates for discussion with the applicant before it submits the license application.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 22

Hazards (including contributory hazards) may originate in the environment of the analyzed DI&C
system, or may originate in the DI&C system, or may result from their interactions. See
Appendix E.4 for hazard sources from the physical environment. See Appendix E.5 for ways in
which a DI&C system may affect its environment adversely.

Section 3.4.1.1 includes examples of hazards related to interactions with the plant processes.

Section 3.4.1.2 includes examples of hazards related to interactions with instruments, controls,
and networks in the system’s environment.

Section 3.4.1.3 includes examples of hazards contributed through human-interaction aspect of
the system’s environment.

Section 3.4.2 includes examples of hazards contributed through deficiencies in the architectural
concept. Conditions reducing the hazard space are applicable recursively to architecture inside
the intended safety system in every phase in the development lifecycle (from conception to
implementation), to every level in the system architecture integration hierarchy, and to
transformations from one level to another.

3.4.1.1 Hazards related to interaction with plant

Often, hazards arise from an inconsistency between the perceived process state and the real
process state. Here, the term “process state” is used in the general sense, for example: the
state of the nuclear reaction process, the state of some supporting physical process in the NPP,
the state of control automation, the state of some instrument, or even the degradation process
of some device. Hazards can also arise from unanalyzed conditions in the joint behavior of the
plant (including equipment and processes) and the safety system. Table 4 shows examples of
contributory hazards and conditions that reduce the respective hazard space.

Table 4: Interaction with plant: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
Proc
State
-

Description ID
H- Proc
State -

Description

1 The nature of change in some
monitored physical phenomenon44
in the process of interest in the
environment of the digital safety
system is not well understood or
not characterized correctly.
Also see H-SR-23

1G1 The physical processes45 in the monitored phenomenon
are modeled and represented correctly; for example:

1G1.1 • Nature of variation over time
1G1.2 • Dependencies on other phenomena
1G2 The perceived state matches reality with the fidelity

required in value and time.

1.1 The temporal aspect of change in
a continuously varying
phenomenon is not well
understood or not characterized
correctly.

1.1G1 Temporal behavior of a continuously varying
phenomenon is characterized correctly. such that timing
requirements for monitoring it can be derived without
loss of fidelity. This includes timing relationships across
monitored phenomena,

1.1G1.1 The physics of the phenomenon (e.g., dynamic behavior,

44 Examples: Pressure; temperature; flow; neutron flux density
45 Examples: Energy-conversion; equipment degradation; component degradation

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 23

including disturbances) is understood well and
characterized mathematically.

1.2 The temporal aspect of change in
a sporadic phenomenon is not
well understood or not
characterized correctly.

1.2G1
Requirements for reacting to sporadic events (e.g.,
sudden change) include the minimum inter-event arrival
time, based on the physics of the event-generating
process.

1.2G2 Signal indicating event of interest is not filtered out.

1.2G3 Signal indicating event of interest is not missed due to
inadequate sampling, as determined through
mathematical analysis.

1.2G4 Capturing event of interest does not disrupt any other
action upon which a safety function depends.

2

Unanalyzed joint behavior of the
safety system and the plant
equipment and processes degrades
a safety function.

2G1
Safety system and its environment, including the NPP
equipment and processes are analyzed as a coupled
system with sufficiently deep models of the behaviors
(e.g.: processes; instruments; controls; networks) to
represent reality with fidelity46.

3 Allocation of safety functions and
properties from a system at a
higher level of integration to one
at a lower level, is not correct,
complete or consistent, or is
ambiguous.
See notes.

3G1
Relationships with losses of concern identified at NPP
level analysis and commensurate safety goals formulated
in NPP level analysis are explicit.

3G2
Decomposition of safety goals into required safety
functions (design bases) is complete, correct, and
consistent and unambiguous.

3G3
Allocation of safety requirements to safety related
systems47) is complete, correct, consistent and
unambiguous. Also see Table 9.

3G4
Allocation of safety properties, including corresponding
decomposition or flow-down or derivation of constraints,
is complete, correct, and consistent. See Section 3.5.1.1.
Table 8.

3G5
The boundary of the system being analyzed is well-
defined with respect to its environment (in [19] CP
2.1.3.2.1).

3G6
Interface to and interactions with the plant are specified
and constrained in a manner that the system is
understandable [H-S-2↑], verifiable48 [H-S-1.1], and
free from interference [H-S-3]). Examples of elements in
the environment include interfaces to and interactions
with:
1. Sensors
2. Actuators
3. Services needed; for example:
3.1. Electricity
3.2. Air flow
3.3. Compressed air
3.4. Water
4. Human-machine interfaces
4.1. Roles, responsibilities, functions.
4.2. Procedures specifying 4.1.

46 Traditional FMEA and FTA of I&C systems in the plant will not suffice, as noted elsewhere.
47 If there are multiple levels of assembly (integration) this criterion applies to each level-pair.
48 i.e., satisfaction of the constraint or specification is verifiable by analyzing the system concept.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 24

3G7
Constraints on other elements in the environment of the
system are explicit.
Restrictions & constraints placed on the system are
explicit; example constraints:
1. Compatibility with existing systems.
2. Physical and natural environment.
3. Protection against propagation of non-safety system

faults and failures.
3G8 Restrictions & constraints placed on the system are

explicit; example constraints:
4. Compatibility with existing systems.
5. Physical and natural environment.
6. Protection against propagation of non-safety system

faults and failures.
4

Interactions of the system with its
environment, including effects of
assumptions, are not well-
understood. [H-ProcState-3↑]
See note.
(In [19] Appendix A.3 item 3).
[H-culture-12↓]

4G1 See: H-ProcState-3G7; H-culture-{12G2, 12G3};
Appendix J.

4G1.1 [H-culture-12G1↓]
The organizational processes (Section 3.2) include
explicit tasks or activities to validate each assumption in
time to avoid adverse impact on the system safety
properties and HA activities.
Also see H-culture-{12G2, 12G3}.

4G1.2 If an assumption is found to be invalid or there is a
change from the previous assumption:

1. There is a corresponding change impact analysis,
maintained as an independently evaluated
configuration item.

2. The affected part of the HA is repeated

3. Commensurate changes in constraints or
requirements are identified.

4. There is an analysis of the impact of those changes.

5. The change impact analysis is an independently
evaluated configuration item.

4G2 Hazards from the physical environment are analyzed.
See Appendix E.4

4G3 Hazards from the DI&C system on its environment are
analyzed. See Appendix E.5

Note for H-ProcState-{3-4}: The intent of reviewing for these factors is to check that the system on which HA is to
be performed and its context (environment) are correctly identified, the dependencies are correctly understood, the
primary hazards (external and internal) are identified, and the commensurate constraints are identified.
Note for H-ProcState-3: When a large complex system, such as an NPP (including its environment and
processes for operation and maintenance) is decomposed into manageable subsystems and components, the
constraints necessary to prevent the losses at the top level (e.g., NPP-level) may become obscure. For
example, subtle couplings across the decomposed elements might arise. In an evolving configuration of the
overall (e.g., NPP-level) system, the boundary of the system being analyzed and assumptions (see
Appendix J) about its environment may not be well-defined, leading to appropriate considerations “falling
through the cracks.”

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 25

Figure 5 depicts a “progressive49” migration from normal operational process state region
(shown in green) to an unsafe state region (shown in red). Actions to avoid the unsafe state
region (i.e. to effect safe recovery) need some time (shown as the brown region). To allow for
the needed time, the temporal aspect of change in the monitored phenomena must be
understood well and departure (shown in yellow) from normal operational state, monitored.
Intervention must be completed within this (yellow) region.

49 Premise: Degradation is not sudden or unpredictable, and progression can be monitored.

Unsafe region

Normal
operationa

l region

Boundary of
safe recovery

Intervention must be

completed in this
region

Figure 5: Regions of state space for hazard analysis

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 26

Table 5: Interdependencies: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
Dep
-

Description ID
H-
Dep
-

Description

1 Unrecognized inter-
dependencies in the system:
Inter-dependencies in the
system, its elements, and its
environment (see H-ProcState-
4) are not understood,
recognized or explicitly
identified, leaving some
vulnerability, which can lead to
the degradation of a safety
function.
[H0_8↑]

1G1 All inter-dependent systems, elements, processes, and factors
affecting a safety function are identified.
See H-culture-{8G2, 9G2}.

1G1.1 Design rationale is recorded and tracked. See Appendix F.2.
1G2 The items identified in are configuration items.
1G3 The inter-dependencies or relationships among these items are

unambiguously described, especially those affecting emergent
behavior. [H-ProcState-5G1↑]
Also see H-culture-{12G2, 12G3}.

1G4 Semantics of the relationships are explicit: Relationships may
not merely be sequential (chained) or tree-structures, but also
cycles – often feedback control loops50. [H-ProcState-5G1↑]

1G5 The inter-relationships of these configuration items are
identified (e.g., by means of an overall NPP-level architecture).
[H-ProcState-5G1↑]

1G6 These inter-relationships are also a configuration item or set of
configuration items. [H-ProcState-5G5↑]

1G7 Independent verification assures that these configuration items
represent reality.
[H0-8.1G1↑]

1G8 Effect of these dependencies is analyzed to prove that the
safety function is not degraded.

1G9 Any change in any of these configuration items is managed
through a change control process, with a documented analysis
of the impact of change. (Generalized from CP 2.7.3.1.5 in
[21]) [H-ProcState-5G1↑]
See Appendix F.2.

1G10 The change impact analysis is independently verified. [H-
ProcState-5G8↑]

1G11 The change impact analysis is a configuration item. [H-
ProcState-5G8↑]

1.1 Dependencies through the
environment of the digital
safety system are not
recognized; for example:
• The physical
processes
• Degraded
behavior of related
instrumentation and peripheral
equipment

1.1G1 Effect of these dependencies is analyzed to prove that the
safety function is not degraded.

1.1G2 H-culture-8G2

2 Unrecognized inter-
dependencies in the
development process: Inter-
dependencies in the system
development process, feeder

2G1 All inter-dependent processes (including feeder and supporting
processes), resources used in these processes and factors
affecting these processes and resources are identified (e.g., see
Figure 4).
See H-culture-{8G2, 9G2}.

50 Contrast with a chain of events initiated by failure of a hardware component

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 27

processes, supporting
processes, elements, and
environments, are not
understood, leaving some
vulnerability, which can lead to
a defect in the system, which
could lead to the degradation of
a safety function. [H-0-9↑]

2G2 These are configuration controlled items (henceforth,
configuration items). [H-ProcState-6G1↑]

2G3 The inter-dependencies or relationships among these items are
unambiguously described, including cycles created through
feedback loops51. [H-ProcState-6G1↑]
Also see H-culture-{12G2, 12G3}.

2G4 The inter-relationships across these configuration items are
identified (e.g., by means of an overall process architecture),
and are also a configuration item or set of configuration items.
[H-ProcState-6G1↑]

2G5 Some combination of independent assessment, audit, and
verification assures that these configuration items represent
reality. [H-ProcState-6G1↑]

2G6 Any change in any of these configuration items is managed
through a change control process. [H-ProcState-6G1↑]

2G7 Effect of these dependencies is analyzed to prove that the
safety function is not degraded.

2G8 H-culture-8G2
3 Dependencies through

supporting services and
processes are not recognized

3G1 Effect of these dependencies is analyzed to prove that the
safety function is not degraded.
See H-culture-{8G2, 9G2}.

3G2 H-culture-8G2
4 Dependencies through

resource52 sharing are not
recognized; examples:
• Contention
for the shared resource
• Corruption of
resource (e.g., data)

4G1 Effect of resource-sharing is analyzed to prove that the safety
function is not degraded.
See H-culture-{8G2, 9G2}.

Note: Whereas “ineffective hazard recognition” has been recognized as a serious issue [1], unrecognized
dependencies are an increasing contributor to this issue, as the complexity of organizations, processes, and systems
is increasing. In addition to the lack of awareness, lapses could occur because of inability to track and maintain a
consistent understanding of the dependencies. The state of practice in representing and analyzing such dependencies
is relatively weak, as discussed in Appendix C.

3.4.1.2 Contributory hazards from NPP-wide I&C architecture
The scope of NPP-wide system architecture includes the safety system under evaluation and its
relationship with its environment, that is, all systems, elements, processes and conditions that
support or affect the performance of a safety function. “Relationship” includes interfaces,
interconnections, and interactions, whether these are direct, intended, explicit, static, “normal,”
indirect, implicit, unintended, dynamic, or “abnormal.” Any relationship that affects the
performance of a safety function is a dependency. HA of the NPP-wide I&C architecture should
examine it for hazards relevant to the safety related system to be analyzed. Figure 6 provides a
simplified view.

51 These can also be analyzed as control loops influencing safety properties of the affected system.
52 Examples: Skilled resources for development; Computing memory or processor-time during execution.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 28

Constraints on the NPP-wide I&C architecture are derived from the quality53 attributes or
properties of the safety related system being analyzed. Quality attributes are discussed in
Section 3.5.1.1, including Table 8, which also applies to the NPP-wide I&C architecture.

Note: Criteria for the HA-evaluation the NPP-wide architecture are predicated on the correct
and complete performance of HA, as illustrated in Table 1, including considerations of
combinations of multiple contributory hazards, exemplified through Table 4, Table 2, Table 3,
Table 6, and Table 7.

Table 13, derived from considerations in Table 8, also applies to the NPP-wide I&C architecture.
in the context of hazards contributed through interference.

53 Other terms for these properties: Quality-of-service (QoS) properties; non-functional requirements

 NPP-wide I&C architecture
NPP-level HA

Losses to be prevented

Hazards leading to losses

Preventative constraints

Allocation of
safety functions

DI&C
Safety
Automation

I&C
Safety
HMI

Other
(non I&C)
equipment

Allocation of
other
functions

Other
systems

Figure 6: NPP-wide I&C architecture - allocation of functions in concept phase

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 29

3.4.1.3 Contributory hazards from human machine interactions
Hazards of the kind grouped in Table 1 - Table 4 could also affect human-automation
interactions

Table 6 supplement those with some examples of more specific hazards contributed through
human-automation interactions and Table 7, those through inadequacies in the associated
engineering.

Table 6: Human machine interactions: Examples of Contribution to hazards
Contributory
hazard

Conditions that reduce the hazard space

ID
H-
hmi-

Description
(e.g.,
Scenario)

ID
H-
hmi-

Description

1 Inconsistency
between
human-
perceived
process state
and real
process state

1G1 Process state presented to the human represents the real physical state in
value and time.

2 Inconsistency
between
human-
perceived state
of an
instrument54
and real state
of the
instrument

2G1 Instrument (e.g., actuator) state presented to the human represents the real
physical state of the instrument in value and time.

3 Mode
confusion

3G1 Human is notified of the current mode and a mode change in progress (the
loop is closed with feedback).

3G2 Human has a correct understanding of the mode-change model
(human is equipped with correct mental model of the mode-switching
behavior of the automation)

3G3 Potential for mistaken interpretation of the information presented by the
human-machine interface is eliminated.

3G4 Inconsistent behavior of automation is avoided; or, automation detects its
inconsistency and notifies human.

3G5 Unintended55 side effects are avoided
3.1 Confusion

about line of
authority (who
or what entity
is in control at
the moment)

3.1G1 Multiple concurrently active paths of control authority (logical control flow)
are avoided

3.1G2 Change of mode by automation without human confirmation is avoided.
3.1G3 Correct division of tasks is ensured through analysis of human tasks,

including human-automation interactions.

54 Example: A sensor; an actuator.
55 Any intended effect is explicit (e.g., as a part of the specification) and analyzed for its effect on a safety
function.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 30

4 Inappropriate
division and
allocation of
tasks between
human and
automation.

4G1 H-OTproc-3G1

5 Normally
useful
cognitive
processes are
defeated or
fooled by a
particular
combination
of conditions
[11]

5G1 See H-hmi-6G1

6 Human
mental model
of how the
system works
is not
consistent
with the
reality.

6G1 “How the system works” (the information needed by operating personnel about its
behavior and needed automation -human interaction) is described clearly, including
behavior and automation-human interaction under off-normal conditions (e.g.:
presence of a fault; all combinations of such conditions).

Table 7: Human machine interaction engineering: Examples of Contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
hmiP-

Description (e.g., Scenario) ID
H-
hmiP-

Description

1 Loss of information across disciplines (e.g.,
automation engineering, human factors
engineering, control room design).
[H-culture-9↑][H-SR-3↑]

1G1 System is engineered holistically, including
crosscutting analysis. (Adapted from [19]
Appendix A.3 footnote 82)

2 Confusing human-machine interface design 2G2 H-hmi-3G3
3 Cognitive overload 3G3 H-OTproc-3G1

3.4.2 Contributory hazards in conceptual architecture
The term “conceptual architecture” refers to the architecture of the system concept, as it evolves
in relation to its environment (also see Sections 3.4.1.2).

Here, the focus shifts from the interactions of the conceived system with the environment to its
internal architecture, as driven by the requirements allocated to it, that is, the inter-relationships
of the various requirements and constraints to be satisfied by the conceived system. The
information in Table 8 and Table 13 is applicable to the conceptual architecture, especially with
respect to the following concerns:

1. Freedom from interference across redundant divisions [Table 13 H-S-3G3 - 2↑].

2. Freedom from interference between a monitoring element and its monitored element [Table
13 H-S-3G3 - 4↑].

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 31

3. Compromise of redundancy through a dependency (e.g., input data; resource-sharing). Also
see Table 1 item 8-10.

4. Compromise of redundancy in the concept of voting56 logic.

The conditions (to reduce the respective hazard spaces) provided in Table 8 and Table 13 apply
recursively to the finest grain level of the system architecture and recursively to the finest grain
level of the software architecture. These conditions also apply to the mappings (e.g., through
composition-decomposition) from one level to another in the architecture hierarchy57 and
through all stages of derivation of requirements & constraints and the subsequent development
lifecycle stages (e.g., detailed design and implementation).

3.4.3 Contributory hazards from conceptualization processes
Examples of hazards contributed through weaknesses in the cultural and general technical
processes of the organization (Table 2 and Table 3), which were introduced in Section 3.2, apply
to the concept phase of the system development lifecycle strongly.

Requirements engineering (Section 3.5) and architectural engineering (Section 3.6) apply to the
concept phase also – see Table 12, Table 13, and Table 14.

Planning the rest of the development lifecycle goes hand in hand with the conceptualization, as
stated in Appendix C.3 Table 21, tasks T1-T3.

3.5 Evaluation of hazard analysis - Requirements
Identifying valid requirements for the digital safety system has been found to be one of the
weakest links in the overall process, in the experiences of many critical application domains.
Inadequacy in requirements is one of the most common causes of a system failing to meet
expectations. Failures traceable to shortcomings in requirements cannot be caught through
such verification activities as simulation and testing alone. Formal methods do not help in
understanding intent or eliciting missing requirements, when the intent is not clear [19]. For a
safety system, requirements and constraints emerge from hazard analysis and are validated
through independent hazard analysis. Although initial requirements for a digital safety system
come from a higher level of integration (e.g., from a NPP-level safety analysis), additional
requirements and constraints are discovered at every phase of the development lifecycle.

3.5.1 System Requirements
In the general context of systems engineering, the specification of a primary function, valued
and required by its user, is called a functional requirement. In the context of digital safety
systems, example groups of functional requirements include (but are not limited to) monitoring
departure from a safe state, detecting threshold for intervention, and intervention for mitigating
the consequence of departure from safe state. Key prerequisite activities for identifying safety
requirements were discussed in Sections 3.1 (overall hazard analysis, understanding
dependencies leading to loss events), 3.4.1 (understanding hazards in relation to the
environment of the safety system), including hazards contributed from inadequate definition of
the boundary of the safety system, invalid assumptions (see Appendix J), and interactions with

56 Example: In a quad-redundant system for a space system, four computers were connected by a
multiplexor/de-multiplexor module. A diode in the interconnections failed in an unanticipated way, such
that the condition was not observed by the 4 computers similarly. (In [19] Appendix A.3 footnote 84)
57 The mapping could contribute a hazard, e.g., Some abstractions can mask problems.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 32

other systems and humans). The analysis reviewed in those sections contributes to an early
stage of requirements engineering. Given the requirements resulting from those analytical
activities, Section 3.5.1.1 introduces the concept of associated quality requirements. Section
3.5.1.1 also introduces the concept of derived quality characteristics or requirements in an
organizing framework, known as a “quality model” [30]. Section 3.5.1.2 identifies some common
weaknesses in formulating verifiable requirements, and Section 3.5.1.3 identifies some common
weaknesses in the associated requirements engineering processes.

3.5.1.1 Quality requirements
Figure 7 shows quality requirements associated with functional requirements. In the context of
this RIL, examples of top-level quality requirements are Safety and Security.

For a safety system58, as shown in Figure 8, the “Assurability” property distinguishes it from
systems that do not require similar assurance59. Figure 8 also shows other quality attributes that
contribute to or support “Assurability.” The corresponding quality requirements may also be
viewed as constraints to be satisfied by the digital safety system, that is, constraints on the
solution space (also known as design space), such that system concepts that do not satisfy
these constraints are eliminated from further consideration (i.e., the hazard space is reduced).
Table 8 shows the logical derivation of these constraints (with the derivation relationships shown
in Figure 8) to support the “Assurability” property with the following informally expressed
reasoning:

1. To be able to assure that a system is safe, one must be able to verify [H-S-1] that it meets
all its safety requirements.

2. For a system to be verifiable, it must not be possible for one element of the system to
interfere with another. [H-S-3]

58 As stated in Section 2.3.3, the scope is limited to the automation. People are part of its environment.
59 Example: A commercial-grade system or element on which no safety function is dependent.

Quality requirements Quality requirements

Figure 7: Quality requirements should be explicit

Requirements & Constraints

Quality requirements

Safety Security

 Functional requirements

Other

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 33

3. If the conceived system is too complex, adequate verification is infeasible. [H-S-1.1]

4. If one cannot even understand it, how can one assure that it is safe? [H-S-2]

5. Verifiability is a required system property, flowing down from the system to its elements
(constituents) progressing to the finest-grained element; it implies corresponding verifiable
specifications. Verification also includes analysis at various phases in the development
lifecycle, well before60 an artifact is available for physical testing. Examples of conditions for
verifiability:
5.1. Ability to create a test (or verification) case to verify the requirement.
5.2. Observability
5.3. Ability to constrain the environment of the object of verification.

6. For “analyzability” the system must have predictable and deterministic61 behavior. [H-S-1.2].

Table 8: Constraints derived from quality attributes: Scenario-based examples
Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

1 The system is not sufficiently verifiable and
understandable, but this deficiency is discovered
too late. Appropriate considerations and criteria are
not formulated at the beginning of the development
lifecycle; therefore, corresponding architectural
constraints are not formalized and checked. When
work products are available for testing, it is
discovered that adequate testing is not feasible
(e.g., the duration, effort, and cost are beyond the

1G1 Verifiability is a required system
property, flowing down from the system
to its constituents progressing to the
finest-grained element.
(Adapted from CP 2.2.3.11 in [21])
[H-S-1.1G1↓]

1G1.1
Verifiability of a work product is
checked at every phase of the
development lifecycle, at every level of

60 When performed on a computer program (code), it is known as static analysis. However, analysis in the
same “static” sense can also be performed on work products of earlier phases, e.g. on models. [H-S-
1.1.1]
61 Yields deterministic results.

Safety

Assurability

Verifiability

Analyzability Freedom from interference

Determinism Predictability

Comprehensibility

Complexity

Simplicity

Figure 8: Quality characteristics to support safety

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 34

Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

project limitations). integration, before proceeding further in
the development.

1.1 System is not verifiable (e.g., it is not analyzable or
very difficult to analyze).

1.1G1 Avoidance of unnecessary62 complexity
1.1G1.1 The behavior is unambiguously

specified for every combination of
inputs (including unexpected inputs) at
every level of integration in the system
(in [19] Appendix A.4 item 4).

1.1G1.2 The flow-down ensures that
1. Allocated behaviors satisfy the

behavior specified at the next higher
level of integration;

2. Unspecified behavior does not
occur.

1.1G1.3 The behavior of the system is a
composition of the behaviors of its
elements, such that when all the
elements are verified individually, their
compositions may also be considered
verified63. This property is satisfied at
each level of integration, flowing down
to the finest-grained element in the
system.

1.1G1.4 Development follows a refinement
process.

1.1.1
There are unanalyzed or un-analyzable conditions.
For example, all system states, including unwanted ones
such as fault states, are not known and not explicit.
To that extent, verification and validation (V&V) of the
system is infeasible. [H-S-1.1↑]

1.1.1G1 Static analyzability: System is statically
analyzable.
1. All states, including fault conditions,

are known.
2. All fault states, leading to failure

modes, are known (in [21]CP 2.2.3.14
1st item).

3. Safe state space of the system is
known (in [21] CP 2.2.3.14 2nd item).

1.1.2 There is inadequate evidence of verifiability. [H-S-
1.1↑]

1.1.2G1 Verification plan shows the coverage
needed for safety assurance.

1.2 System behavior is not deterministic64. [H-S-
1.1.1↑]

1.2G1 System has a defined initial state.

1.2G2 System is always in a known
configuration.

1.2G3 System is in a known state at all times
(e.g., through positive65 monitoring and
indication):
1. Initiation of function

62 Meaning: [Complexity] that is not essential to support a safety function.
63 No unspecified behavior emerges.
64 Yields deterministic results.
65 If indirect indication or inference is used, HA confirms satisfaction of H-ProcState-1G1.2.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 35

Contributory hazard Conditions that reduce the hazard space
ID
H-S-

Generalized Scenario ID
H-S-

Description

2. Completion of function (in [21] CP
2.1.3.4 last item)

3. Intermediate state, where needed to
maintain safe state in case of
malfunction.

1.3 System behavior is not predictable. [H-S-1.1.1↑] 1.3G1 Each transition from a current state
(including initial state) to some next
state is specified and known, including
transitions corresponding to unexpected
combination of inputs and transition
conditions.

1.3G2 A hazardous condition can be detected
in time to maintain the system in a safe
state. (in [21] CP 2.2.3.14 3rd item).

2 Comprehensibility: System behavior is not
understood completely and correctly by its
community of users (e.g., reviewers, architects,
designers, and implementers), that is, the people
and the tools they use.
[H-S-1↑]

2G1 Behavior is completely and explicitly
specified. Also see H-culture-{12G2,
12G3}.

2G2 Behavior is completely understandable.
Also see H-culture-{12G2, 12G3}.

2G3 Behavior is understood completely,
correctly, consistently, and
unambiguously by different users
interacting with the system. Also see H-
culture-{12G2, 12G3}.

2G4 The allocation of requirements to some
function and that function to some
element of the system is bi-
directionally66 traceable. (in [19]
Appendix A.4 item 2).

2G5 The behavior specification avoids mode
confusion, esp. when functionality is
nested (in [19] Appendix A.4 item 3).

2G6 The architecture is specified in a manner
(e.g., language; structure) that is
unambiguously comprehensible to the
community of its users (e.g., reviewers,
architects, designers, implementers), that
is, the people and the tools they use (in
[19] Appendix A.4 item 9).

Considering that the state of practice is especially weak in the derivation of verifiable constraints
from quality requirements, a careful review is needed. The architecture should satisfy these
constraints, starting from the system concept phase and continuing at every successive phase
of development, refinement and decomposition, including all phases of the software
development lifecycle. Commensurate architectural constraints are identified in Section 3.6.

66 It is not implied that one-to-one relationships are necessary.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 36

3.5.1.2 Contributory hazards through inadequate system requirements
Activities leading to identification of functional requirements for safety were introduced in
Sections 3.1 (overall hazard analysis, including understanding dependencies leading to a loss
event or degradation of a safety function), 3.4.1 (understanding hazards in relation to the
environment of the safety system), including hazards contributed from inadequate definition of
the boundary of the safety system, invalid assumptions (see Appendix J), and interactions with
other systems and people). Table 9 identifies further contributory hazards due to weaknesses in
identifying and formulating requirements. The content of Table 9 is adapted mostly from
Appendix A.3 in [19]; other sources are referenced within the respective item in Table 9. For
hazards contributed through weaknesses in interfaces and interactions across elements of the
system, see Section 3.6.1.

Table 9: Inadequacy in system requirements: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
SR-

Description
(e.g., Scenario)

ID
H-SR-

Description

1 Mistakes occur due
to misunderstanding
the environment

1G1 [H-SRE-{1G1, 1G2, 1G3}↓]
See: H-culture-{4G1, 4G2, 4G3, 6G3}; See Appendix C.3.2-C.3.3;
Appendix F, esp. Appendix F.1

2 Input constraints
misunderstood or
improperly captured
[H-SR-1↑]

2G1 [H-SRE-{1G1, 1G2, 1G3}↓]
See: H-culture-{4G1, 4G2, 4G3, 6G3}; Appendix C.3.2-C.3.3;
Appendix F, esp. F.1.

2G2 Criteria for input validation are correctly established.
See Appendix F.2 and F.4.

3 Incompleteness 3G1 See Table 1
3G2 H-ProcState-3G5
3G3 HA includes interactions with the environment of the system – see

Section 3.4.1.
3G4 Inter-relationships and interactions with the environment are analyzed in

all configurations and modes (including degraded ones), and changes
from one mode to another. [H-SR-3G3↑]

3G5 In HA at system concept phase (Section 3.4), an architectural model or
representation of the system (e.g., functional; behavioral) concept
includes a (functional; behavioral) model or representation of the
environment, especially the physical processes (Appendix H) [26]).
[H-SR-3G3↑] [H-SAE-{1G1, 2G1, 3G1, 4G1}↓]

3G6 Process behavior models67 (H-SR-3G5) include identification of safe
state regions and trajectory68 of safely recoverable process state. [26],
See Figure 5

3G7 Process behavior models (H-SR-3G5) include time-dependencies,
relationships and constraints. [11] [H5-G0]

3G8 [H-SRE-{1G1, 1G2, 1G3}↓]
4 Inadequate

protection or defense
against residual

4G1 Monitoring: Feasible trajectories70 of appropriate state variables71 or
parameters and expected values are known and monitored.
 (Generalized from [21] CP 2.1.3.2.3, 2.1.3.2.4)

67 The scope is limited to I&C-relevance.
68 State space within which recovery is provable.
70 For example: Values over time; rate of change.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 37

faults69.
[H-SR-3↑]
Note tension with
[H-SR-20]

4G2 Detection: Appropriate parameters of the system or element are
monitored to detect departure from safe state (e.g., by applying
discriminating72 logic on the monitored parameters) in conjunction with
predictive behavior models, but considering [H-SR-{19, 20}]

4G3 Intervention: Upon detection of departure from safe state, intervention
maintains the plant in safe state.
(Adapted from [21] CP 2.2.3.7)

4G4 Containment: The system or element is able to contain, localize, and
isolate the source of the fault (e.g., a hardware or software component).

4G5 Notification: Notification is timely, but avoids “flooding.”
4G6 [H-SRE-{1G1, 1G2, 1G3}↓]

5 Inadequate
identification of
sources of
uncertainty, their
effects, and their
mitigation. [H-SR-
3↑]

5G1 [H-SRE-{1G1, 1G2, 1G3}↓]

6 Deficiency in
requirements for
fault containment.
[H-SR-3↑]

6G1 [H-SRE-{1G1, 1G2, 1G3}↓]

7 Inadequate or
improper
generalization to
capture classes of
issues

7G1 [H-SRE-{1G1, 1G2, 1G3}↓]
See H-culture-{4G1, 4G2, 4G3, 4G4, 6G3} and Appendix F, esp. F.1.

8 Inconsistency 8G1 [H-SRE-{1G1, 1G2, 1G3}↓]
9 Inadequate

protection or defense
against invalid input
[H-SR-4↑]

 H_SR_2G2
9G1 Validity of value of each input is monitored (in [21] CP 2.1.3.2.4).
9G2 Intervention upon detecting invalid input is specified to maintain system

safe state.
10 Uncorrected or

inadequately
compensated
instrumentation
errors

10G1 Required calibrations and corrections are known and applied (in [21] CP
2.1.3.2.5) [H-SR-9G1↑]

11 Implicit assumptions
about the
environment.
[H-culture-12↑]

11G1 Each assumption about the environment is made explicit (e.g.,
documented; in [19] Appendix A.3 item 3). See Appendix J.
[H-culture-{12G1-12G3}↑]

12 Invalid assumption
about the
environment.

12G1 See: Appendix J; H-culture-12G3; Appendix C.3.3; Appendix F.2.
12G2 Each assumption about the environment is validated (e.g., through

treatment as a “constraint or condition to be validated).”
13 Unclear expression

of the consequences
of an assumption
[Table 1][H-SR-12↑]

13G1 Record of each assumption [H-SR-12G1] includes the consequences if
the assumption turns out to be false. (In [19] Appendix A.3 item 4). Also
see Appendix J.

13G2 Requirements include measures to mitigate the consequences of
assumptions that fail to hold. (In [19] Appendix A.3 item 4).

71 Include inputs and outputs.
69 It refers to faults internal to digital safety system and its elements; also known as resilience.
72 e.g.: through infeasible or unexpected value.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 38

13G3 Each assumption (e.g., constraint or condition to be validated) is tracked
as a configuration item.

13G4 Assumptions about the downstream design are made explicit (e.g.,
through explicit derived requirements or constraints on the architecture,
design and implementation, and the associated methods and tools). (In
[19] Appendix A.3 item 3.1). See: Appendix J; H-culture-{12G2, 12G3}.
Examples:
1. Requirements from the application software on system platform

services (HW & SW), including HW and SW resources to support
the workload.

2. Timing constraints to be satisfied.
3. Compatibility across maintenance updates.

13G4.1 The safety plan and supporting plans include activities and tasks
specifying how and when these assumptions will be validated.

14 Unmitigated
consequence of
invalid assumption

14G1 Record of each assumption [H-SR-12G1] includes how and when it will
be validated. (In [19] Appendix A.3 item 3)

15 Incorrect order of
execution or timing
behavior [H-
ProcState-1.3]

15G1 An explicit, verifiable (as determined through mathematical analysis)
specification for the order of execution and timing inter-relationships,
especially considering multiple concurrent physical processes, inter-
process synchronization and shared resources (in [21] CP 2.1.3.2.2,
2.2.3.5). See Appendix I.

16 Inter-relationships
and inter-dependence
across requirements
are not clearly
understood or
recognized [H0-4 –
H0-8], resulting in
unanalyzed
conditions

16G1 Applicable types of dependencies across requirements are identified (see
examples herein), modeled, and tracked. For example, if A and B are
two requirements, their relationship types (See note) may be:

• A requires B
• B supports A
• B hinders A
• B is a selection for A (an exclusive one among many choices)
• B is a specialization of A

16G2 Hidden dependencies between functions (e.g., “unwanted feature
interactions”) do not exist.

17 Interference from
unintended
interactions or side
effects. [H-S-1↑]

17G1 Interactions are limited provably73 to those required for the safety
functions.

17G2 Absence of other unspecified behavior or side effects is assured.

18 Effects of sudden
hardware74 failure,
esp. semiconductors

18G1 Requirements include failure or fault detection and containment
measures, including offline ability to locate and isolate the source of the
fault (e.g., a hardware or software component). [H-SRE-7G1↓]

Note for H-SR-16G1: Relationships may be one-to-one, one-to-many, many-to-one, and many-to-many.
19 Allocated set of

requirements leads to
conditions that are
unanalyzable or
difficult to analyze.

19G1 [H-SRE-{1G1, 1G2, 1G3}↓]

20 Adding backups (or
fault protection) can
introduce new hidden
dependencies and
impair analyzability.
[H-SR-19↑]

20G1 [H-SRE-{1G1, 1G2, 1G3}↓]

73 Example: Unspecified interactions are not allowed.
74 Also see Table 16

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 39

21 Although layered
protection has
benefits, there can be
dilemmas from
keeping software
protected with
several layers –
analyzability may be
impaired.
[H-SR-19↑]

21G1 [H-SRE-{1G1, 1G2, 1G3}↓]

22 Inability to integrate
correctly elements of
a system (e.g.,
subsystems,
hardware
components,
software
components).
[H-SR-{1, 2, 3, 8, 12,
13, 15, 16, 19↓]
[H-SwR-2↓]
[H-SRE-7↓]
[H-SwRE-1↓]
[H-HwP-1↓]

22G1 [H-SRE-{1G1, 1G2, 1G3}↓]
[Table 14↓]

22G2 There are no deficiencies in the specifications.
22G3 There are no deficiencies in the elements to be integrated.
22G4 The system is modularized properly, so as to

allow concluding correctness from the correctness of the architecture and
the correctness of the elements.
H-S-1.1G1.4↑

23 Anomaly in the state
of the process75 is
not recognized or
identified or
correctly understood
or correctly
specified.
[H-SR-3↑]
[H-SR-4↑]

23G1 See H-SR-3G6
The trajectory of safely recoverable process state variables (i.e., state
space within which recovery is provable) is specified correctly.

In other words, when departure from this state space or region is
recognized, intervention can prevent departure from safe state. See
Figure 5.

See Appendix F.

3.5.1.3 Contributory hazards from system requirements engineering
The requirements engineering phase of the lifecycle is most sensitive to the quality of
processes, including the resources applied. Requirements elicitation and analysis aspects are
most sensitive to the competence [H-SRE-1] applied.

Table 10 identifies hazards contributed through weaknesses in the process of engineering
requirements for the system.

Table 10: Inadequate system requirements engineering: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
SRE
-

Description
(e.g., Scenario)

ID
H-SRE-

Description

75 The process that the safety system is observing or monitoring for safety-related intervention.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 40

1 Inadequate
competence
[H-culture-6↑]

1G1 The team engaged in these activities is an assemblage of high
competence in multiple disciplines, capable of creatively
eliciting and synthesizing information from diverse sources,
including implicit, experiential knowledge about the
environment. The combined competence of the team matches
the expertise needed in each phase in the engineering
lifecycles, noting that the nature of expertise is not the same
in all phases.
See H-culture-{4G2, 4G3} and Appendix F.

1G2 A different and independent diverse team reviews the
requirements and their validation.

1G3 The review team has expertise in discovering the types of
mistakes or shortcomings identified in Table 9 and Table 10
H-SRE-{2-6}.
See H-culture-6G3 and Appendix F. I item 5

2

Ambiguity in the
natural language
textual description
[H-SAE-2↓]

2G1 A subset of the natural language is used such that
requirements can be described unambiguously to the
community of its users76; for example:
1. Closed set of language elements
2. Unambiguous semantics of each language element
3. Unambiguous compositions of language elements and

their compositions
Also see H-culture-{12G2, 12G3}.
[H-SAE-1G1↓; H-SAE-1G2↓]

2G1.1 Formal properties are abstracted, for later use in verification
of next phase work product. [22][23]

2G2 The language subset (H-SRE-2G1) supports distinct
identification and description of the following:
1. Assumptions about the environment [26];
Appendix J.
2. Input from the environment (e.g.,
command, i.e., some signal requiring state-changing effect +
required behavior), query, process state, other data.
3. Output (e.g., some signal having state-
changing effect, state-notification, exception-notification)
4. Functions assigned to a human.
5. Procedure for the execution of each
function assigned to a human (required behavior).
6. Other elements of the system being
analyzed
7. Functions assigned to each element;
required behavior.
8. Interactions required across elements
9. Constraints on the behavior and
interactions of each element, e.g. timing constraints [11],
Appendix I; QoS constraints.
10. Criteria to monitor and detect violation of a
constraint [25].

3 Incorrect
formalization from

3G1 [H-SRE-2G1↓; H-SRE-2G2↓] [H-SAE-1G1↓; H-SAE-
1G2↓]

76 Users include people and tools, employed in creation, modification, interpretation, transformation.
maintenance, V&V, and regulation (adapted from CP 2.3.3.1.1 last sentence in [21]).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 41

intent or natural
language text

3G2 Persons performing the task (see H-SRE-2G1.1) know the
vocabulary of the application domain and know how to
translate it into formal properties.

3G3 1. Multiple independent persons/teams perform the task.
2. The discrepancies across their results are analyzed.
3. Another independent panel is engaged in resolving the

discrepancies.
4 Input constraints are

ambiguous.
4G1 Valid value type and range of each input are explicitly

identified (in [21]CP 2.1.3.2.4). Also see Table 1. Also see
H-culture-{12G2, 12G3}.

5 Loss of information
in transfer and
traceability of HA-
results to
requirements.

5G1 Activities of HA and Requirements Engineering are formally
integrated (also see Table 1).

6 An atomic
requirement is not
traceable
individually.

6G1 Each atomic requirement is traceable (in [21] CP 2.1.3.1; in
[19] Appendix A.4 item 2) [H-S-2G4↓].

6G2 Each requirement is a configuration controlled item77.

7 Loss of information78
across disciplines,
processes, and
organizational units
(e.g., system
engineering, software
engineering,
hardware
engineering, safety,
quality).
[H-culture-9↑][H-SR-
3↑]
[H-SwRE-1↓]

7G1 Systems are engineered holistically, including crosscutting
analysis. (Adapted from [19] Appendix A.3 footnote 82).
See H-culture-9G1 and H-culture-9G2 and Appendix F. 1.

7G1.1 The interaction across a system or an element and its
environment is identified explicitly.
Example: Models at every level of integration, such that the
models are compatible and information can be integrated and
analyzed across the various models.

 H_culture_{12G1, 12G2, 12G3}.

3.5.2 Software Requirements
Contributions to hazards through inadequacies in requirements at the system level (and
corresponding conditions to reduce that hazard space) also apply to requirements for software.
Even though correct, complete, consistent unambiguous requirements for software are
supposed to flow down from the system engineering lifecycle, typically in practice, V&V for

77 Other relevant references: IEEE 828 and 1042
78 Current practice divides systems engineers, software engineers, and hardware engineers; often failures
occur due to gaps in between. (From [19] Appendix A.3 footnote 82)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 42

these properties occurs from the software engineering perspective79 as a part of the software
engineering lifecycle.

Some of the requirements from the system engineering lifecycle may be allocated directly (as is)
to software. For other requirements from the system engineering lifecycle (e.g., quality
requirements) additional requirements and constraints for software may be derived as part of
the software engineering lifecycle. Also see Section 3.6 for constraints on software architecture.
Contributory hazards and constraints identified in Section 3.6.1 for the system architecture also
apply to software. Derived constraints on software design and implementation (D&I) are
included in Sections 3.8 and 3.9.

79 Focus: Check correctness of understanding; make explicit and unambiguous.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 43

3.5.2.1 Contributory hazards in software requirements
The contributory hazards identified in Table 9 also apply to software requirements. Table 11
provides examples of additional hazards contributed through inadequacies in software
requirements.

Table 11: Inadequacy in software requirements: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
SwR-

Description (e.g., Scenario) ID
H-
SwR-

Description

1 Inadequate flow-down of properties
(Table 8) and other constraints from the
system engineering lifecycle (Table 9)
[H-SwR-2↓]

1G1 Corresponding constraints (Table 8; Table 9) are
derived and applied to software

2 Inadequate flow-down of requirements &
constraints to support integration of
elements into a correctly working system.

2G1 Corresponding constraints (Table 8; Table 9) are
derived and applied to software

3 Inadequate flow-down of requirements &
constraints from NPP level to the safety
system and then to its elements, including
software.

3G1 Decomposed and derived requirements and
constraints assure that their composition will
satisfy the upstream (source) requirements (from
which these were decomposed or derived) and not
introduce unspecified behavior.

4 Software produces an output of infeasible
value.

4G1

Appropriate conditions infeasible in the real world
are identified and used to establish criteria to
monitor for anomalous80 behavior of software.
(Adapted from [21] CP 2.3.3.1.5) , but not
introducing adverse conditions as identified in H-
SR-{19, 20}.

80 Intent: Defend against weakness in requirements.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 44

3.5.2.2 Contributory hazards from software requirements engineering
The contributions to hazards identified in Table 10 (and conditions to reduce the associated
hazard space) also apply to software requirements engineering. Table 12 provides examples of
additional contribution to hazards through inadequacies in engineering of software
requirements.

Table 12: Inadequate software requirements engineering - contribution to hazards: Examples
Contributory hazard Conditions that reduce the hazard space
ID
H-
SwRE-

Description (e.g., Scenario) ID
H-
SwRE-

Description

1 Loss of information across disciplines,
processes, and organizational units (e.g.,
system engineering, software engineering,
hardware engineering, safety, quality) due to
discipline-wise division of organizations,
people, and work [H-culture-9↑]

1G H-SRE-{7G1; 7G1.1}↑
Also see H-culture-{9G1, 9G2, 12G2,
12G3} and Appendix F.

2 Loss of information across disciplines due to
incompatible paradigms, methods, and tools
across disciplines.
[Example contributor: H-HwP-5↓]

2G Methods and languages to describe or
specify requirements allocated to software
support unambiguous mapping and
integration across dissimilar elements (e.g.,
interactions across hardware, software and
human elements).
[H-SAE-{2G1, 3G1}↑]
[H-HwP-5G1↓]
See Appendix F.4.

3.6 Evaluation of hazard analysis - Architecture
System failures traceable to architecture rank high in the experiences of various safety-critical,
mission-critical, high-quality digital systems across a diverse range of application domains. For
example, unwanted and unnecessary interactions, hidden couplings, feedback paths, and side
effects have led to unexpected failures; verification based on traditional testing or simulation did
not detect such flaws [19].

3.6.1 Contributory hazards in System Architecture
While the overall scope of system architecture includes the safety system under evaluation and
its relationship with its environment, this section focuses on system-internal elements (e.g.,
hardware and software) and their inter-relationships (i.e., interfaces, interconnections, and
interactions) whether these are direct or indirect, intended or unintended, explicit or implicit,
static or dynamic, “normal” or “abnormal.”

The scope of system architecture activities includes the allocation of requirements and
constraints to elements identified in the system architecture.

Note: Architecture-specific evaluation of HA is predicated on the correct and complete
performance of the overall HA, as illustrated in Table 1, including considerations of
combinations of multiple contributory hazards, exemplified in

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 45

Table 2 through Table 7.

Table 8 and Table 13 include examples of contributors to hazards through system architecture
and corresponding conditions that reduce the respective hazard spaces. These considerations
are applicable to architecture-related contributory hazards in every phase in the development
lifecycle (from conception to implementation), to every level in the integration hierarchy, and to
transformations from one level to another. Thus, the information in these tables should be
applied to the context of the level of integration being analyzed.

Table 13: Interference: Example scenarios and conditions that reduce the hazard space
Contributory hazard Conditions that reduce the hazard space
ID
H-
SA-

Description (e.g.,
Scenario)

ID
H-
SA-

Description

3 Scenario: A system, device, or
other element (external or
internal to a safety system)
may affect a safety function
adversely through unintended
interactions, caused by some
combination of defects,
deficiencies, disorders,
malfunctions, or oversights.
[H-SR-17↑]

3G1 [H-SR-17G1↑]

3G2 Interactions and interconnections that preclude complete81
V&V are avoided, eliminated, or prevented. (CP 2.2.3.11 in
[21])

3G3 Freedom from interference is assured provably82 across:
1. Lines of defense [34]
2. Redundant divisions of system (CP 2.2.3.6 in [21]
3. Degrees of safety qualification83 (CP 2.2.3.3 in [21])
4. Monitoring & monitored elements of
system.

3G4 Analysis of the system demonstrates that unintended behavior
is not possible84.
1. Interaction across different sources of
uncertainty is avoided.
2. The architecture precludes unwanted
interactions and unwanted, unknown hidden coupling or
dependencies (in [19] Appendix A.4 item 6).
3. Specified information exchanges or
communications occur in safe ways (in [19] Appendix A.4
item 6).

3G5 Only well-behaved interactions are allowed [H-S-1.2G{1,2,3},
H-S-1.3G{1,2}↑]

3G6 Constraints are identified for such contributing hazards from
the environment as electromagnetic interference – see
examples in Appendix E.4.

3G7 The impact of dependency-affecting change is analyzed to
demonstrate no adverse effect. [Table 1]

4 Scenario [H-S-3G4↑]: A
function, whose execution is

4G1 Analysis of the execution-behavior of the system proves that
such interference will not occur. For example, worst-case

81 “Completeness” includes confirmation that all specified requirements have been satisfied and
confirmation that the requirements are correct, complete, consistent, and unambiguous.
82 Example: There is no pathway.
83 In other application domains, the corresponding concept is known as “mixed criticality.”
84 Example: There is no pathway.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 46

required at a particular time,
cannot perform as required,
due to interference through
sharing of some resource it
needs.

execution time is guaranteed.

5 Timing constraints are not
correctly specified and not
correctly allocated.

5G1 Timing requirements for monitoring a continuously-varying
phenomenon are derived, specified, and allocated correctly to
the services and elements upon which their satisfaction
depends. Example: Sampling interval that characterizes the
monitored variable with fidelity.

5G1.
1

Commensurate required sampling interval is determined
through mathematical analysis.

5G1.
2

Discretization and digitization do not affect the fidelity
required, as determined through mathematical analysis.

5G1.
3

Aliasing is avoided.

5G1.

Sampling periods to monitor discrete events are established
correctly, as determined through mathematical analysis.

6 Sampling and update intervals
are not commensurate to the
timing constraints of the
associated control actions. [H-
SR-15]

6G1 Update intervals support the timing constraints of the required
control actions, as determined through mathematical analysis.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 47

3.6.2 Contributory hazards from system architectural engineering
Applying the reference model depicted in Figure 4 to the activities of architectural engineering,
Table 14 identifies hazards contributed through some of the resources and elements employed
in these activities and commensurate constraints on these process activities. Additionally, as
stated in Section 3.7, considerations therein “are applicable to architecture-related contributions
to hazards in every phase in the development lifecycle (from conception to implementation), to
every level in the (system, subsystem, component, sub-component …) integration hierarchy,
and to transformations from one level to another.”
Table 14: Inadequate system architectural engineering: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
SAE-

Description (e.g., Scenario) ID
H-
SAE-

Description

1 The architecture85 description (including
requirements allocated to its elements) is
ambiguous, rendering it vulnerable to
interpretations other than intended. For
example, textual descriptions use words and
expressions and graphic representations use
symbols, for which commonly understood
meanings have not been agreed upon by the
community of its users.
[H-S-2G-6↑]
[H-SAE-2↓; H-SAE-3↓]

1G1 Description method supports distinct,
unambiguous description of the following:
1. Assumptions about the environment.
2. Input from the environment (e.g.: command

(some signal requiring state-changing effect +
required behavior); query; data.

3. Output (e.g., some signal having state-
changing effect), state-notification, including
exception-notification.

4. Functions assigned to a human
4.1. Procedure for the execution of each

function assigned to a human (required
behavior)

5. Other elements of the system
5.1. Functions assigned to each element;

required behavior.
6. Inter-relationships of elements.
7. Interactions required across elements.
8. Constraints on the behavior and interactions

of each element, e.g. timing constraints –
Appendix I; QoS constraints.

9. Criteria to monitor and detect violation of a
constraint.

1G2 The language (graphic or text-based) used in the
description or specification is unambiguous; for
example:
1. Closed set of language elements.
2. Unambiguous semantics of each language

element.
3. Unambiguous semantics of the compositions

(e.g., rules of composition) of language
elements and their compositions.

1G3 The method and language are applied correctly.

85 The term is used in its comprehensive sense, e.g., it includes conceptual architecture (or requirements
architecture), system design architecture, software design architecture, hardware design architecture,
software implementation architecture, function/procedure-architecture.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 48

2 Transformation, refinement or elaboration
of architecture from one lifecycle phase to
another does not preserve semantics and
leads to unintended behavior.

2G1 Methods and languages to describe, represent, or
specify architectures (including requirements
allocated to various elements) support
unambiguous transformations or mappings across
architectural artifacts (e.g., transformation
from system conceptual or requirements level
to system design level
to software design level
to software implementation level
to procedure or subroutine or function level).

2G2 Information is used with semantic consistency
across different elements of the system.

3 When dissimilar elements are integrated
(have to work together), their interaction
leads to unintended behavior, due to
semantic mismatch (e.g., a signal from a
sender does not have the same meaning for
the receiver).

3G1 Methods and languages to describe, represent, or
specify architectures (including requirements
allocated to various elements) support
unambiguous mapping and integration (including
composability and compositionality for essential
properties) across dissimilar elements (e.g.,
interactions across hardware and software
elements).

3G2 Information is used with semantic consistency
across different elements of the system.

4 When elements from different sources or
suppliers are integrated (have to work
together), their interaction leads to
unintended behavior, due to semantic
mismatch (e.g., a signal from a sender does
not have the same meaning for the receiver).

4G1 Methods and languages to describe, represent, or
specify architectures support unambiguous
transformations or mappings and integration
(including composability and compositionality
for essential properties) across elements from
different sources or suppliers.

5 A tool used in architectural engineering is
not qualified to produce, manipulate or
handle a safety grade architectural artifact
(e.g., system, element, and data).

5G1 Each tool is qualified for safety grade use.
5G2 Restrictions necessary for safe use of a tool are

identified and the set of restrictions, tracked as a
configuration controlled item.

6 Tools used in engineering a system,
engineering software, or engineering
hardware do not integrate correctly, that is,
semantics may not be preserved in
information exchanged across the tools.

6G1 Tools intended to be used collectively or in an
integrated process are configured and qualified
for safety grade use as a set, tracked as a
configuration controlled item.

6G2 Restrictions on individual tools, their information
exchange functions, and their interactions, which
are needed for safe use of the tools as a set, are
identified and the set of restrictions, tracked as a
configuration controlled item.

6G3 Semantics of the information accepted and
provided by the tools are explicitly represented.

7 A reused element (e.g., from some previous
project or system; previously verified to
satisfy its specifications), when integrated in
this system, does not provide the intended
system behavior (e.g., semantics may not be
preserved in the flowdown of specifications
or their realization).

7G1 Pre-existing element is qualified for the
environment86 in which it is to be reused.

7G1.1 Allocation of requirement specifications from
system to the element is validated to be correct.

7G1.2 Pre-existing specification of the element satisfies
the requirement specification allocated from this
system.

7G1.3 The element satisfies the allocated requirements
specification

86 including assumptions about the environment – also see H-culture-12

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 49

7G2 Restrictions on the use of a pre-existing element
in the target environment are identified and the
set of restrictions, tracked as a configuration
controlled item.

7.1 Some assumption about the reused element
or its usage environment is violated. Also
see H-SR-13.
[H-culture-12]

7.1G1 H-ProcState-4G1.2; H-culture-12G1;
H-SR-13G3

8 Individuals performing architectural
engineering functions may not be cognizant
of the usage-limitations of the tools,
elements, and artifacts accessible to them.

8G1 Human resources employed in architectural
engineering are qualified to perform their roles,
especially usage-limitations of the tools,
elements, and artifacts available to them,
commensurate to the overall complexity of the
cognitive activities to be performed.

3.6.3 Contributory hazards in Software Architecture
The information in Section 3.6.1 and Table 8 and Table 13 also applies87 to software
architecture, esp. relationships of software with its environment (e.g., hardware elements and
human elements). This section focuses on software elements that are internal to the safety
system and their inter-relationships, i.e., interfaces, interconnections, and interactions, whether
these are direct or indirect, intended or unintended, explicit or implicit, static or dynamic,
“normal” or “abnormal88.”

The scope of software architecture activities includes the allocation of requirements and
constraints to elements identified in the software architecture.

Note: The contents of this section are predicated on correct performance of HA, as
discussed in preceding sections and complete satisfaction of the criteria to prevent, avoid,
eliminate, contain, or mitigate the categories of hazards identified in those sections.

These considerations are applicable to architecture-related contributory hazards in every phase
in the software development lifecycle (from conception to implementation), to every level in the
software integration hierarchy89, and to transformations from one development phase or level to
another.

Table 15: Contribution to hazards through software architecture: Examples
Contributory hazard Conditions that reduce the hazard space
ID
H-
SwA-

Description (e.g.,
Scenario)

ID
H-
SwA-

Description

1 Scenario: Software contributes
to or exacerbates complexity of
the system, making it difficult
to verify [H-S-1.1↑] and
understand [H-S-2↑].

1G1 The behavior of a non-atomic element is a composition of the
behaviors of its constituent elements, with well-defined
unambiguous rules of composition90. (In [19] Appendix A.4
item 5)
1. Interfaces of elements are unambiguously specified,

including behavior (adapted from [19] CP 2.3.3.2.2 last
sentence).

87 Replace “system” with “software” or consider the scope of the system to be narrowed down to software.
88 Examples: Invalid input; hardware malfunction; human mistake.
89 Examples: Subsystem; module; subroutine.
90 Including conditions for composability and compositionality for required properties.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 50

2. Interactions across elements occur only through their
specified interfaces, that is, adhering to principles of
encapsulation (adapted from [21] CP 2.3.3.2.2).

1G2 The system is modularized using principles of information
hiding and separation of concerns, avoiding unnecessary
interdependence (in [19] Appendix A.4 item 7).

1G2.
1

Corresponding specifications are modularized.

1G2.
2

Corresponding specifications, plans, and procedures for
verification are modularized.

1G3 Each element (e.g., a software unit) is internally well-
architected (that is, satisfying conditions stated earlier), such
that its properties [Table 4] can be assured. For example:
1. A software unit implementing some NPP
safety function(s) is composed from semantically
unambiguous atomic functions and data using well-defined
unambiguous rules of composition. [H-SwA-1G1↑]
2. Paths from inputs to outputs avoid
unnecessary coupling. [H-SAE-1G2↑]
3. Unnecessary remembering of state
information across execution cycles is avoided. (Adapted from
CP 2.3.3.2.8 in [19])

2 Order of execution or timing
behavior are not analyzable
correctly, because of system
complexity

2G1 Complexity-increasing behaviors are avoided [H-S-
1.1.1G1↑]; simplicity-increasing features are preferred; for
example:
1. Static configuration of tasks91 to be executed (adapted from

[21] CP 2.4.3.8.1 2nd and 3rd bullets).
2. Tasks in execution are run to completion92 (adapted from

[21] CP 2.4.3.8.1 1st bullet).
3. Static allocation of resources93 [H-S-4G1↑] (Generalized

from [21] CP 2.4.3.8.1 4th bullet).
3 Behavior is not analyzable

mathematically or analysis is
not mechanize-able for lack of
a semantically adequate
paradigm or model underlying
the behavior specification or
description. [H-SAE-{1,2,3}]

3G1 Behavior specification or description method is based on a
semantically adequate, unambiguous paradigm [H-SAE-1G1↑;
H-SAE-1G2↑], supporting association of timing constraints
[H-SR-13G4↑], other properties (Table 8↑), hierarchical
nesting, and abstraction [H-S-1.1G1↑]. Example paradigm:
Extended finite state machine (adapted from [26] and 2.3.4.1.1
in [21]).

3.6.4 Contributory hazards in Software architectural engineering
Table 14 is also applicable to the architectural engineering of software, with software-related
refinements added in Table 16.

Table 16: Hazards through inadequacy in software architectural engineering: Examples
Contributory hazard Conditions that

reduce the hazard
space

91 Task: Schedulable unit of work (execution). Dynamic creation and destruction of tasks is avoided
92 Example: Interruption and pre-emption are avoided or mathematical analysis (Appendix I) proves
satisfaction of constraints on timing and order of execution.
93 Examples: Memory (information storage); Processor (execution time)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 51

ID
H-
SwAE-

Description (e.g., Scenario) ID
H-
SwAE-

Description

1 Loss of information across disciplines (e.g., system engineering,
software engineering, and hardware engineering) due to discipline-wise
division of organizations, people, and work [H-culture-9↑].

1G H-SRE-tG1↑

2 Loss of information across disciplines due to incompatible paradigms,
methods, and tools across disciplines.

2G H-SAE-{2G1,
3G1}↑

3.7 Evaluation of Hardware-Related Hazard Analysis
As in the preceding sections, hardware-related HA is treated in two parts – the product (Table
17: Hardware: Examples of contribution to hazards) and the process (Table 18: Inadequate hardware
engineering: Examples of contributory hazards).

Table 17: Hardware: Examples of contribution to hazards
Contributory hazard Conditions that reduce the hazard space
ID
H-
Hw-

Description (e.g., Scenario) ID
H-
Hw-

Description

1 Failure of hardware leads to
unanalyzed conditions [H-S-1.1.1↑]
(e.g., unknown state).

1G1 Only hardware with predictable, well-understood, well-
known degradation behavior is used.

1G2 Degradation is detectable before failure that could lead to
unanalyzed conditions (e.g., unknown state) [H-S-
1.2G3↑]. (Adapted from CP 2.2.3.7 1st clause in [21])

1G3 Safety requirements are specified to maintain system in a
safe, known state at all times, in all modes of usage,
including degraded states and including maintenance.
Safety functions may be online or offline; for example:
1. Monitor hardware condition [H-SR-4G1↑]; for

example:
1.1. Online monitoring (e.g., cyclic; periodic)
1.2. Offline surveillance

2. Detect hardware fault [H-SR-4G2↑] – see H-Hw-1G4
3. Notify (other automation or human) [H-SR-4G5↑]
4. Intervene (to maintain system in safe state) [H-SR-

4G3↑]
5. Perform preventative maintenance (e.g., scheduled

replacement)
6. Provide redundancy

6.1. Provision of diverse redundancy
(Items 1-4 adapted from CP 2.2.3.7 in [21]);
(Item 4 is generalized from CP 2.2.3.7 in [21])

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 52

1G4 Requirements are identified for independent, timely
detection of a contributory hazard in an instrument or other
element upon which a safety function depends; for
example:

1. In the case of a bi-stable device, the
device can be feasibly in one stable state or the other only;
then, an indication of both states at the same time is an
anomaly.

2. In the case of a continuously controlled
electric motor for a motor-operated valve, if the trajectory
{electric current; displacement; time} for the transition
from actuation command to completion is outside the
envelope of feasibility, it indicates an anomaly.

3. The trajectory of feasible process state
variables (set of values over time) is identified, such that
indication of an instrument anomaly can be derived from
sensed values in the infeasible region.

2 Anomaly in the state of the process is
not recognized or identified or
correctly understood due to
inadequacy in instrumentation [H-SR-
23↑]

2G1 Progressive degradation, drift, and such other changes in
the behavior of instrumentation are properly accounted for;
examples:
1. Monitoring and tracking such
phenomena
2. Compensation
3. Calibration; recalibration;
4. Allowances (margins) for unaccounted,
uncompensated, or unknown changes
5. Detection of unacceptable deviation
6. Appropriate intervention – see H-Hw-
1G3 items 2,4.

3 Anomaly in the state of the
instrumentation for the safety
functions or other element in the
environment, upon which a safety
function depends, is not correctly
understood or recognized.

3G1 Instrument or element has behavior (including behavior in
fault states), which satisfies requisite properties such as
those identified in Table 8.

4 Loss or interruption of power.

4G1 Safety functions are specified to maintain system in a safe,
known state (adapted from CP 2.2.3.7 last sentence in
[21]). 5 Disturbance in power supply.

6 Inadvertent alteration of invariant

information (e.g., program code; fixed
data).

6G1 Invariant information is stored in read only memory
(ROM).
(Adapted from CP 2.7.3.3.2 in [21]).

7 Change in hardware that is nominally
“equivalent” to replaced hardware
(e.g., functionally, electrically,
mechanically “interchangeable”) leads
to some subtle change that degrades a
safety function.

7G1 Criteria for equivalence are correct and complete;
examples:
1. Analysis of differences in timing behavior.
2. Analysis of differences in signal-noise discrimination.

Also see Table 1.
3. If the item includes programmable logic, analysis for its

contribution to hazards.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 53

Table 18: Inadequate hardware engineering: Examples of contributory hazards
Contributory hazard Examples of conditions that reduce the

hazard space
ID
HwP-

H
w
E
-

Description (e.g., Scenario) ID
H-
HwP-

Description

1 Loss of information across disciplines (e.g.,
system engineering, software engineering,
and hardware engineering) due to discipline-
wise division of organizations, people, and
work [H-culture-9↑].

1G1 H-SRE-tG1↑
See H-culture-{4G1, 4G2, 4G3, 4G4} and

Appendix F.

2 Loss of information across disciplines due to
incompatible paradigms, methods, and tools
across disciplines.

2G1 H-SAE-{2G1, 3G1}↑

3 Preventative maintenance activities on which
a safety function is dependent are not
performed [27] when needed or scheduled [H-
Hw-1G3].

3 G1 Maintenance schedules specify the
preventative actions explicitly [H-Hw-1G3↑].

3G2 These maintenance schedules are treated as
safety related activities (e.g., including,
performance; verification; audit) [Table 1].

4 Preventative protection against age-related
degradation is not provided in maintenance
plans (generalization from [28]).

4G [see H-Hw-{1G1; 1G2}]

5 Computation is incorrect due to incorrect
mapping of algorithm onto arithmetic
hardware; for example, due to incompatibility
in one or more of the following:
1. Hardware
2. Hardware interfacing software
3. Algorithm
4. Mapping algorithm software onto hardware
5. Associated library software
[H-SwRE-2↑]

5G1 The hardware (e.g., floating point processor),
algorithm (e.g., formula and data types in the
application software), and the transformation
(e.g., compiler and its configuration) are
specified correctly.
(Generalized from CP 2.4.3.5.8 in [21]).

5G2 The hardware, software, and transformation
are qualified and configured correctly for
conformance to the specs (H-HwP-5G1).

6 Selection of output destination (e.g., actuator)
or input source (e.g., sensor) is incorrect, for
example, due to incorrect mapping from
software to hardware.

6G1 I/O-identifying mappings from requirements
to architecture to detailed design to
implementation are verified to be correct.
(Generalized from CP 2.3.3.1.7 1st sentence in
[21]).

3.8 Evaluation of Hazard Analysis related to Software Detailed Design
Review of HA under 10 CFR Part 52 is limited to review of work products from the pre-
certification phases of the lifecycle (e.g., plan; concept; requirements; architecture). However,
these work products could also include other constraints remaining after design certification for
preventing contribution to hazards from activities in the later phases. Then, these constraints
could be identified as part of the licensing basis, and could become part of ITAAC commitments.

Many defects found during software detailed design are traceable to (rooted in) deficiencies
from earlier phases in the development lifecycle. Earlier sections of this RIL have identified
examples of those deficiencies as contributory hazards. Those conditions to reduce the
respective hazard spaces also apply to software detailed design.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 54

Table 19: inadequate detailed design of software: Examples of contribution to hazards
Contributory hazard Examples of conditions that

reduce the hazard space
ID
H-
SwD-

Description (e.g.,: Scenario) ID
H-
SwD-

Description

1 Loss of information across disciplines (e.g., software
architecture engineering and detailed software design).
[H-SwAE-1↑]

G1 H-SAE-{2G1, 3G1}↑

2 Scenario: Software contributes to or exacerbates
complexity of the system, making it difficult to verify
[H-S-1.1↑] and understand [H-S-2↑]. [H-SwA-1↑]

G2

3 Names of functions, data items, inputs, outputs, and
variables in software are such that it becomes difficult to
trace back to system requirements and further back to the
application domain. (Adapted from [21] 2.3.4.1.2).

G3.1 Naming conventions and data
dictionaries are established for ease
of comprehension and bidirectional
traceability.

G3.2 Naming conventions and data
dictionaries are used consistently.

3.9 Evaluation of Hazard Analysis related to Software Implementation
Many defects found during software implementation (coding) are traceable to (rooted in)
deficiencies from earlier phases in the development lifecycle. Earlier sections of this RIL have
identified examples of those deficiencies as contributory hazards. The conditions to reduce the
respective hazard spaces affect software implementation also.

Common Vulnerabilities and Exposures (CVE) [31] and Common Weakness Enumeration
(CWE) [32] are forms of contributory hazards in computer programs. Safe programming
languages or safe subsets of appropriately selected programming languages reduce these
hazard spaces effectively.

Table 20: Hazards contributed in software implementation: Examples
Contributory hazard Conditions that reduce the hazard space
ID
H-SwI-

Description (e.g., Scenario) ID
H-
SwI-

Description

1 Behavior is not analyzable
mathematically or analysis is not
mechanize-able, due to the complexity
introduced through the improper use of
interrupts or other mechanisms affecting
order of execution.

1G1 Unnecessary use of interrupts is avoided, for
example, not using interrupts to cover for
inadequately understanding timing behavior of the
physical phenomena (Table 1; H-SR-3G7) or the
design and implementation (H-SR-13G4, H-SR-
15G1)

1G2 Schedulability analysis or proof is provided to
verify that timing behavior of the implementation
satisfies the specifications (H-SR-15G1).

2 Timing problems prevent deterministic
behavior.
Timing problems are difficult to
diagnose and resolve.

2G1 The results produced by the programmed logic is
not dependent on either:
– the time taken to execute the program, or
– the time (referenced to an independent
"clock") at which execution of the program is
initiated.
(Adapted from [33])

2G2 Execution speed does not affect correct order of
execution.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 55

4 Discussion of regulatory significance

Hazard analysis of a digital safety system94 could address clause 4.8 (quoted below) in [3],
where a “condition having the potential for functional degradation of safety system performance”
is a hazard and a “provision … incorporated to retain the capability for performing the safety
functions” is a requirement or constraint to eliminate, prevent or otherwise control the hazard.

Clause 4 and sub-clause 4.8 in [3] A specific basis shall be established for the design of each
safety system of the nuclear power generating station. The design basis shall also be available as
needed to facilitate the determination of the adequacy of the safety system, including design
changes. The design basis shall document as a minimum …:

4.8. The conditions having the potential for functional degradation of safety system performance
and for which provisions shall be incorporated to retain the capability for performing the safety
functions …

Hazard analysis of a digital safety system could support the “analysis…of the major structures,
systems, and components…” required per 10 CFR 50.34(a)(3) as follows: HA could support the
development of principal design criteria and derivation of design bases from these criteria [35]
and corresponding clause 10 CFR 52.47(a)(2) of [36] “… analysis of the structures, systems,
and components (SSCs) of the facility, with emphasis upon performance requirements, the
bases, with technical justification therefor, upon which these requirements have been
established, and the evaluations required to show that safety functions will be accomplished….
The description shall be sufficient to permit understanding of the system designs and their
relationship to the safety evaluations.” Hazard analysis of a digital safety system coul;d be part
of the “analysis…of the major structures, systems, and components…” Hazard analysis of a
digital safety system identifies design characteristics and unusual or novel design features, and
associated principal safety considerations. In this way the hazard analysis of a digital safety
system could support requirements of clause 5.6 in [3], which is dependent upon clause 4.8, by
yielding principal design criteria, design bases, and derived requirements and constraints
relating to independence with the specificity needed for consistent verification and validation.

Recognizing from recent licensing review experiences, trends in design characteristics and
unusual or novel design features, generally accepted engineering standards95 are not
sufficiently specific to ensure consistent application and require significant judgment relying on
high level of subject matter competence. In consideration of these trends and similar trends in
other application domains and issues encountered in respective safety reviews, this RIL
identifies the associated contributory hazards and corresponding system characteristics and
conditions that reduce the respective hazard spaces. In turn, this could reduce the judgment
space in regulatory evaluation and thus, regulatory uncertainty perceived by the applicant.

In support of requirements in 10 CFR 50.34(a)(3)(i) and 10 CFR 52.47(a)(3)(i), hazard analysis
of a digital safety system could lead to principal design criteria, additional96 to or overlapping the

94 A system to which a safety function has been allocated as a result of a plant level safety analysis,
which includes a plant level hazard analysis.
95 It refers to their mention in 10 CFR 50.34(a)(ii)(B), and include standards referenced in NRC’s
regulatory guides
96 These additional requirements or constraints may be specific to a facility, system, component or
structure.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 56

general design criteria (GDCs) in 10 CFR 50 Appendix A, which provide only minimum
requirements.

In support of requirements in 10 CFR 50.34(a)(3)(ii) and 10 CFR 52.47(a)(3)(ii), hazard analysis
of a digital safety system could lead from principal design criteria to design bases, that is,
functions to be performed (functional requirements) and restraints (e.g., constraints on the
architecture, and constraints on design and implementation), such that their satisfaction is
verifiable later in the system development lifecycle. These derived requirements and constraints
lead to the level of design information to which the following requirement in10 CFR 52.47 refers:

“The application must contain a level of design information sufficient to enable the
Commission to judge the applicant's proposed means of assuring that construction
conforms to the design and to reach a final conclusion on all safety questions
associated with the design before the certification is granted. The information
submitted for a design certification must include performance requirements and
design information sufficiently detailed to permit the preparation of acceptance and
inspection requirements by the NRC…”

In support of requirements in 10 CFR 50.34(a)(4), hazard analysis of a digital safety system
could be part of the preliminary analysis which yields principal design criteria, design bases, and
derived requirements and constraints with the degree of specificity needed for consistent
verification and validation. Hazard analysis naturally organizes this information along flow-down
(or dependency) paths from a safety function, since it follows a cause-effect course of enquiry
and reasoning, originating from potential for degradation of the safety function. This cause-effect
course of enquiry and reasoning could also support developing specific information required per
10 CFR 50.34(a)(5-8) and 10 CFR 52.47(a)(7, 19), where critical to safety analysis.

The technical basis and safety goal-focused organizing framework established in RIL-1101
contributes limited support for risk-informed treatment as follows. It contributes to the
determination of safety significance through systematic identification of a hazard, i.e., potential
for adverse effect on a safety function allocated to the system under evaluation. This approach
also supports identification of contributors to a hazard; for example, potential for adverse effect
on diversity or defense-in-depth.

5 Conclusions
This RIL provides the US Nuclear Regulatory Commission (NRC)’s licensing staff the technical
basis to support their review of hazard analysis (HA) performed on a digital safety system by an
applicant seeking a design certification or a license amendment.

The RIL has been focused on certain kinds of issues encountered in NRO’s recent licensing
reviews, which are rooted in systemic causes, and are contributed through engineering
deficiencies during the development of a digital safety system – characterized as contributory
hazards; for example: Unintended or unwanted interactions; Inadequate definition of the
boundary of the digital safety system being analyzed; incorrect decomposition and allocation of
constraints to control hazards from the top-level of a digital safety system flowing down the
integration hierarchy; inadequate flow-down to identify requirements and constraints on
technical processes, supporting processes, and organizational processes.

Although the targeted scope was limited, the result supports a broader purpose. Hazard
analysis organizes information along cause-effect dependency paths (Table 1; items H-0-8, H-0-
9; Appendix K) from a safety function to a contributing item, and provides a framework for

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 57

reasoning about the (perceived) deficits (Appendix C3.3). In this manner, it contributes to risk-
informed evaluation of the system.

The cause-effect dependency network resulting from hazard analysis provides a safety-goal
focused organizing framework, which an applicant could use to streamline its safety analysis
report, justifying elimination of those provisions in NRC-referenced standards which do not
contribute to the safety goal. The applicant could also use this framework to justify alternative
ways of satisfying NRC’s regulation, where the applicant’s approach is not aligned with the
NRC’s current guidance or standard review plan, but meets the safety goal. The applicant could
also use this methodology to analyze modification to an existing I&C safety system (e.g.,
replacement of an older-technology module with a newer digital technology module), and use
the resulting requirements and constraints to drive the modification.

Currently, different sets of regulatory guidance exist for power reactors, nonpower reactors,
research and test reactors, and nuclear material processing facilities. The organizing framework
introduced in this RIL opens opportunities to harmonize and streamline97 the different sets of
regulation, without increasing the burden of preparing an application or a safety analysis report
for any particular type of system.

This organizing framework leads the way to an improved safety-focused future regulatory
framework, as discussed in the next section.

This study found very little published information organized specifically to support HA reviews
applicable to the targeted scope. Therefore, information assimilated in the RIL includes
knowledge acquired through consultation with external experts. Through this process, RIL-1101
presents a unique assimilation of the state of the art. This technical basis supersedes that given
in [39].

6 Future research, development and transition
The development of this RIL has opened many opportunities to improve the effectiveness and
efficiency of the regulatory review process for digital safety systems, as identified below for
future consideration in accordance with the priorities of the licensing offices and the availability
of resources.

6.1 Transition, knowledge transfer and knowledge management
The trend towards systems with increasing interactions, fostered through networks and
software, has rendered traditional hazard analysis techniques, such as FMEA and FTA,
inadequate. Whereas other techniques (Appendix C.6), more suitable for this trend, have been
known for some time, these are less familiar to the NPP industry, including NRC’s licensing
reviewers. Plans are underway to make this knowledge more easily deployable in practice,
including illustrative examples. Consistent with recommendations in [40] about domain-specific
software engineering, future R&D activities will investigate techniques to represent the
knowledge of the domain in a form that is easy to find and reuse correctly.

NRC will coordinate its plans with EPRI, in order to share the knowledge base that is common
across various stakeholders’ activities: System development by the applicant or its supplier;
safety analysis by the applicant; safety evaluation by the regulatory reviewer.

97 For example, in the concept of “item relied on for safety (IROFS)” used in nuclear material processing
equipment, the “relied on” relation maps into a dependency relation, explained in Appendix K of RIL-1101.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 58

Transition plans will include learning cycles through pilot applications (a suggestion that came
from the ACRC I&C Sub-committee). RES support for pilots will be defined in conjunction with
the licensing offices.

6.2 Integration of safety significant information from NPP level analysis
The trend towards systems with increasing interactions, fostered through networks and
software, increases the difficulties of analyzing dependencies of a safety system on conditions
in its environment. For example, the traditional individual FMEA of other I&C SSCs does not
suffice. With the commensurate growth in the volume of information, traditional manual methods
will not be scalable. Information-sharing and consistency-maintenance will require mechanized
support. Future R&D and transition plans will include investigation of more effective methods.

6.3 Harmonization and disambiguation of vocabulary
Differences in vocabulary hamper NRC’s learning from NPP experiences elsewhere in the world
and from other application sectors. The same terms have different meanings. The same
concepts have different terms. Different concepts are mixed in different ways and enwrapped in
different terms. These conditions lead to ambiguities and unnecessarily encumber the tasks of
safety analysis and evaluation.

Future R&D will explore ways and means to bridge these communication gaps (e.g., modeling
knowledge of the domain, as mentioned in Section 6.1). NRC will coordinate its plans with
EPRI.

6.4 International harmonization
Different regions of the world pursue the same or similar safety goals under different regulatory
and guidance frameworks, referencing different standards. These differences obstruct reaching
a common understanding of the issues and establishing common or harmonized evaluation
criteria. The NRC’s current guidance is closely tied to legacy standards, which are not able to
keep up with the changing technological environment. The safety-goal focused organizing
framework introduced in this RIL opens an opportunity to remove this obstacle. Building on the
vocabulary harmonization effort mentioned in Section 6.3, future R&D will explore international
harmonization of the technical basis for evaluating hazard analysis.

6.5 Learning from other application domains and agencies
Other regulated application domains, such as life-critical medical devices and mission-critical
flight control systems are experiencing the same trend towards systems with increasing
interactions, fostered through networks and software. Larger markets than nuclear power are
driving regulatory practices in those domains. In accordance with executive guidance, future
R&D will include coordination with such other regulators and with other federal agencies,
exploring the leveraging of a common R&D infrastructure [37], and approaches to address
safety and security assurance earlier in the system development lifecycle [38].

6.6 Analysis earlier in the system development lifecycle
In the case of new reactors, applications for design certification have been based on process
conformance rather than evidence about the design of the system such as architectural
specifications and constraints on subsequent detailed design and implementation. Appropriate

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 59

architectural design and analysis requires abstractions that have not been a part of common
practice in the NPP industry. However, architectural design and analysis is being used in other
critical application domains. Future R&D and transition plans include making it easier to
introduce that knowledge in the NPP application domain, building on the R&D mentioned in
Sections 6.1 and 6.3.

6.7 Risk-informed evaluation
Future R&D will investigate hazard analysis methods applicable to risk-informed evaluation of
systems in which safety significant conditions can arise from unintended interactions,
engineering deficiencies, or other such systemic causes. For example, investigation will include
methods to model and analyze dependencies.

6.8 Integrated hazard analysis for safety, security and other concerns
The organizing framework introduced in this RIL opens an opportunity to extend the design
review for safety to include hazards from breach in security in the digital realm and to include
hazards contributed through considerations of non-safety objectives driving a safety system
configuration.

6.9 Integrated assurance framework
The organizing framework established through hazard analysis, as treated in this RIL, provides
a logical framework to integrate the results of verification activities, as explained in Section 2.7.8
through Figure 1 and Appendix C.3 through Figure 10. This basis feeds into a related ongoing
research activity to understand how a better “safety demonstration framework” (e.g., an
assurance case framework) could address issues experienced in regulatory reviews in different
regions of the world. Through the OECD/NEA Halden Reactor Project, NRC is collaborating with
other regulatory experts to identify common needs and a common technical basis to meet these
needs. The intent is to shift the paradigm from clause-by-clause compliance with regulatory
guidance to meeting the safety goal. It is envisioned that the same framework could be applied
to any level of integration within a digital safety system (e.g., embedded digital devices). It is
expected that this framework would also provide efficient support for sustenance after a new
reactor becomes operational, e.g. modification98. Review comments from external experts
include recommendations to adopt an assurance case framework.

6.10 Ideas received through review comments
Suggestions and remaining issues identified in review comments are treated as inputs to NRC’s
next I&C research plan. For example, external expert review suggestions include

1. Additions for hazards contributed through tools.
2. Extension of the content concerning detailed design and implementation.
3. Additions for hazards contributes through FPGA and CPLD implementations.

98 Intent of §10 CFR 50.59

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 60

7 Abbreviations and Acronyms
ACRS Advisory Committee on Reactor Safeguards

CFR Code of Federal Regulations

CP common position99

CPLD complex programmable logic devices

DI design and implementation

DI&C digital instrumentation and control

FPGA field programmable gate array

FMEA fault modes effects and analysis

FTA fault tree analysis

GDC general design criteria

HA hazard analysis

HAZOP(S) hazard and operability studies

I&C instrumentation and control

IT information technology

ITAAC inspections, tests, analyses, and acceptance criteria

NPP nuclear power plant

NRC U.S. Nuclear Regulatory Commission

NRR Office of Nuclear Reactor Regulation

NRO Office of New Reactors

PHA preliminary hazard analysis

QoS quality-of-service

R&D research and development

RAI request for additional information

RIL research information letter

SAR safety analysis report

SER safety evaluation report

SRP standard review plan

TFSCS Task Force100 for Safety Critical Software

TMI Three Mile Island

V&V verification and validation

99 A term used in [21] for a requirement on which the TFSCS has total consensus
100 It consists of regulatory experts from the UK, Germany, Sweden, Belgium, Finland, and Spain

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 61

8 References
[1] US NRC Design-Specific Review Standard for the mPower Design, “Appendix A –

Instrumentation and Controls: Hazard Analysis,” ML12318A200, 2013.

[2] Corcoran, W.R., “Hazard recognition for quality, safety, and performance improvement,”
Special issue of the Firebird Forum, volume 15, number 3, March 2012.

[3] IEEE Standard 603-1991, “IEEE standard criteria for safety systems for nuclear power
generating stations” 1991.

[4] MIL-STD-882E, “Standard Practice for System Safety,” U.S. Department of Defense,
2012.

[5] Ericson II., C.A., “Hazard Analysis Primer,” ISBN-13: 978-1470092535, 2012.

[6] U.S. Air Force, “The Air Force System Safety Handbook”, Kirtland AFB, NM, July 2000.

[7] National Aeronautics and Space Administration, “NASA Software Safety Guidebook”,
NASA-GB-8719.13, Washington, DC, March 31, 2004.

[8] U.S. Nuclear Regulatory Commission, “Standard Review Plan for the Review of Safety
Analysis Reports for Nuclear Power Plants: LWR Edition,” Branch Technical Position
7-14, “Guidance on Software Reviews for Digital Computer-Based Instrumentation and
Control Systems,” NUREG-0800, Revision 5, Washington, DC, 2007.

[9] U.S. Nuclear Regulatory Commission, “Recommendations for Enhancing Reactor Safety
in the 21st Century,” The Near-Term Task Force Review of Insights from the Fukushima
Dai-Chi Accident, Washington, DC, July 12, 2011.

[10] U.S. Nuclear Regulatory Commission, “Inadequate Flooding Protection Due to
Ineffective Oversight,” Licensee Event Report 285-2011-003, May 1, 2011.

[11] Garrett, C. and Apostolakis, G., “Context in the risk assessment of digital systems” Risk
Analysis Vol. 19 No. 1 1999.

[12] U.S. Nuclear Regulatory Commission, Fault tree handbook (NUREG 492). URL:
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf

[13] NASA, “Fault tree handbook with aerospace applications.” URL:
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

[14] SAE J1739, “Potential Failure Mode and Effects Analysis in Design (Design FMEA),
Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA), 2009” URL: http://standards.sae.org/j1739_200901/

[15] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and
Establishing a Critical Items List (CIL) (DRAFT): Flight Assurance Procedure (FAP)-
322-209,” Nov. 2011, Available: rsdo.gsfc.nasa.gov/documents/Rapid-III-
Documents/MAR-Reference/GSFC-FAP-322-208-FMEA-Draft.pdf

[16] Perrow, Charles, “Normal Accidents: Living with High Risk Technologies , New York:
Basic Books, 1984”

[17] Proceedings of the NRC Advisory Committee for Reactor Safeguards 591st meeting,
Rockville, Maryland, February 10, 2012. URL:
http://pbadupws.nrc.gov/docs/ML1205/ML12054A637.pdf

http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://standards.sae.org/j1739_200901/
http://pbadupws.nrc.gov/docs/ML1205/ML12054A637.pdf

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 62

[18] U.S. Nuclear Regulatory Commission, “Fort Calhoun Station – NRC Follow-up
Inspection – Inspection Report 05000285/201007; Preliminary Substantial Finding,” NRC
Inspection Report 05000285/20010007, July 15, 2010.

[19] U.S. Nuclear Regulatory Commission, “Research Information Letter 1001: Software-
related uncertainties in the assurance of digital safety systems Expert Clinic
Findings, Part 1”, ADAMS Accession Number ML1035402040, January, 2011.

[20] U.S. Federal Aviation Administration, “System Safety Handbook”, Washington, DC,
December 2000.

[21] Task Force for Safety Critical Software, “Draft Licensing of Safety Critical Software for
Nuclear Reactors,” Common Position of Seven European Nuclear Regulators and
Authorised Technical Support Organizations, Revision 2010. URL:
http://www.hse.gov.uk/nuclear/software.pdf

[22] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P. E. Heimdahl. Proving
the shalls: Early validation of requirements through formal methods. Int. J. Softw. Tools
Technol. Transf., 8(4):303{319, 2006.

[23] Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software model checking
takes off. Commun. ACM, 53(2):58{64, 2010.

[24] PNO-77-146_8-19-77

[25] ISO/DIS 26262-2, “Road Vehicles – Functional Safety – Part 2: Management of
functional safety”, 2009.

[26] Garrett, C. and Apostolakis, G., “Automated hazard analysis of digital control systems”
Reliability Engineering and Safety Society 77 (2002) 1-17

[27] NRC “Recent Operating Experience on Ineffective Use of Vendor Technical
Recommendations” July 26, 2012, URL:
http://nrr10.nrc.gov/forum/forumtopic.cfm?selectedForum=03&forumId=AllComm&topicId
=3165&bookMark=316520110210144245673&searchId=1

[28] NRC IN-2012-11, “Age-related capacitor degradation” July 23, 2012 URL:
http://pbadupws.nrc.gov/docs/ML1203/ML120330272.pdf

[29] P. Clements, R. Kazman, and M. Klein. Evaluating software architectures. Addison-
Wesley, 2005

[30] ISO/IEC 25000: 2005(E) Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Guide to SQuaRE

[31] CVE, see: http://cve.mitre.org/ (last accessed August 1st 2013)

[32] CWE, see: http://cwe.mitre.org/ (last accessed August 1st 2013)

[33] IEC 60880:2006 Nuclear power plants – Instrumentation and control systems important
to safety – software aspects for computer-based systems performing category A
functions.

[34] INTERNATIONAL NUCLEAR SAFETY ADVISORY GROUP, Defence in Depth in
Nuclear Safety, INSAG-10, International Atomic Energy Agency, Vienna (1996).

[35] 10 Code of Federal Regulations (CFR) 50.34. URL: http://www.nrc.gov/reading-rm/doc-
collections/cfr/part050/part050-0034.html

[36] 10 CFR 52.47(a)(2) URL: http://www.nrc.gov/reading-rm/doc-collections/cfr/part052/part052-0047.html

http://www.hse.gov.uk/nuclear/software.pdf
http://nrr10.nrc.gov/forum/forumtopic.cfm?selectedForum=03&forumId=AllComm&topicId=3165&bookMark=316520110210144245673&searchId=1
http://nrr10.nrc.gov/forum/forumtopic.cfm?selectedForum=03&forumId=AllComm&topicId=3165&bookMark=316520110210144245673&searchId=1
http://pbadupws.nrc.gov/docs/ML1203/ML120330272.pdf
http://cve.mitre.org/
http://cwe.mitre.org/
http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0034.html
http://www.nrc.gov/reading-rm/doc-collections/cfr/part050/part050-0034.html
http://www.nrc.gov/reading-rm/doc-collections/cfr/part052/part052-0047.html

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 63

[37] Best Practices for Federal Research and Development Partnership Facilities. URL:
https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/2014/ida-p-5148.ashx

[38] Trustworthy Cyberspace: Strategic Plan for Cyber-security R&D Programs. URL:
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf

[39] J.D. Lawrence, “NUREG/CR-6430 Software Safety Hazard Analysis,” Lawrence
Livermore National Labs, February 1996.

[40] S. Seth, et al, “NUREG/CR-6263 High Integrity Software for Nuclear Power Plants –
Candidate guidelines, technical basis and research needs, Volume 1” The Mitre
Corporation, June 1995.

https://www.ida.org/~/media/Corporate/Files/Publications/STPIPubs/2014/ida-p-5148.ashx
http://www.whitehouse.gov/sites/default/files/microsites/ostp/fed_cybersecurity_rd_strategic_plan_2011.pdf

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 64

Appendix A: Glossary
The scope of this glossary is limited to this document.

Where a word is not defined explicitly in the glossary, it is understood in terms of common
usage as defined in published dictionaries of the English language (e.g., [1]).

The glossary focuses on terms that are not commonly understood in the same way, removing or
reducing ambiguity by selecting and using more specific definitions. Where needed, notes
elaborate the definition.

Where possible, the definition of a technical term is traceable to an authoritative reference
source. In cases where the authorities have different, inconsistent definitions, the glossary
adapts the definition and includes explanatory notes to reduce ambiguity.

The meanings of compound words, terms, and expressions are derived from the meanings of
their constituent words, as defined in this glossary.

Aliasing
In signal processing and related disciplines, aliasing [1] refers to an effect that causes different
signals to become indistinguishable (or aliases of one another) when sampled. It also refers to
the distortion or artifact that results when the signal reconstructed from samples is different from
the original continuous signal. (Also see anti-aliasing in [3]).

Assumption
A premise that is taken for granted (often implicitly), i.e., not validated.

Notes:
1. This definition is used in the context of reasoning as a part of safety analysis.

2. Other forms: Assume. Assumed. Assuming.

Analysis
A process of reasoning showing that a proposition can be deduced from premises (adapted from
[2]).

Notes:
3. The process may entail decomposition. http://plato.stanford.edu/entries/analysis/s1.html#KD

4. See Kant’s discussion at http://plato.stanford.edu/entries/analysis/s1.html#Kant

5. Analysis may take various forms:

5.1. Quantitative
5.1.1. Numerical (e.g., analysis of a continuous control algorithm)
5.1.2. Logical
5.1.3. Other forms of mathematical analysis. i.e.. where:

5.1.3.1. The reasoning is composed with clear mathematical rules.
5.1.3.2. The reasoning is backed by science (e.g., cause-effect laws of engineering).

5.2. Qualitative101, but consistently102 repeatable across comparably qualified performers.

101 See Quality

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Distortion
http://en.wikipedia.org/wiki/Artifact_(error)
http://plato.stanford.edu/entries/analysis/s1.html#KD
http://plato.stanford.edu/entries/analysis/s1.html#Kant

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 65

6. Performance of the analysis may entail various degrees of machine-assistance:

6.1. Complete mechanization

6.2. Mechanization, requiring manual interventional activities, e.g., human-guided machine-processing.

6.3. Completely manual, but consistently repeatable across comparably qualified performers.

7. The term “formal” (along with its variations) is used to mean “mathematical” as in note 5.1.3

8. Derived forms:

8.1. Analyzability
8.2. Analyzable
8.3. Un-analyzable
8.4. Unanalyzed

Architecture

The structure or structures of the system, which comprise elements (e.g., software), the
externally visible properties of those elements, and the relationships among them and with the
environment (adapted from [5])

Where:

1. Externally visible properties of an element include behavior – normal, as well as
abnormal – as seen from outside the boundary (interface) of an element.

2. Relationships include interactions and interconnections (communication paths).

3. Environment of the system includes the combination of systems and elements (e.g.,
hardware, software, and human) external to this system, human elements interacting
directly with the system and the commensurate manual procedures.

4. System means combination of interacting elements organized to achieve one or
more stated purposes. Systems can comprise of systems. A system with only
software elements is also a system. For example, if a program comprises of
subroutines, then the subroutines are elements and the program is a system.

5. In general, “ELEMENT” is a discrete part of a system that can be implemented to
fulfill specified requirements. A system element can be hardware, software, data
(structure), human, process (e.g., process for providing service to users), procedure
(e.g., operator instructions), facility, materials, and naturally occurring entity (e.g.,
water, organism, mineral), or any combination.

5.1. For a system (object of analysis) in the context of RIL-1101, “ELEMENT” can be
hardware, software, or data (structure).

Assure
Confirm the certainty of correctness of the claim, based on evidence and reasoning.

Notes:
1. For example, by proof. For example, see note 5.1.3 in Analysis.

2. Examples of claims: (1) The system is safe (Property: Safety. Value: “Is safe.). (2) Property X of the system
holds.

102 If the analysis is not consistently repeatable or the analysis method/tool itself is not qualified for
safe use, the purpose of this RIL treats the system as un-analyzable.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 66

3. Derived forms:
3.1. Assurance
3.2. Assurable
3.3. Assurability

Attribute (of quality)
Inherent property or characteristic of a system or its element that can be distinguished quantitatively or
qualitatively. (Adapted from 2.2 in [33])

Notes:
1. The means of distinction may be manual or automated.
2. Also see “Quality measure” and “Scale.”

Byzantine Behavior
In a distributed system, arbitrary behavior in response to a failure is called Byzantine behavior
[6].

Note:
1. Arbitrary behavior of an element that results in disruption of the intended system behavior.
2. Different observers see different states.

Claim
A true-false statement about the value of a defined property of a system. (Adapted from [13])

Notes:
1. A property is a quality attribute of the system. (Adapted from 4.3.9 and 4.4.1 in [14])

1.1. Example of property: Safety.

2. A property may have supporting sub-characteristics [14].
2.1. Example: Verifiability ← Analyzability ← “Freedom from interference”

3. Unlike physical quantities, a property sub-characteristic may not be measurable on an absolute scale [14] .

3.1. Indicators may be associated with a sub-characteristic for its estimation or indirect measurement.

4. A sub-characteristic may be specified in terms of conditions or constraints on its behavior [14] .

4.1. Example sub-characteristic of safety property: Restriction on allowed system states.

4.2. Example sub-characteristic of “Freedom from interference”: Constraints on flows or interactions.

5. “Value” may be a single value, a set of single values, a range of values, a set of ranges of values, and limits on
values. Value can be multi-dimensional [14].

6. “Value” may be invariant, dependent on time, or dependent on some other conditions [14].

7. Associated with a property may be the duration of its applicability (i.e., not limited to the present). For example,
the property may concern the future behavior of the system [13].

8. Uncertainty (lack of certainty) may be associated with the property [13].

8.1. The value of uncertainty may not necessarily depend upon probability..

8.2. Uncertainty may be associated with a sub-characteristic.

8.3. Uncertainty may be associated with the duration of applicability

8.4. Uncertainty may be associated with other conditions of applicability

8.5. For example, evaluation of a claim may be based upon certain conditions, formulated in terms of
assumptions that the identified uncertainties do not exist.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 67

Complexity
The degree to which a system or component has a design or implementation that is difficult to
understand and verify. (Definition (1)(A) in [3])

Notes:
1. The selection103 of this definition was favored by Dr. Gerard Holzmann [7].

2. The term, Simplicity, the converse of Complexity, is often used to discuss the same issues.

3. A “complexity measure or indicator” is often confused with the concept of “complexity”, but should be
distinguished as follows:

3.1. A complexity measure pertains to any of a set of structure-based metrics that measure the
attribute in Definition (1)(A) in [3]. (Definition (1)(B) in [3])

3.2. Example of an indicator: The number of linearly independent paths (one plus the number of
conditions) through the source code of a computer program is an indicator of control flow
complexity, known as McCabe’s cyclomatic complexity [3].

3.3. Sometimes, the term “size-complexity” is used to refer to the effect of the number of states and
number of inputs and their values and combinations.

4. Complexity theory is concerned with the study of the intrinsic complexity of computational tasks, that is,
a typical Complexity theoretic study considers the computational resources required to solve a
computational task (or a class of such tasks); it studies what can be achieved within limited time (and/or
other limited natural computational resources) [8]. For example, the time required to solve a problem –
calculated as function f(…) of the size of the instance, usually the size of the input, n – is studied for its
scalability (e.g., bounded by “order of“ O(…) with respect to the input size n). Similarly, instead of time,
one could study the scalability with respect to some other resource constraint (e.g., space or memory).
An example of a useful result from this theory is a premise that only those problems that can be solved
in polynomial time, denoted as O (nk) for some constant k, can be feasibly computed on some
computational device [9]. Applying this thesis to evaluation of system architecture, one could conclude
that, if the input space of a system is not bounded, the system is not verifiable. One could further
conclude that, if the interactions across elements of the system are not bounded, the system is not
verifiable.

Complex Logic
An item of logic for which it is not practicable to ensure the correctness of all behaviors104
through verification alone.
Notes:
1. This definition is derived from a combination of the definition of complexity given above and the

following definition in DO-254/ED-80 in Appendix C [11], for “simple hardware item”: “A hardware item is
considered simple if a comprehensive combination of deterministic tests and analyses can ensure
correct functional performance under all foreseeable operating conditions with no anomalous behavior.”
The conditional clause “if a comprehensive combination of deterministic tests and analyses…” is
summarized as “verification.”

2. Therefore, in addition to verification, the demonstration of correctness of Complex Logic requires a
combination of evidence from various phases of the development life cycle, integrated with reasoning to
justify the completeness of coverage provided (summarized as development assurance). Examples
include the following:

1.1. Evaluation of the system concept (and conceptual architecture)
1.2. Evaluation of the verification and validation plan
1.3. Criticality analysis

103 Various standards provide different definitions; there is no broadly accepted definition.
104 This refers to behaviour under all foreseeable operating conditions with no anomalous
behaviour.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 68

1.4. Evaluation of the architecture including requirements allocation
1.5. Evaluation of the system-internal hazard analysis
1.6. Validation of requirements and constraints on the design and implementation
1.7. Assessment and audit of all processes, including supporting and management processes.
1.8. Certifying105 organizations developing software
1.9. Evaluation of the independence106 of the assurance activities
1.10. See [11] for more detail.

3. Complex Logic is typically produced by techniques such as software or hardware description languages
and their related tools. Thus, the assurance of correctness also requires commensurate assurance of
the languages and tools.

Constraint
An externally imposed limitation on system requirements, design, or implementation or
on the process used to develop or modify a system (Definition 6 in [31]).

Examples:
1. Pre and post conditions
2. Limits on memory size, cost, deadlines to be met.

Contribute
To play a significant part in bringing about an end or result (Definition 1b for contribute in [4])

Notes:
3. Derived forms:

3.1. Contribution: The thing contributed
3.2. Contributory: Of, relating to, or forming a contribution

4. Some experts use the term, “cause.” Others sometimes interpret “cause” to mean “direct cause” or “primary
cause” or “closely-coupled cause.” However, many factors that influence the result may be distantly-coupled
through long chains of dependency relationships; the term, “contribute” provides for their inclusion.

Defect
An imperfection or deficiency in a project component where that component does not meet its
requirements or specifications and needs to be either repaired or replaced. A Guide to the
Project Management Body of Knowledge (PMBOK® Guide) — Fourth Edition. [31]

Notes:
1. The condition “that component does not meet its requirements or specifications” would exclude cases where the

requirement or specification itself is deficient.

2. Another definition in [31] “a problem which, if not corrected, could cause an application to either fail or to produce
incorrect results. ISO/IEC 20926:2003, Software engineering — IFPUG 4.1 Unadjusted functional size
measurement method — Counting practices manual” depends upon the definition of “failure” and “correctness”
both of which, in turn, are evaluated with respect to requirements. Thus, this definition would also exclude cases
where the requirement or specification itself is deficient.

105 Certification of the development organization should be a continual process of certification and

recertification much in the same manner as reactor operators are certified periodically. For example,
the capability maturity model integrated certification process developed by the Software Engineering
Institute focuses on assessing the capabilities of development.

106 For example, independence can be evaluated through certification of the assurance process for the
Complex Logic (e.g., software).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 69

3. From notes 1 and 2, it can be seen that a system may not be defective; yet it may lead to a hazard.

4. In RIL-1101, the term is used primarily in the context of the engineering phases of the product lifecycle.

Demonstrate
Prove (the assertion in context) through reasoning, connecting evidence.

Dependent
Determined or conditioned by another.

Notes:
1. Other forms:

1.1. Dependence; Dependency: The quality or state of being dependent upon or unduly subject to the influence
of another.

1.2. Independent
2. .

2.1. The quality or state of being dependent upon or unduly subject to the influence of another.

Diverse team
A team composed of individuals with complementary attributes needed to perform the assigned
task (e.g., thought processes, communication styles, and competence, including education
training, and experience in different domains and disciplines).

(System) Element
A discrete constituent of a system (adapted from [16]).

Notes:
3. The term “discrete constituent” is substituted for the word “component” used in the definition from [16]. Reason:

Avoid confusion with other meanings of “component” in the context of software. The word “discrete” implies that
the constituent has a distinct boundary, that is, interface with its environment (per definition in [17]), and an
intrinsic, immutable, unique identity (adapted from [16]).

4. Examples:
4.1. Hardware element
4.2. Software element
4.3. Human element
4.4. Data element
4.5. Process
4.6. Procedure (e.g., operating instructions)

5. An element may have other elements in it (e.g., a subsystem).

6. A system may itself be an element of a larger system.

Environment

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 70

A general term relating to everything (including every condition) that supports or affects the
performance of a system or a function of the system. (Combination of 9A and 9B in [3] which
refer to (C) 610.12-1990)

Notes:
1. The environment of a software component consists of all the elements (in their respective states or

conditions), with which it interacts, by which it is affected, and on which it depends. Examples of
elements:
1.1. Other software components
1.2. Operating system (common services and resources shared by software components)
1.3. Execution hardware

2. The environment of an electronic hardware component consists of physical environmental conditions
and other hardware components (in their respective states or conditions) with which it interacts, by
which it is affected, and on which it depends. Examples of physical environmental conditions:
2.1. Temperature
2.2. Humidity
2.3. Electromagnetic radiation

Error
The difference between a computed, observed, or measured value or condition and the true,
specified, or theoretically correct value or condition (Definition (8)(A) in [3])

Evidence
Data supporting the existence or verity of something. (Adapted from 3.1936 in [31])

Note:
1. Examples of means of obtaining “raw” evidence: Test; measurement; observation.

2. Examples of evidence incorporating reasoning:
2.1. Confirmation by static analysis that an implementation satisfies its design specification.
2.2. A claim at one level of integration used as evidence in claim for next higher level of integration of a system.

Failure
The termination of the ability of an item to perform a required function. [18]

Notes:
1. After failure, the item has a fault. [18]

2. “Failure” is an event, as distinguished from “fault” which is a state. [18]

3. This concept as defined does not apply to items consisting of software only.[18]

4. The following definitions represent the perspectives of different disciplines to reinforce the definition given above:

4.1. The termination of the ability of an item to perform a required function (Definition (1)(A) in [3]).

4.2. The termination of the ability of a functional unit to perform its required function (Definition (1)(N) in [3]).

4.3. An event in which a system or system component does not perform a required function within specified
limits; a failure may be produced when a fault is encountered (Definition (1)(O) in [3]).

4.4. The termination of the ability of an item to perform its required function (Definition 9 in [3] from “nuclear
power generating station”).

4.5. The loss of ability of a component, equipment, or system to perform a required function (Definition 13 in [3]
Safety systems equipment in “nuclear power generating stations”).

4.6. An event that may limit the capability of equipment or a system to perform its function(s) (Definition 14 in [3]
“Supervisory control, data acquisition, and automatic control”).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 71

4.7. The termination of the ability of an item to perform a required function (Definition 15 in [3] “nuclear power
generating systems”)

Failure Analysis
The logical, systematic examination of a failed item to identify and analyze the failure
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [18])

Fault
The state of an item characterized by inability to perform a required function, excluding the
inability during preventive maintenance or other planned actions, or due to lack of external
resources. (191-05-01 in [18])

Notes

1. A fault is often the result of a failure of the item itself but may exist without prior failure.
2. Also see “defect.”
3. Distinguish from failure, mistake, and error.
4. (Derived form) Faulty: Pertaining to an item that has a fault.

Fault Analysis
The logical, systematic examination of an item to identify and analyze the probability, causes,
and consequences of potential faults. (191-16-11 in [18])

Fault Mode
One of the possible states of a faulty item, for a given required function.

Note:
RIL-1101 does not use the term “failure mode” in this sense.

Fault Modes and Effects Analysis (FMEA)
A qualitative method of reliability analysis, which involves the study of the fault modes, which
can exist in every sub-item of the item, and the determination of the effects of each fault mode
on other sub-items of the item and on the required functions of the item. (191-16-03 in [18])

Note:
RIL-1101 does not use the term “failure mode and effects analysis” in this sense.

Fault tolerance
The ability of a system or component to continue normal operation despite the presence of
hardware or software faults (Definition 1 in 3.1127 in [31]).

Notes:
1. “Fault tolerance” is also defined as a discipline pertaining to the study of errors, faults, and failures, and

of methods for enabling systems to continue normal operation in the presence of faults (Definition 3 in
3.1127 in [31]).

2. Derived forms “Fault tolerant”, “Fault-tolerant”: pertaining to a system or component that is able to
continue normal operation despite the presence of faults (3.1128 in [31]).

3. For example: Conditions that may degrade the performance of a function of the system are identified; in
anticipation, a constraint is formulated to prevent such degradation; and the resulting system is able to
continue performance of the required function when the anticipated conditions arise.

Fault Tree Analysis (FTA)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 72

An analysis to determine which fault modes of the sub items or external events, or combinations
thereof, may result in a stated fault mode of the item, presented in the form of a fault tree.
(191-16-05 in [18]).

Feasible
Capable of being done with the means at hand and circumstances as they are. [20]

Notes:
1. Other definitions also impose such constraints as

1.1. Practicably
1.2. Reasonable amount of effort, cost, or other hardship [21]
1.3. Cost-effectiveness. [22]

2. Such constraints distinguish “feasibility” from “possibility.”

Freedom from interference
Freedom from degradation of the performance of a function due to interaction across the system
and its environment or across elements of the system.

Note:
1. Interference: Interaction across a system and its environment or across elements of a system that can

degrade the performance of a function. It is not limited to propagation of a failure.

Hardwired
Pertaining to a circuit or device whose characteristics and functionality are permanently
determined by the interconnections107 between components108 (Adapted from Definition 3 in [3]).

Note:
The referred-to connections are at the printed circuit board level (or cabinet level), not internal to integrated circuits.

Hazard
Potential for harm109

Examples:
1. A condition;
2. A circumstance;
3. A scenario.

Notes:
1. RIL-1101 bounds the scope to the entity (system; element) in the context of a defined environment.

2. At the initial stage of hazard logging (before any analysis of the initial finding), the log may include an
item, which, after some analysis, is re-characterized (differently from the originally characterized
hazard; possibly, an event).

3. Definition A in [15] (same as definition 3.1283-1 in [31]) elaborate on the “potential for harm” as
follows, “An intrinsic property or condition that has the potential to cause harm or damage.”

Contributory hazard

107 Examples: Wiring in cabinets; Printed paths in circuit boards
108 Examples: Relays; AND-gates; OR-gates
109 In general, “loss” of any kind that is of concern. Focus of RIL-1101: Harm.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 73

Factor contributing to potential for harm.

Notes:
1. (Excerpt from [23]) …. An unsafe act and / or unsafe condition which contributes to the accident110,
2. Figures 7-1 - 7-4 in [24] illustrate contribution paths.

Examples:
1. The potential for adverse energy flow [23]

2. Inappropriate functions (from Figure 7-5 in [24])

3. Normal functions that are out of sequence (from Figure 7-5 in [24])

4. Functional damage and system degradation (from Section 7.1.1 in [24])

5. Machine-environment interactions resulting from change or deviation stresses as they occur in time and space
(from Section 7.1.1 in [24])

Hazard Analysis

Hazard analysis (HA) is the process of examining a system throughout its lifecycle to identify
inherent hazards (see) and contributory hazards, and requirements and constraints to eliminate,
prevent, or otherwise control them.

Notes:
1. “Hazard identification” part of HA includes the identification of losses (harm) of concern.

2. This definition is narrower than many definitions of HA, some of which correspond to the NRC’s
usage of the term “safety analysis” (as in a safety analysis report).

a. The scope of the definition excludes the verification that the requirements and
constraints have been satisfied.

b. Various HA definitions and descriptions identify artifacts (results, including intermediate
results) of HA by different names. The expression “requirements and constraints” used
in this definition (to align and integrate them in well-established systems engineering
terms) subsumes them.

c. The scope of the definition does not include quantification explicitly. Where appropriate
(e.g., for a hardware component, quantification of its reliability would be implicit in the
activity of formulating requirements and constraints).

Hazard Identification
The process of recognizing that a hazard exists and defining its characteristics [31].

Indicate
To be a sign, symptom, or index of [1].

Note:
1. Derived form: Indicator – A device or variable that can be set to a prescribed state based on the

results of a process or the occurrence of a specified condition. [3]

2. Often an indicator is an estimate or a result of evaluation, possibly incorporating judgment, and not
measured on a standardized scale (or norm).

3. An indicator is created for its potential utility by facilitating comparison of current state with goal
state, rather than for absolute accuracy.

4. Contrast with quality measure.

110 in our case, degradation of a safety function

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 74

Intended
Intentional (Meaning 2 in [4])

Notes
1. Derived form: Unintended; meaning “not intentional,” i.e., not required directly or indirectly.

2. Also see

Information hiding
The principle of segregation of design decisions in a computer program that is most likely to
change, thus protecting other parts of the program from extensive modification if the design
decision is changed. The protection involves providing a stable interface which protects the
remainder of the program from the implementation (the details that are most likely to change).

Item (Entity)
Any part, component, device, subsystem, functional unit, equipment, or system that can be
individually considered. (191-01-01 in [18])
Notes:

1. In [15], The term, element, is used to mean item.

2. An item may consist of hardware, software, or both, and may, in particular cases, include people.

3. A number of items (e.g.,, a population of items) or a sample may itself be considered an item.

Mechanize
to produce by or as if by machine [4].

Mistake
A human action that produces an unintended result (Definition 1 in [3] “electronic computation”)

Editorial note (contrary to the note attached to Definition 1 in [3]): In the context of software engineering,
this definition should be applied to mistakes concerning requirements development (including elicitation,
transformation of intent into requirement or constraint specification, and explicit statement of
assumptions (e.g., about the environment) and respective validation.

A human action that produces an incorrect result (Definition 3 in [3] “software”)

Note: The fault tolerance discipline distinguishes between the human action (a mistake), its
manifestation (a hardware or software fault), the result of the fault (a failure), and the amount by which
the result is incorrect (the error). [3]

Editorial note (complementing the note in the previous definition of “mistake”): In the context of software
engineering, this definition should be applied to mistakes concerning transformation of requirements
specifications and constraints into successive work products and their respective verification.

Mode confusion
A situation in which an engineered system can behave differently from its user’s expectation,
because of a misunderstanding or inadequate understanding of the system state.

Process
A set of interrelated activities, which transforms inputs into outputs. (Definition 12(A) in [3].
Definition 3.2217-1 in [31])

 Notes

http://en.wikipedia.org/w/index.php?title=Design_decisions&action=edit&redlink=1

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 75

1. Definition 4 in [3] makes “including the transition criteria for progressing from one (activity) to the
next” explicit.

2. In definition 4 in [3], the expression “that bring about a result” corresponds to “which transforms
inputs into outputs.” The latter is used in the definition above, because it identifies a set of starting
conditions (inputs), a set of end conditions (outputs) and the transformational purpose of the
process.

3. Examples of transformational processes in an engineering lifecycle of a product: Requirements;
Architecture; Detailed design; Implementation. If the overall engineering is considered a lifecycle
process, then these may be identified as phases in that lifecycle process.

Product
Result of a process. (3.2257-4 in [31])

Notes:
1. Referring to Note 3 for process, the term “product” may be used for the final product or for a result of a

particular phase of a lifecycle process; for example: System requirements specification; System architecture
specification; Detailed design specification; (Software) source code; (Software) executable code.

Quality
Capability of product to satisfy stated and implied needs when used under specified conditions.
(Adapted from 4.51 in [32])

Notes
1. This definition differs from the ISO 9000:2000 quality definition; it refers to the satisfaction of stated and

implied needs, while the ISO 9000 quality definition refers to the satisfaction of requirements.

2. The term “implied needs” means “needs that may not have been stated explicitly (e.g., a need that is
considered to be evident or obvious; a need implied by another stated need).”

3. Quality model: Defined set of characteristics, and of relationships between them, which provides a
framework for specifying quality requirements and evaluating quality. (Adapted from 4.44 in [32])

4. Quality measure: An attribute of quality to which a value is assigned. Also see scale.

5. Quality in use: Capability of the product to enable specific users to achieve specific goals in specific
contexts of use. The expression “in use” refers to the expectations of the end user.

5.1. Actual quality in use may be different from quality in use measured in a test environment earlier in the
product lifecycle, because the actual needs of users may not be the same as those reflected in the test
cases or in the requirements specifications.

5.2. Quality in use requirements contribute to identification and definition of external software quality
requirements.

5.3. Example of quality in use: Safety (freedom from harm).

6. Measurement of external quality refers to measurement from an external view of the product, where targets
are derived from the expected “quality in use” and are used for technical verification and validation. For
example, external software quality would be measured in terms of its capability to enable the behavior of the
system to satisfy its quality in use requirements, such as safety.

7. Measurement of internal quality refers to measurements during the developmental phases of the product
lifecycle. Targets are derived from targets for measurement of external quality.

Reason
Argument: A logical sequence or series of statements from a premise to a conclusion. (Adapted
from http://www.merriam-webster.com/dictionary/argument. Also see

Notes:

http://www.merriam-webster.com/dictionary/argument

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 76

1. Argument: Also see http://www-rohan.sdsu.edu/~digger/305/toulmin_model.htm

2. Derived forms:

2.1. Reasoning: The use of reason

2.2. Reasonable: Being in accordance with reason. (http://www.merriam-
webster.com/dictionary/reasonable)

Reliability (symbol : R(t1, t2))

The probability that an item can perform a required function under given conditions for a given
time interval (t1, t2). (191-12-01 in [18])

Notes:
1. It is generally assumed that the item is in a state to perform this required function at the beginning

of the time interval.111

2. The term “reliability” is also used to denote the reliability performance quantified by this probability
(see 191-02-06 in [18]).

3. This definition does not apply to items for which development mistakes can cause failures,
because there is no recognized way to assign a probability to development mistakes.

Requirement
Expression of a perceived need that something be accomplished or realized. (Adapted from 4.47 in [32])

Notes:

1. Functional requirement: Requirement that specifies a function that a system or its element must be able to
perform, (Adapted from 4.22 in [32])

2. Quality requirement: Requirement that specifies a quality of a system or its element, where quality may be one of
the following:

2.1. Quality in use (e.g., safety). Quality in use requirements specify the required level of quality from the end
user’s point of view. Also see note 5 in definition of quality.

2.2. External quality. Also see note 6 in definition of quality.

2.3. Internal quality. Also see note 7 in definition of quality.

Resilience
The property of a system or its element to recover from fault.
Notes:

1. “Resilience” as used in this context is not defined in any of the standards used as references for safety, systems,
or software engineering. This usage is metaphoric. derived from the common usage meanings given in notes 2-
3. Use the term “Fault tolerance” usage of which is well supported in the fault tolerance discipline.

2. “Resilience” is most commonly used and defined in the context of people. For example: Resilience is the
capacity to withstand stress and catastrophe. (http://www.pbs.org/thisemotionallife/topic/resilience/what-
resilience)

3. “Resilience” is also used and defined as a mechanical property of an object or material. For example: The
physical property of a material that can return to its original shape or position after deformation that
does not exceed its elastic limit. (http://www.webster-dictionary.org/definition/resilience)

111 For a software component that is faulty to begin with, use of the term reliability is neither meaningful

nor helpful; instead, it leads to the misapplication of analysis techniques that served well for traditional
hardware.

http://www-rohan.sdsu.edu/~digger/305/toulmin_model.htm
http://www.merriam-webster.com/dictionary/reasonable
http://www.merriam-webster.com/dictionary/reasonable
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.webster-dictionary.org/definition/physical
http://www.webster-dictionary.org/definition/property
http://www.webster-dictionary.org/definition/material
http://www.webster-dictionary.org/definition/return
http://www.webster-dictionary.org/definition/original
http://www.webster-dictionary.org/definition/shape
http://www.webster-dictionary.org/definition/position
http://www.webster-dictionary.org/definition/deformation
http://www.webster-dictionary.org/definition/exceed
http://www.webster-dictionary.org/definition/elastic
http://www.webster-dictionary.org/definition/limit
http://www.webster-dictionary.org/definition/resilience

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 77

Robustness
The degree to which a system or component can function correctly in the presence of invalid inputs or stressful
environmental conditions. (3.2601 in [31])

Scale (for a quality measure)
Ordered set of values, continuous or discrete, or a set of categories to which an attribute is
mapped. (Adapted from 2.35 in [33])

Notes
1. The type of scale depends on the nature of the relationship between values on the scale [33].

2. Four types112 of scale are commonly defined [33]:

2.1. Nominal: The measurement values are categorical
2.2. Ordinal: The measurement values are rankings
2.3. Interval: The measurement values are equi-spaced
2.4. Ratio: The measurement values are equi-spaced, where the value 0 (zero) is not mapped to any attribute.

3. The valid value space is predetermined.

4. The mapping of the magnitude of the measured attribute to a value on the scale is predetermined.

Separation of concerns
The process of separating a computer program into distinct features that overlap in functionality
as little as possible. A concern is any piece of interest or focus in a program. Typically, concerns
are synonymous with features or behaviors. [25]

State
The present condition of a (dynamic) system or entity.
Note:

A state is a complete set of observable properties (also known as state variables) that characterize the
behavior of a system, that is, response to stimuli (set of inputs).

State space
The set of all possible states of a dynamic system [26].
Note:

Each state of the system corresponds to a unique point in the state space.

System
Combination of interacting elements organized to achieve one or more stated purposes [27].

Notes
1. A system may be considered as a product or as the services it provides (adapted from [27]). For

example, at its conceptualization stage, a system may be described in terms of the services it
provides and its interactions with its environment, without identifying its constituent elements.

2. The expression “combination…organized…” (instead of collection) emphasizes that a system is
an “integrated composite” as characterized from the definition in [28] of system.

112 See [34] for other types of scale.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 78

3. The expression “to achieve its stated purposes” corresponds to the expression “a capability to
satisfy a stated need or objective” used in the definition in [28] of system.

4. In practice, the interpretation of its meaning is frequently clarified by the use of an associated
noun (e.g., reactor protection system). (Adapted from [27])

5. System elements may include people, products and processes (adapted from [28]). In the
boundary of NRC’s licensing review plan (DSRS) Chapter 7, the review of a digital safety system
is focused on the safety automation. Operators, thermo-hydraulic processes, and related
supporting, peripheral processes are part of the environment of the digital safety system. The
scope of Chapter 7 review includes Interactions of the digital safety system with its environment.

Systemic
Embedded within and spread throughout and affecting a group, system, or body.

Systematic Failure
Failure, related in a deterministic way to a certain cause, that can be eliminated only by a
modification of the design or of the manufacturing process, operational procedures,
documentation, or other relevant factors. [18]
Notes

1. Corrective maintenance without modification will usually not eliminate the failure cause.

2. A systematic failure can be induced by simulating the failure cause.

3. In International Electrotechnical Commission 61508-4 CDV 3.6.6 [30]: Examples of causes of
systematic failures include human mistakes in the following areas:

a. The safety requirements specification
b. The design, manufacture, installation, and operation of the hardware
c. The design, implementation, etc. of the software

4. Other examples include mistakes in modification and configuration.

5. Also, see “systemic cause” in [29].

Traceability
Discernible association among two or more logical entities, such as requirements, system
elements, verifications, or tasks.

Unwanted
Not needed (Derived from Definition 3 for want in [4])
Notes

1. The need is not intrinsic to the specified requirements.

Validation
Confirmation that a product satisfies the needs of the customer and other identified
stakeholders. (Adapted from 3.3264-5 in [31]).
Notes
2. “Confirmation” is used instead of “Assurance,” the word used in [31]. Rationale:

2.1. Avoid confusion with the use of the word “Assurance” in RIL_1101.
2.2. Consistency with the use of “Confirmation” in the definition of “Verification.”
2.3. “Confirmation” subsumes the term, “the process of evaluating” used within definition A in [15].
2.4. “Confirmation” subsumes the term, “the process of providing evidence” used within definition B in [15].

3. “Validation” includes confirmation that the requirements are correct, complete, consistent, and unambiguous.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 79

4. The stakeholder requirements definition activity includes the transformation of various needs into requirements,
including the requirements for validation [10].

4.1. In [15], validation of stakeholder requirements definition includes HA.

4.2. In the context of an NPP safety system, “stakeholder requirements” mean NPP safety requirements
allocated to and intended for this safety system.

4.3. “Requirements for validation” include Assurability.

5. The activity of validation includes the confirmation that the specification for each lifecycle phase satisfies the
needs of the customer and other identified stakeholders.

6. A clarification of the expression, “the needs of the customer and other identified stakeholders” is provided within
definition B in [15] as follows: Solve the right problem (e.g., correctly model physical laws, implement business
rules, and use the proper system assumptions), and satisfy intended use and user needs.

7. The concept of “validation,” as defined, subsumes the concept of “verification.” However, there is a lack of clear
agreement across various authorities on the subsumption of “verification” in “validation.”

8. “Product” subsumes the elaboration, “system, software, or hardware and its associated products” used within
definition B in [15].

9. “Satisfies” is used instead of “meets,” the word used in [31]. Rationale: Consistency with usage in the definition
of “Verification.”

10. The elaboration “….satisfy requirements allocated to it at the end of each life cycle activity” within definition B in
[15] is subsumed in the expression, “satisfies the needs of the customer and other identified stakeholders”.

Verification
Confirmation that specified requirements have been satisfied. (Adapted from 3.3282-3 in [31]).

Notes
1. Various standards and authorities have different definitions, which are inconsistent with each other. The

definition given above abstracts commonality to the extent possible. The following notes provide explanations,
with attempts to reconcile some differences across certain definitions where possible.

2. The term is also used to mean the process of confirmation that specified requirements have been satisfied. The
usage context will distinguish the two meanings.

2.1. Definition A in [15] characterizes the verification process “… evaluating … to determine whether … product
…. satisfy … “ If the result of the determination is TRUE, then it is “confirmation.” The act of evaluating
includes reviewing, inspecting, testing, checking, auditing, or otherwise determining and documenting (also
see note 9 below).

2.2. The object of verification is implied in the definition (e.g., confirmation that a product satisfies its specified
requirements).

3. Definition 3 in [31] uses the term “fulfilled”; however, to reduce potential ambiguity, the term “satisfied” is used
(which is also used in definition 1 within [31]) in the general sense of propositional satisfaction (╞) and constraint
satisfaction.

3.1. Definition 2 in [31] uses the term “formal proof” favoring this substitution.

3.2. Definition 6 in [31] uses the term “comply with” which may be mapped conservatively into “satisfies.”

3.3. Definition B in [15] uses the term “conforms to” which may be mapped conservatively into “satisfies.”

4. Definitions 3 and 6 in [31] also include the phrase “through the provision of objective evidence.” This phrase is
omitted, because the concept “satisfied,” as explained in Note 3 subsumes it,

5. Definition A in [15] uses the expression “satisfy the conditions imposed at the start of that phase”; this expression
is mapped into “specified requirements” in the definition above.

6. Definition B in [15] elaborates “… for all life cycle activities during each life cycle process”; the definitions of
product and process subsume this elaboration.

7. Definition B in [15] elaborates “satisfy standards, practices, and conventions during life cycle processes; and
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 80

activities”; the term “specified requirements” in conjunction with definitions of product and process subsumes this
elaboration.

8. Definition B in [15] includes the statement “Verification of interim work products is essential for proper
understanding and assessment of the life cycle phase product(s).” This statement does not add to the definition
of verification.

9. Definition 3 in [3] elaborates “The act of reviewing, inspecting, testing, checking, auditing, or otherwise
determining and documenting whether …”; the term “process” in the definition given in Note 2 abstracts this
elaboration.

10. Verification at each lifecycle phase does not imply verification of the end product, because its scope does not
include the confirmation that the specification for each lifecycle phase satisfies the requirements at the initial
phase (e.g.,, stakeholder requirements [15] for the end product). This confirmation is considered a part of
validation activities; however, there is a lack of clear agreement across various standards and authorities on this
separation of verification and validation.

References for Appendix A
[1] Wikipedia.org, “Aliasing,” <http://en.wikipedia.org/wiki/Aliasing>, October 16, 2012.

[2] Caygill Howard, A Kant Dictionary, 1995 .

[3] Institute of Electrical and Electronics Engineers, “The Authoritative Dictionary of IEEE
Standards Terms,” IEEE Standard 100-2000, 7th edition, 2000.

[4] Merriam-Webstert.com,”<http://www.merriam-webster.com/dictionary/>, 2014.

[5] Bass, Clements, Katzman, “Software Architecture in Practice (2nd edition)” Addision-
Wesley 2003; quoted at the URL:
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm

[6] Schneider, F., “Understanding protocols for Byzantine clock synchronization” Dept of
Computer Science, Cornell University, Ithaca, New York, Technical Report # 87-859,
August 1987.

[7] U.S. Nuclear Regulatory Commission, “Research Information Letter 1001: Software-
related uncertainties in the assurance of digital safety systems Expert Clinic
Findings, Part 1”, ADAMS Accession Number ML1035402040, January, 2011.

[8] Goldreich, Obed, “Computational Complexity: A Conceptual Perspective,” ISBN 978-0-
521-88473-0, Cambridge University Press, May 2008.

[9] Cobham, Alan, "The intrinsic computational difficulty of functions", Proc. Logic,
Methodology, and Philosophy of Science II, North Holland, 1965.

[10] ISO/IEC/IEEE 15288 Systems and Software Engineering—System Life Cycle Processes

[11] RTCA DO-254/Eurocae ED-80 Standard, “Design Assurance for Airborne Electronic
Hardware,” Radio Technical Commission for Aeronautics/EUROCAE, April 19, 2000.

[12] Merriam-Webstert.com, “Contribute,”<http://www.merriam-
webster.com/dictionary/contribute>, October 15, 2012.

[13] ISO/IEC TR 15026-1:2010 Systems and software engineering – Systems and software
assurance – Part 1: Concepts and vocabulary, revised as ISO/IEC DIS 15026-1:2013

[14] ISO/IEC 25010:2011 Systems and software engineering – Systems and software Quality
Requirements and Evaluation (SQuaRE) – System and software quality models.

[15] Institute of Electrical and Electronics Engineers, "IEEE Standard for System and
Software Verification and Validation,” IEEE Standard 1012-2012, IEEE Computer
Society, 2012.

http://en.wikipedia.org/wiki/Aliasing
http://plato.stanford.edu/entries/analysis/s1.html#KD
http://www.merriam-webster.com/dictionary/course
http://www.sei.cmu.edu/architecture/start/glossary/moderndefs.cfm
http://www.merriam-webster.com/dictionary/contribute
http://www.merriam-webster.com/dictionary/contribute

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 81

[16] Institute of Electrical and Electronics Engineers, “IEEE Guide for Developing System
Requirements Specifications,” IEEE Standard 1233-1998, 1998.

[17] International Electrotechnical Commission, “Information Technology – Vocabulary – Part
1: Fundamental Terms,” ISO/IEC 2382-1:1993, 1993.

[18] International Electrotechnical Commission, “International Electrotechnical Vocabulary,
Chapter 191: Dependability and Quality of Service,” IEC 60050-191:1990-12, 1st edition,
1990.

[19] BusinessDictionary.com, “Design Defect,”
<http://www.businessdictionary.com/definition/design-defect.html>, December 17, 2010.

[20] WordNet, “Feasible,” Princeton University,
<http://wordnetweb.princeton.edu/perl/webwn?s=feasible>, December 17, 2010.

[21] U.S. Department of Transportation, Federal Highway Administration, “Feasible,”
<http://www.fhwa.dot.gov/environment/sidewalks/appb.htm>, December 17, 2010.

[22] Georgetown University, “Feasible,”
<http://uis.georgetown.edu/departments/eets/dw/GLOSSARY0816.html>,
December 17, 2010.

[23] AviationGlossary.com, “Contributory Hazard,” <http://aviationglossary.com/aviation-
safety-terms/contributory-hazard/>, October 15, 2012.

[24] FAA System Safety Handbook, Chapter 7: Integrated System Hazard Analysis,
December 30, 2000.

[25] Wikipedia.org, “Separation of Concerns,”
<en.wikipedia.org/wiki/Separation_of_concerns>, October 15, 2012.

[26] Scholarpedia.org, “State Space,” <http://www.scholarpedia.org/article/State_space>,
October 15, 2012.

[27] Institute of Electrical and Electronics Engineers, “Systems and Software Engineering –
Software Life Cycle Processes,” IEEE Standard 12207-2008, 2008.

[28] U.S. Department of Defense, “Standard Practice for System Safety,” MIL-STD-882E,
May 11, 2012.

[29] International Organization for Standardization, “Road Vehicles—Functional Safety—Part
1: Vocabulary,” ISO/DIS 26262-1, 1st edition, 2009.

[30] Chris Eckert, Apollo Associated Services, LLC, “Identification and Elimination of
Systemic Problems,” Proceedings of the Society of Maintenance and Reliability
Professionals Annual Symposium, St. Louis, MO, October 20–22, 2009.

[31] ISO/IEC/IEEE 24765 Systems and software engineering – vocabulary, 2010

[32] ISO/IEC 25000: 2005(E) Software engineering – Software product Quality Requirements
and Evaluation (SQuaRE) – Guide to SQuaRE

[33] ISO/IEC 15939:2007(E) Systems and software engineering – Measurement process

[34] Roberts, F. Measurement Theory with Applications to Decision Making, Utility, and the
Social Sciences, Addison-Wesley, 1979

http://www.businessdictionary.com/definition/design-defect.html
http://wordnetweb.princeton.edu/perl/webwn?s=feasible
http://www.fhwa.dot.gov/environment/sidewalks/appb.htm
http://uis.georgetown.edu/departments/eets/dw/GLOSSARY0816.html
http://aviationglossary.com/aviation-safety-terms/contributory-hazard/
http://aviationglossary.com/aviation-safety-terms/contributory-hazard/
http://www.google.com/url?ei=a4mHTPOzL4WglAe08t2SDw&sig2=yWuGdD-01VVRvetZyujIKw&q=http://en.wikipedia.org/wiki/Separation_of_concerns&sa=X&ved=0CAQQpAMoAA&usg=AFQjCNFuUgBErtZT9bmyBFjWnVh00gPEzA
http://www.scholarpedia.org/article/State_space

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 82

Appendix B: Technical Review Process
Technical reviews were performed iteratively reviews with the purpose of acquiring knowledge
outside the nuclear power plant (NPP) domain relevant to evaluation of an applicant’s hazard
analysis (HA) of a digital instrumentation and control (DI&C) system for safety functions in a
NPP.

The Office of Nuclear Regulatory Research (RES) employed the services of Safeware
Engineering Corporation (SEC) [1] as a neutral agent to interface with external experts. SEC
obtained nine experts spread across safety-critical software and systems research experience
outside of the commercial NPP industry (e.g., space exploration, military defense, aviation
industry).

Unlike typical peer reviews, in this process, the expert provided the content needed to bring the
report to the expert’s standard of technical soundness, along with an explanation and
justification of the modification, addition or subtraction.

Review process
The technical reviews were performed iteratively at evolving stages of RIL-1101. Each iteration
was treated as a knowledge-acquisition cycle from which results were integrated into the
development of RIL-1101, before submitting it for the next review cycle.

Each review cycle followed the procedure outlined below:

1. NRC and SEC provided orientation to the expert as follows

1.1. NRC sent to the expert three documents to prepare for a face-to-face discussion:

1.1.1. A draft of RIL-1101

1.1.2. A review template specific to the review cycle

1.1.3. A set of slides introducing the NPP application domain, key issues addressed in
RIL-1101, and scope and request-response sequence for the project.

1.2. Then, in a face-to-face meeting, NRC and SEC walked the expert through the slide set,
engaging the expert in clarifying discussion. Then, NRC and the expert discussed the
review template for clarification of the task and match of expert’s interest. The review
was scoped accordingly.

2. The expert provided a written review response as follows:

2.1. Responses to specific questions in the NRC-provided review template. Typically, the
expert provided these responses in tabular form as suggested in the template.

2.2. Rationale or explanation supporting the proposed changes;

2.3. Supporting references, mostly incorporated by reference;

2.4. Supporting examples or case studies in the expert's experience or research to support
an assertion or guidance item applicable to the scope of RIL-1101 (e.g., through
abduction or induction or other manner of generalization).

3. NRC staff and the expert discussed the expert’s responses in a teleconference, moderated
by SEC. Most of the responses concerned clarity of the intended messages. For “easy-to-
resolve” comments, the disposition was discussed in the teleconference.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 83

4. In some cases, the expert provided modified or supplemental responses.

5. NRC proposed disposition of expert’s suggestions, sometimes including follow-up questions
for discussion with the expert.

6. NRC discussed its proposed disposition with the expert. Depending on need and scheduling
feasibility, sometimes NRC walked the expert through the disposition in a teleconference. In
most cases, NRC met the expert face-to-face to clear remaining issues that could not be
resolved efficiently through teleconferencing.

Although the initial plan had included resolution of conflicting inputs from different experts
through cross-expert discussion, there was no conflict across experts about technical
soundness.

References for Appendix B
[1] U.S. Nuclear Regulatory Commission, “Digital Instrumentation and Control – Technical

Engineering Services,” Statement of Work for Commercial - V6065, March 2012.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 84

Appendix C: Evaluating Hazard Analysis - State of the Art
The scope113 of this appendix is limited to the scope of RIL-1101, especially analysis of
contributory114 hazards in digital safety systems for NPPs, which are rooted in systemic causes.
For example, it does not discuss techniques or aspects for analysis of systems with a mix of
safety and non-safety functions (mixed-criticality systems) or analysis of hazards from random
hardware failure. Whereas almost all the surveyed publications cover mixed-criticality systems,
this appendix maps the extracted information into its narrower scope. For example:

1. Only a relevant subset of the wide range of HA activities is extracted.

2. The starting point of hazard analysis is “loss/degradation of an allocated safety function,
rather than the unwanted release of radioactivity.

C.1 Reference model for hazard analysis: Vocabulary

The vocabulary in this appendix is defined in Appendix A. Following is an explanation of the
usage context. A hazard is potential for harm, as defined in Appendix A. Bounding its context to
the object of analysis and its environment, this definition is elaborated in its notes as follows,
“an intrinsic property or condition that has the potential to cause harm or damage.” In the
scope of RIL-1101, the context of “the intrinsic condition” is a safety related system (or its
element) being analyzed and its dependency on its environment. In other words, a hazard is a
state115 of the object of analysis together with its environment, which has the potential to cause
harm. Hazard analysis (HA) of an object is the process of examining the object throughout its
lifecycle to identify hazards (including contributory hazards), and requirements and constraints
to eliminate, prevent, or otherwise control these hazards.

C.1.2 Object of analysis
Referring to the reference model for system integration levels depicted in Figure 4 of [1], the
object of analysis may be any of the following:

1. A work product such as the following:
1.1. A complete safety system such as a reactor protection system (RPS).
1.2. One of its four identical divisions; (information source: system architecture).
1.3. An element responsible for the voting logic; (information source: system architecture).
1.4. A system at a lower level of integration; (information source: system architecture).
1.5. The finest-grained component in the integration hierarchy; (information source: software

architecture; hardware architecture).
1.6. An object in the environment of the object being analyzed, on which the latter depends;

(information source: NPP-wide I&C architecture).

113 Thus, the definitions and descriptions are much more narrowly focused than in more broadly
applicable publications on hazard analysis.
114 IEEE1012-2012 [1] introduces the notion of contributory hazards, e.g. software and hardware
contributions to system hazards.
115 Annex J.1 in [1] “…determine whether the contributing conditions to a hazardous state are possible.”

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 85

1.7. Result of an intermediate phase to produce any of the above; (information source:
development lifecycle model).

2. A process activity producing a work product mentioned above; (information source: process
activity model).

3. A resource used in a process activity mentioned above; (information source: process activity
model). See in RIL-1101 Figure 4.

4. Any other object in a path of contributory hazards.

C.1.3 Analysis at different levels in the dependency network
The dependency network of the top-level system provides an organizing framework for these
objects. For each object, the starting point of its HA would correspond to the derived
requirements assigned to it, its boundary with respect to its environment, its relationship to its
environment, and associated assumptions. If HA of different objects is occurring concurrently
(e.g., impact of changes), based on assumptions about their place and relationships in the
dependency network, then, for implications of these assumptions, see the following in RIL-
1101: Table 2, H-culture-12; Table 4, H-ProcState-4; Table 8, H-SR-12-14; Table 9, H-SRE-2G2;
Table 14, H-SAE-1G1 item 1, H-SAE-7.1.

C.2 Reference model for hazard analysis in development lifecycle
Hazard analysis of a digital safety system is part of its safety analysis activities, which are
independent from the mainstream development activities, within which also some form of HA
and V&V occurs. Nevertheless, the independent HA is interrelated with associated systems
engineering activities, as depicted in Figure 9 and charted in Table 21. The independent team
may engage the initial HA-team in review and walks through its work products.

In the context of hazards contributed through engineering deficiencies, a contributor may be
detected and controlled in (a) the mainstream system development, which includes some form
of HA [4] and V&V; (b) independent V&V processes; or (c) independent HA. In general, the
higher the quality of the upstream processes, the smaller will be the hazard space downstream,
and the lower will be the amount of hazards within downstream work products. On the other
hand, ill-controlled upstream processes could render downstream V&V and HA infeasible.
Recognizing the wide variation in the practice of upstream system engineering, for the purpose
of consistent comprehensible concise treatment of the inter-relationship of HA with the other
processes, the state-of-the-art in system and safety engineering is used as a baseline and
reflected in the lifecycle reference model, depicted in Figure 9. The reference model is derived
from [1] for integrity level 4. Thus, the independent HA activities are characterized under the
following premises:

1. Mainstream system development activities are performed in accordance with the
specifications of their respective processes.

2. Resources used in these development activities are qualified to meet their respective
specified requirements or criteria.

3. V&V processes fulfill the objectives stated in Section 1.4 of [1].

4. Verification activities (on the object of verification) confirm that the requirements specified for
that object are satisfied.

4.1. Anomalies are detected as early in the lifecycle as possible, in accordance with [1].

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 86

4.2. Detected anomalies are resolved in accordance with [1]

5. Supporting audits of the process activities in execution examine whether these activities are
being performed in accordance with their specifications, using resources that conform to
their respective requirements. Deficiencies are corrected promptly.

6. Mainstream validation activities confirm that the various specifications collectively satisfy the
requirements intended from the NPP level safety analysis.

7. The “object” of analysis has passed its V&V criteria.

Under premises 1-7 stated above, independent HA activities provide an independent search for
the remaining “conditions having the potential for functional degradation of safety system
performance” (known as hazard identification) and seek their control (e.g., avoidance or
elimination) through corresponding requirements and constraints. This search starts from the
safety function of concern, first identifying the direct hazards and, then, for each hazard,
progressing “upstream” through the dependency paths to identify the contributory hazards. The
independent HA perspective is broader than the mainstream activities; for example, it may re-
examine:

• Interpretations of a requirement specification;
• Flow-down of derived requirements and constraints;
• Flow-down of quality requirements116;
• Premised validity of the process specifications and resource qualification criteria;
• Other assumptions.

To the extent that premises 1-7 stated above are not satisfied, the difference results in
additional burden on the independent HA activities, requiring commensurate additional skills
and effort. Also see Section 2.3.8.

A regulatory review of HA may be viewed as yet another round of independent HA. Thus, the
review activities follow the same pattern.

116 These are also known as “non-functional” requirements.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 87

Safety analysis

Verification

HAT4

…

HAT4 T5

V… Vi Vdd Vr Vc

Requirements
from NPP
Safety

Analysis

Concept Requirements Detailed
design

Implementation Plans

V&V Plan

HAT1-T3

Va

Architecture

HA
T5-T7

 HAT5-T7 HAT5-T7 HAT5-T7

System development

Figure 9: Hazard analysis in relation to development lifecycle and verification activities

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 88

C.3 HA tasks – an example set
Referring to Table 21, tasks T1-T3 start in the planning phase of the system engineering
lifecycle; however, at every change, the plans are reviewed to identify corresponding changes
needed.

Task T4 is started in the concept phase of the system engineering lifecycle. In a “green-field”
concept, the information available may only be a functional concept. Yet, it is sufficient to
develop the questions to be addressed from the HA perspective, accomplished through the
“hazard logging” process. In this case, task T4 may be iterated many times, as the concept
evolves. Systematized management of change and configuration (e.g., through minor or internal
version identifiers) enables recorded, track-able rationale underlying the evolution path. In a
modification of an existing NPP, the concept may be much more developed (e.g., a proposed
NPP-level I&C re-architecture), enabling more detailed investigation for the identification of
(contributory) hazards.

When the system concept and requirements specification become stable, task T4 transitions
into T5, at the start of which, the term “object” refers to the system requirements specification
(corresponds to task 203 in [5]). Tasks T5 and T7 are iterated as the system architecture
evolves. The iterations include task T6, when a lower level of integration is identified in the
system architecture.

Table 21: HA activities and tasks - a reference model
HA activity / task Input

Output

Remarks.
References.

T1. Generate baseline HA plan for
all lifecycle phases.

1. Concept [1],
incl. interactions with and
dependencies on its environment.
2. Requirements
from NPP level safety analysis.
3. Premises &
assumptions upon which the
expected outcome depends, incl.
conditions & modes of operation
and maintenance.
4. Plan to validate
assumptions.
5. Consequences
of behavior shortfalls, incl. invalid
assumptions/premises.
6. Overall V&V
plan, incl. HA.
7. Mainstream
development plan.
8. Corresponding
information about or from entities
in the dependency paths (e.g., up
the supply chain).

Baseline117 HA plan.

Adapted from
[1] Table 1a
Tasks 7.1:1-4
and Task
101.2.2 in [5].

T2. Identify dependencies of HA
plan (e .g. other information;
resources; dependencies on supply
chain)

Dependencies of plan. Adapted from:
[1] Table 1a
Tasks 7.1:1-4;
[5].

T3. Evaluate other plans,
following the dependencies
identified above.
T3.1. Coordinate information
exchanges with HA activities (e.g.,
timing; semantic compatibility;
format).

1. Evaluation
report.
1.1. Deficiencies.
1.2. Changes
needed.
1.3. Request for
additional information (RAI).

Adapted from
[1] Table 1a
Tasks 7.1:1-4.
7.4, 7.5.

2. Rejection or
Acceptance (incl. phase-advance
clearance)

Adapted from
[1] Table 1a
Tasks 1-4.

3. Revision to
HA plan as needed.

Adapted from
[1] Table 1a
Tasks 7.1:1-4.

T4. Understand HA-relevant
characteristics of the object to be
analyzed; examples:
1. Differences
from previously licensed systems.
2. Exposure to
unwanted interactions.

Items above +
9. Other
requirements allocated to the
object.
10. Non-safety
related constraints on the object.
11. Relationship

1. Revision to
HA plan.
2. Addition to
hazard log. [15]
3. Change
needed; examples:
3.1. Making

Adapted from
[1] Table 1a
Tasks 7.2:(1)a,
f, g), (2)b,d),
(3)a,b) and
Tasks 201-202
in [5],

117 While mainstream HA produces the baseline, independent HA identifies changes needed.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 89

3. Presence of
functions not needed for the
primary safety function.
4. Division of
work and communication
challenges across organizational
units/interfaces.
5. Compatibility
of lifecycle models, processes,
information-exchange interfaces,
etc.
6. Qualification
and compatibility of tools across
these interfaces.
7. Compatibility
of conditions of use for reused
objects.
8. Correct,
complete flow-down or
decomposition or derivation of
requirements.
9. Identification
of dependencies (e.g., feedback
paths; hidden or obscure
couplings).
10. Premises and
assumptions – explicit and
implicit.
11. Other
challenges to analyzability.

with NPP-wide I&C architecture.
12. Distribution of
responsibilities across
organizational units/interfaces.
13. Provisions for
information exchange across
organizational units/interfaces.
14. Lifecycle
models; processes; resources (e.g.,
tools; competencies); information
exchange interfaces.
15. Identification
of reused objects and conditions of
use.
16. Explicit record
of dependencies.
17. Prior HA
results, if any.

assumptions explicit;
3.2. Improvement
in knowledge of dependencies.
3.3. Making
lifecycles, processes compatible;
3.4. Making
information-exchange interfaces
compatible;
3.5. Consistency
across automation and human
roles/ procedures. [7]
3.6. Qualification
of reused objects (e.g., tools);
3.7. Change in
allocation of a requirement;
3.8. Other
constraints;
3.9. Other derived
requirements. [13];
4. RAI

T5. Analyze object118 for
(contributory) hazards. See
corresponding section and table in
RIL-1101. For a safety system or
its element, it includes, for
example, search for:
1. Single point
failure;
2. Common
mode dependency;
3. Common
cause dependency.

Items above +
Information specific to object of
analysis (see Section C.1.2).

1. Addition to
hazard log.

Adapted from
[1] Table 1a
Tasks 7.1:5-6;
Tables 1b and
[1].
[14]

2. Change
needed. Examples:
2.1. See in T4;
2.2. Derived
requirement (on process) to prove
that a contributing hazard cannot
occur.
2.3. Derived
requirement or constraint on
object.
3. Rejection |
Acceptance (incl. phase-advance
clearance)
4. Revision to
HA plan as needed
5. RAI

T6. Integrate analyses from lower
levels in the integration hierarchy
and contribution paths up to the
top-level analysis.

Items above + information needed
about inter-object dependencies for
overall system HA

As in T5. Adapted from
[1] Table 1a
Task 7.1:7; [1].

118 Examples of objects: Work product from any phase in the development lifecycle; Work product for the
top-level digital safety system; some element in a lower level of integration; associated processes;
associated resources; any other entity in the dependency paths (e.g., in the supply chain).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 90

T7. Analyze change proposal (e.g.,
hazard control proposal).

Change proposal, including
information on which it depends
(e.g., items listed above).

As in T5. Abstracted
from [1]

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 91

C.3.1 Evaluating the quality of HA output
The quality of the HA output depends upon three major factors:

1. Competence – see Section C.4.
2. Quality of the input(s) – see Section C.5.
3. Technique – see Section C.6.

Evaluation of the HA plan is based on the degree to which the planned HA fulfills the following
objectives:

1. Identify all hazards.
1.1. Identity the constraints on the system and its environment, which would enable item 1.

2. Identify all contributory hazards.
2.1. Identity the constraints on the system and its environment, which would enable item 2.

3. Identity the constraints needed to control the identified (contributory) hazards.

Consequently, evaluation of a selected HA technique is based on its ability to fulfill the
objectives stated above and identifying the associated critical conditions, namely:

1. A specification of the competence required to apply the technique, such that the
competence can be evaluated with consistency.

2. A specification of the information required to apply the technique, such that the object of
analysis can be evaluated with consistency.

Criteria to evaluate HA ouput119

1. Completeness

1.1. Analysis for all known hazards and contributors, including lessons learned from prior
experience.

1.2. Demonstration of a systematic approach to HA, supported by evidence and reasoning.

2. Demonstrated consistency in the analysis of identified hazards and contributors.

3. Consistency with assumptions used.

4. Reference to inputs used.

C.3.2 Hazard identification and logging
Hazard identification, especially in the concept phase, requires extra-ordinary individual
capabilities, teamwork, and a conducive organizational culture (see Appendix F). If any analyst
or contributor to HA perceives a safety concern, a hazard, or a contributory hazard, the
individual is encouraged to express it. The expressed item is recorded in a “hazard log” without
immediate evaluation. Sometimes, a team engages in brainstorming to stimulate thought and
encourage expression. The “hazard log” [15] is a means of tracking an item from initial
expression to final disposition and closure. An “entry” is never deleted. All the related
information may be in a single document or it may be distributed across a set of linked
databases; in any case, an analyst is able to make an entry readily.

Examples of related information include the following:

119 Criteria may be applied to the output in any iteration of any stage of the development lifecycle.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 92

1. Information to identify the logged item:
1.1. Item identifier;
1.2. Descriptive title;
1.3. Originator;
1.4. Origination date;
1.5. Description;
1.6. Perceived consequence/effect of inaction;

2. Information to track progress:
2.1. Action plan (from origination to closure);
2.2. Action assignee(s);
2.3. Status of progress in the action plan (e.g.,

2.3.1. Identified change needed to eliminate hazard);
2.4. Basis to allow closure (e.g.

2.4.1. Evaluation revealed that hazard control is already in place.
2.4.2. Evaluation resulted in restatement of the hazard (another entry in the hazard

log);
2.4.3. Addition of a constraint or derived requirement in the system engineering

activities;
2.5. Date of closure;
2.6. Name and Signature authorizing closure.

Every addition or modification of a constraint or (derived) requirement is a configuration
controlled item with associated change controls.

When the object is the overall system, the corresponding HA task is the exercise of the selected
HA technique (see Section C.6) on the information available about the object (see Section C.5).
Execution of this process may assist in the evaluation of some other item in the hazard log; or
may raise a new concern, which is then entered in the hazard log.

C.3.3 Evaluation of a logged hazard
Whereas published standards and handbooks (whose scope includes mixed-criticality systems)
suggest evaluation in terms of levels of severity and likelihood of occurrence, in the RIL-1101
context, the severity of the loss of a safety function is of the highest level and, for systemic
causes, the analysis first seeks their correct identification and then, pursues their elimination or
avoidance, as explained next.

In practice, a “quick” filtering or screening evaluation (e.g., see 2.4.1-2.4.2 above) is performed
on each logged item, before delving deeper. If an accurate dependency model is available, the
evaluation seeks to fit the logged item in the dependency model. The search may reveal that the
dependency model is inaccurate (requiring change) or that the logged item is not a
(contributory) hazard (leading to its closure). When the logged item is matched to an object in
the dependency network (i.e., its sequence in the contributory path is found), a corresponding
HA task is formulated and sequenced in accordance with its place in the contributory path.

As the evaluation of a logged item progresses, it may expose inadequacies or uncertainties in
the information about the object being analyzed. Figure 10 depicts a structure for reasoning

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 93

(adapted from [16]) about these uncertainties120. Suppose that the HA team is considering an
assertion that the result of their work (e.g., constraint on the object being analyzed) will control
the logged (contributory) hazard. Then, the team clarifies its reasoning through discussion,
evoking challenges to the assertion and rebuttals to the challenges. The discussion may also
reveal inconsistencies in the reasoning. In this manner, the team identifies factors affecting the
validity of their assertion. Qualifiers are associated with the assertion; for example:

1. Condition(s) under which the assertion is supported.
1.1. Uncertainties may be stated as assumptions, for which the truth has to be validated.
1.2. Changes needed may be stated as constraints to be satisfied.

2. Degree or strength of the assertion: {Strong …. Weak}

The results are recorded, showing how the assertion is supported by the evidence121, identifying
the inference rule to assert the evidence-assertion link, and the technical basis for the rule such
as a causal model122.

120 Appendix F explains how the process is applied to cross-cultural (e.g., inter-disciplinary; inter-
organizational) communication.
121 It is labeled “grounds” in [16].
122 It is labeled “backing” in [16].

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 94

If the evaluation results in a conclusion that the logged item is not a hazard, it is recorded,
including the information depicted in Figure 10 (e.g., the reasoning, along with unresolved
dissenting positions, if any, in the form of conditions). A resolution process ensures that the
analysis, evaluation, resolution and disposition of the issue are performed in a timely and
effective manner.

C.4 Effect of competence on quality of HA work products
When HA is performed on an early-stage concept, with little explicit information in the concept,
the “competence” factor (see Section C.3.1) is most dominant. For example, the analyst has to
elicit information about assumptions and dependencies through systematic enquiry, devised for
the circumstances. Based on this information, the analyst would have to construct an analyzable
model of the dependencies (e.g., control structures, showing feedback paths, interactions, and
nested levels). These activities require extremely high competence. For an approach to
competence management, see [17], in which reference 7 is a technical competence framework
developed through wide consultation in the UK.

Competence is a critical factor - see in RIL-1101 Table 1 items H-0-2G{0, 1, 2}, H-0-3G1;

Theoretical or causal model

Inference rule

Evidence Assertion

Factors influencing validity of evidence link

basis for

Qualifiers
(Strength;
Condition)

Challenges; rebuttals; inconsistencies

Reasoning

used in

Figure 10: Structure to reason about the contribution to a hazard

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 95

Table 2 H-culture-6G3, Table 10 H-SRE-1G{1,2,3}. Competence to perform HA of an NPP digital
safety system includes a complement of the following (not necessarily in one person):

1. Proven self-learning123 ability, assimilating needed new knowledge in a scientifically sound
framework.

1.1. Education equivalent to a master’s degree level knowledge of safety critical industrial
automation systems engineering;

1.2. Ability to recognize the knowledge needed and limitations of one’s knowledge.

1.3. Ability to fill one’s knowledge gaps through self-study, supplemental training, and
consultation with experts.

2. Reasoning capability (see Figure 10);
2.1. Objectivity. (Also see item 9).
2.2. Ability to abstract and generalize from one context and apply to another.
2.3. Ability to recognize fallacies in some chain of reasoning.

3. Continuing update of professional knowledge through training; examples:
3.1. Application domain: How an NPP works (energy conversion from fuel to power on the

grid); heat exchange; critical functional elements, processes and process state
variables in an NPP and their inter-dependencies; associated (contributory) hazards;
study of operating experience (event reports; root cause analysis reports).

3.2. Industrial automation domain: Elements for sensing, actuation, computation; control
logic; communication; software/firmware; power; associated (contributory) hazards;
study of operating experience (event reports; root cause analysis reports).

3.3. Science and engineering of distributed systems, including computation, communication.
3.4. Hazard and safety analysis and assurance methods and techniques for such systems.

4. Experience in analysis of systems similar in criticality, functionality, and configuration:
4.1. Good performance under the guidance of an expert in hazard analysis.
4.2. Good performance independently.

5. Strongly safety conscious. See Appendix F.1 and F.3.

6. Communication skills in group activities (see Appendix F.4) – examples:
6.1. Ability to communicate effectively, objectively with stakeholders.

6.1.1. Succinctness.
6.2. Ability to listen actively for understanding and learning from others.
6.3. Ability to elicit information needed.
6.4. Ability to explain one’s reasoning (see Figure 10) to others.
6.5. Ability to express and explain to others insights from deep knowledge.

123 When the object being analyzed entails some characteristic, which the analyst has not encountered in
past experience, as is often the case in digital safety systems, corresponding learning is needed.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 96

6.6. Ability to develop collective communicative competence. See Appendix F.4.3.

7. Other interpersonal skills and characteristics, supportive of teamwork (see Appendix F.4) –
examples:
7.1. Willingness to recognize and accept weakness in own reasoning.
7.2. Willingness to explain own reasoning (clearly; succinctly) in the face of opposition.
7.3. Assistive rather than competitive behavior.
7.4. Ability to evoke minority viewpoints (concerns or reservations).
7.5. Ability to understand other team members’ reference-frames.
7.6. Ability to assimilate differences, neutralizing biases.
7.7. Ability to converge124 towards objectivity (see Figure 10). See “collective mindfulness” in

Appendix F.
7.8. Other constructive group interaction skills.

8. The complement of competence in the HA team includes breadth and depth.
8.1. Depth: Individuals having mastery over the respective engineering disciplines,

technologies, products or components, and processes, involved in each phase of the
system development lifecycle (possibly involving phase-wise changes in team-
membership) and respective dependencies.

8.1.1. Knowledge of respective operating experience (what can go wrong).
8.1.2. Track record of learning from it (how to prevent what went wrong).

8.2. Breadth125: Individuals are able to understand how their respective roles fit into the
overall HA, including the associated inter-dependencies.

8.2.1. Knowledge of the environment126 of the safety system and its development.
8.2.2. Experience in analysis of hazard groups such as those identified in RIL-1101.
8.2.3. Experience in deriving requirements and constraints to avoid or eliminate

contributory hazards.
8.2.4. Experience commensurate to the functionality and configuration of the system.

9. The HA-team has cultural diversity127 - supportive of safety.

124 Through ability to articulate premises and qualifications of claims and how those derive from particular contexts.
125 Provide continuity to the HA-team across lifecycle phases.
126 Also see Section 3.4.1.
127 See reference-frames in item 7.5; examples: belief systems, values, thought processes, paradigms,
customs, conventions, language..

Inadequate replenishment of requisite competence: The DI&C engineering workforce is changing
and so is the environment from which the workforce is being replenished. With the decline in the U.S.
manufacturing industry, there has been corresponding decline in its industrial automation development
base. Education and training concerning software are driven more by consumer products and
information technology (IT) industries than by high-consequence automation. “Development of DI&C
systems for the highest level of safety” is a very small, niche in the market.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 97

C.5 Quality of information input to HA at each development phase
Table 22 provides a broad-brush characterization of the quality of the work products (in terms of
information richness) available for HA. For each major lifecycle phase work product, Table 22
compares characteristics in common practice with state-of-the-practice (best in class), and
state-of-the-art (leading-edge implementations, not yet scaled up).

Table 22: Characterization of information richness in phase work products

Row ID
Work product

of lifecycle phase Common practice State of the practice
(best in class); examples

State of the art;
examples

1 Requirements from next
higher level of
integration, e.g. from
NPP-level safety
analysis.

Textual narrative. No
configuration-controlled
vocabulary.
“Flat list” organization (i.e.,
no explicit relationship
across requirements is
identified).

Restricted natural language
with defined vocabulary and
structure across elements of
a statement. [18]

Use case
scenarios [19].

SpecTRM-RL [20] Framework for
specification
& analysis
[21].

Requirements engineering
support in Naval Research
Labs [22].
Requirements tables as used
for Darlington NPP
[23][24].
Models to support
mechanized reasoning.
Examples: SysML [25].

2 Plans {Safety plan;
V&V plan; HA plan}

Low level of detail;
relatively late in the
lifecycle.

V&V plan [1]
Safety plan [26]-[28]

Integrated
safety and
security plan.

3 Concept Combination of (a) block
diagram without semantics
on the symbols and (b)
textual narrative

Models to support
mechanized reasoning [29].
(See note 1)
SysML [25];
AADL [30]
Extended EAST-ADL [31]

META [32]

4 Requirements of digital
safety system

See row 1 See row 1 See row 1

5 Architecture of digital
safety system

See row 3 See row 3 META [32]

6 Requirements for
software in digital safety
system

See row 1 [29][33][34] See row 1

7 Architecture for
software in digital safety
system

See row 3 See row 3.
MASCOT [34]
AADL [30]

META [32]

8 Detailed design of
software

For application logic:
Function block diagram
[35].
For platform software:
Combination of (a) block
diagram without semantics
on the symbols and (b)
textual narrative.

SPARK [36][37] META [32]
Refinement
from
architectural
specifications

9 Implementation of
software (code)

For platform software,
including communication
protocols: C programming
language + processor-

Concept of using safe subset
of an implementation
language: MISRA C
[38][39]

Auto-
generation
from detailed
design.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 98

specific assembler language Language for programming
FPGAs [40]

Notes:
1. The models should contain enough information to understand dependencies and propagation paths for contributory hazards.

C.6 Hazard Analysis Techniques – useful extractions from survey
The selection and role of HA techniques (the third factor influencing the quality of an HA product
mentioned in Section C.3.1) will depend upon the nature of the system to be analyzed and the
quality of the information contained in the various intermediate work products, characterized in
Section C.5.

Table 23 summarizes some applicable techniques surveyed. As difficulties and limitations were
encountered in the earlier techniques (such as those in the first three rows of Table 23), these
techniques were extended, adapted and transformed into newer techniques (such as the ones
in the last three rows of Table 23); the references for the latter describe some of the difficulties
and limitations encountered in using the earlier techniques. The “salient feature(s)” column
identifies concepts found useful. However, the adaptations devised to evolve newer techniques
require extraordinary ingenuity; utility of the adaptations is very dependent upon the skills of the
analysts.

When HA is applied to an early concept phase, it is called preliminary hazard analysis (PHA)
[41][42].

For a broad survey of HA techniques, see [7][43][44], and for additional guidance, see [45]-[49].
For a tutorial overview of HA in relation to safety critical system development, see [51]. These
references are not included in Table 23, if technique-specific references are listed.

Table 23: Salient features of techniques relevant to NPP digital safety systems

HA technique Reference(s) Salient feature(s)

Acronym Expanded name

HAZOP(S) Hazard and operability
studies

[8] Concept of using teamwork, aided by HAZOP process expert.
Systematizing enquiry through key words.
Systematizing understanding effects through understanding the
associated deviations.

FTA Fault Tree Analysis [52][53][54] Representation and understanding of fault propagation paths,
when the paths are branches of a tree.

DFMEA Design Failure Mode
and Effects Analysis

[55][56][57]
[58]

Representation of faulted behavior of a hardware component for
understanding its effect, without requiring knowledge of its
internals.

FFMEA Functional Failure Mode
and Effects Analysis

[57][69] Understanding effect of unwanted behavior of a function of the
system, without requiring knowledge of its internals. Useful in
concept phase.

FuHA Functional Hazard
Analysis

[7]

FHA Fault Hazard Analysis [43][46] [49]
CCA Cause Consequence

Analysis
[43][49] Concept of using causality model to understand fault propagation

paths.
W/IA What if analysis [47][49]
CCFA Common Cause Failure

Analysis
[43][46] [49]

HACCP Hazard Analysis &
Critical Control Points

[50] Concept of focusing on critical process variables that affect the
outcome.

SHARD Software hazard analysis
and resolution

[10] Adaptation of HAZOP to software, through customization of the
key words.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 99

FPTN/FPTC Fault propagation and
transformation
network/calculus

[59] Representation and analysis of fault propagation, when the faults
are transformed during propagation, and when there are feedback
paths, supporting mechanized traversal and reasoning.

DFM Dynamic Flowgraph
Method

[64]-[66] Behavior modeling of the system in the finite state machine
paradigm facilitates or enables:
• Mathematical underpinning.
• Analysis of its interactions with environment.
• Analysis of dynamic behavior across its
elements.
• Mechanized traversal.
• Mechanized reasoning, esp. if directed cyclic
graph.

STPA System-Theoretic
Process Approach

[74]-[76] • Applicable at concept phase (without a
finished design).
• Applicable to understanding of organization-
culture systems.

HAZOP has been adapted to analyze software [8], and this adaptation has been extended to
data flow oriented software architecture [10], and, later, extended to systems with feedback and
systems in which the initial fault is transformed into other faults as it propagates [59][59]. These
concepts and principles have influenced the AADL [30] error annex, supporting analysis of fault
propagation. For an indication of promising research to extend AADL for hazard analysis, see
[71].

Recently, a technique similar to the adaptations of HAZOP mentioned above, namely STPA,
has been demonstrated in NPP applications [74][75][76].

For a comparative experimental study of six techniques, see [74].

If HA is performed on a state-of-the-practice or state-of-the-art work product, such as the ones
shown in Table 22, and if all behavior-influencing assumptions and dependencies were already
explicit in a system architecture model, the search for (contributory) hazards could be
automated [61]-[65], reducing the dependence on extremely high competence. However,
model-based approaches introduce their own contributory hazards [63], to analyze which highly
specialized competence is needed.

For adaptation of the concepts in [11], [59] and [59] for HA of device interfaces and, then, HA of
operating systems, see [66]-[69].

For an adaptation of the concepts in [59]-[60] to address the fault propagation problem for
FPGAs, see early experimental work reported in [70].

For an example of showing freedom from exceptions in software implementations (which are
contributing hazards), in addition to showing conformance to specifications, see [37].

For an example of analysis for hazards contributed through timing aspects of multi-core
computing processor resources, see [72].

Static analysis tools, such as [37] identify data, information and control flow dependencies in
software.

For emerging guidance on HA of complex hardware, such as FPGAs, see [71]. For ongoing
developments in this field, track [72].

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 100

C.7. References
[1] IEEE Standard 1012-2012, “IEEE standard for system and software verification and

validation,” March 29, 2012.

[2] NUREG/CR-7007, “Diversity strategies for nuclear power plant instrumentation and
control systems” 2010.

[3] IEEE Standard 603-2009, “IEEE standard criteria for safety systems for nuclear power
generating stations” 2009.

[4] Joint Software System Safety Committee, “Software System Safety Handbook – A
Technical & Management Team Approach,” December 1999. URL: http://www.system-
safety.org/Documents/Software_System_Safety_Handbook.pdf

[5] MIL-STD-882E, “Standard Practice for System Safety,” U.S. Department of Defense, May
11, 2012.

[6] European Committee for Electrotechnical Standardisation (CENELEC), EN 50126, Part 1:
1999, Railway applications - The Specification and Demonstration of Reliability,
Availability, Maintainability and Safety (RAMS). (A new version is soon to be released; I
assume that it will not have changed much in concept.)

[7] Society of Automotive Engineers (SAE), ARP-4761 – Guidelines and Methods for
Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment,
1996. (This standard contains a description of Functional Hazard Analysis (FHA) and of
Preliminary System Safety Assessment (PSSA).)

[8] CISHEC (The Chemical Industry Safety and Health Council of the Chemical Industries
Association Ltd.), A Guide to Hazard and Operability Studies, 1977.

[9] McDermid, J.A., Nicholson, M., Pumfrey, D.J. & Fenelon, P., (1995), Experience with the
application of HAZOP to computer-based systems, COMPASS '95: Proceedings of the
Tenth Annual Conference on Computer Assurance, Gaithersburg, MD, pp. 37-48, IEEE,
ISBN 0-7803-2680-2.

[10] Redmill F., Chudleigh, M., Catmur J., System Safety: HAZOP and Software HAZOP.
John Wiley and Sons Ltd., Chichester, U.K., 1999.

[11] McDermid, J.A. & Pumfrey, D.J., (1998), Safety Analysis of Hardware / Software
Interactions in Complex Systems, Proceedings of the 16th International System Safety
Conference, Seattle, WA, pp. 232-241, System Safety Society.

[12] IEC Standard 61882, “Hazard and Operability Studies (HAZOP Studies) – Application
Guide,” International Electrotechnical Commission, First Edition, 2001.

[13] McDermid J.A., Safety critical software, in: Encyclopedia of Aerospace Engineering,
Online, Wiley 2012 (accessible via DOI: 10.1002/9780470686652.eae506).

[14] Hawkins R.D., Habli I., Kelly T.P., The Principles of Software Safety Assurance, in
Proceedings of the 31st International System Safety Conference, Boston, MA,
International System Safety Society.

[15] SMP 11, MoD Hazard Log Requirements, see:
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SM
P11v22final.pdf (last accessed 31st July 2013)

[16] Toulmin, Stephen. The Uses of Argument. Cambridge: University Press, 1958

http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.cs.york.ac.uk/~djp/publications/mcd-pumf.pdf
http://www.cs.york.ac.uk/~djp/publications/mcd-pumf.pdf
http://www.system-safety.org/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 101

[17] HSE statement on competency management, see:
http://www.hse.gov.uk/consult/condocs/competence.pdf (last accessed 4th August 2013)

[18] Hinchey, A,G, et al, “Towards an automated development methodology for dependable
systems with application to sensor networks” Performance, Computing, and
Communications Conference, 2005. IPCCC 2005. 24th IEEE International, 2005

[19] Allenby, K., Kelly, T., “Deriving Safety Requirements Using Scenarios,” Proceedings of
the Fifth International Symposium on Requirements Engineering, p.p.. 228-235, Toronto,
Ont, Canada, August 7, 2002.

[20] SpecTRM-RL http://www.safeware-
eng.com/software%20safety%20products/features.htm

[21] Day, N.A., Joyce, J.A., “A framework for multi-notation requirements specification and
analysis” Proceedings, ICRE 2000. URL
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnum
ber=18574

[22] Heitmeyer, et al, “The SCR method for formally specifying, verifying, and validating
requirements: tool support” ICSE 1997. URL:
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnum
ber=13372

[23] Parnas D., Madey J., Functional Documents for Computer Programs. Science of
Computer Programming, Vol. 25, No. 1, 1995.

[24] Galloway, A., Iwu, F., McDermid, J. A., Toyn, I., On the Formal Development of Safety
Critical Software, In: Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG
2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Meyer, B.,
Woodcock, J. C. P. (eds.) pp 362-373.

[25] SysML, see: http://www.omgsysml.org/ (last accessed August 1st 2013).

[26] ISO - International Organization for Standardization, BS ISO 26262-2: 2011, Road
Vehicles – functional safety, Part 2: Management of functional safety.

[27] ISO - International Organization for Standardization, BS ISO 26262-3: 2011, Road
Vehicles – functional safety, Part 3: Concept phase.

[28] ISO - International Organization for Standardization, BS ISO 26262-4: 2011, Road
Vehicles – functional safety, Part 4: Product development at the system level.

[29] Despotou G., Alexander R., Kelly T.P., Addressing Challenges of Hazard Analysis in
Systems of Systems, 2009, In proceedings of the 3rd Annual IEEE International Systems
Conference (SysConf '09), Vancouver Canada, 23-26 March 2009.

[30] AADL, see; http://www.aadl.info/aadl/currentsite/ (last accessed August 1st 2013)

[31] Mader, R., Grieβnig, G., Leitner, A., Kreiner, C., Bourrouilh, Q., Armengaud, E., Steger,
C., Weiβ, R., “ A Computer-Aided Approach to Preliminary Hazard Analysis for
Embedded Systems,” 18th IEEE International Conference and Workshops on
Engineering of Computer-Based Systems, 2011.

[32] OpenMETA tool suite. URL: http://www.army-technology.com/news/newsvanderbilt-
university-support-meta-tools-maturation-darpa-avm-programme

http://www.hse.gov.uk/consult/condocs/competence.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://www.omgsysml.org/
http://www.aadl.info/aadl/currentsite/
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 102

[33] Miller, S.P., Tribble, A.,C., Extending the Four Variable Model to Bridge the System-
Software Gap, in Proc. 20th Digital Avionics System Conference, DSAC01, Daytona
Beach Florida, October 2001.

[34] Simpson H.R., The MASCOT method. Software Engineering Journal, 1(3):103–120,
March 1986.

[35] International Electrotechnical Commission, “Programmable controllers – Part 3:
Programming languages” IEC 61131-3, ed3.0, 2013.

[36] Barnes J.G.P., High Integrity Software: The SPARK Approach to Safety and Security,
Addison Wesley, 2003.

[37] SPARK Pro toolset, see: https://www.adacore.com/sparkpro/ (last accessed August 2nd
2013)

[38] MISRA C, see:
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx (last
accessed August 1st 2013)

[39] LDRA MISRA C toolset, see: http://www.ldra.com/en/solutions/by-standard-
adherence/misra (last accessed August 2nd 2013)

[40] Conmy P.M., Pygott C., Bate I.J., VHDL Guidance for Safe and Certifiable FPGA Design,
IET System Safety Conference, October 2010.

[41] Gowen, L.D., Collofello, J.S., Calliss, F.W., “Preliminary Hazard Analysis for Safety-
Critical Software Sysems,” Proceedings from IPCCC’92, 1992.

[42] Safeware Engineering Corporation, “Preliminary Hazard Analysis,” <
http://www.safeware-
eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm>,
December 6, 2011.

[43] Ericson II., C.A., “Hazard Analysis Techniques for System Safety,” John Wiley and Sons,
August 24, 2005.

[44] U.S. Nuclear Regulatory Commission, “Software Safety Hazard Analysis,”
NUREG/CR-6430, Washington, DC, February 1996 (Agencywide Documents Access and
Management System (ADAMS) Public Legacy Library Accession No. 9602290270).

[45] National Aeronautics and Space Administration, “NASA Software Safety Guidebook”,
NASA-GB-8719.13, Washington, DC, March 31, 2004.

[46] U.S. Air Force, “The Air Force System Safety Handbook”, Kirtland AFB, NM, July 2000.

[47] European Strategic Safety Initiative, “Guidance on Hazard Identification,” European
Strategic Safety Initiative – Safety Management System and Safety Culture Working
Group, March 2009.

[48] Ippolito, L., Wallace, D., “A Study on Hazard Analysis in High Integrity Software
Standards and Guidelines,” National Institute of Standards and Technology, NISTIR
5589, Gaithersburg, MD, January 1995.

[49] System Safety Society, “System Safety Society Handbook: A source Book for Safety
Practitioners,” The System Safety Society, 1993.

[50] Hazard analysis and critical control points HACCP principles and application guidelines,
URL: http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm

https://www.adacore.com/sparkpro/
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
http://www.ldra.com/en/solutions/by-standard-adherence/misra
http://www.ldra.com/en/solutions/by-standard-adherence/misra
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm
http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 103

[51] Johnson, Chris, “Safety Critical System Development”, University of Glasgow –
Department of Computing Science, Part II of Notes, October 2006.

[52] U.S. Nuclear Regulatory Commission, Fault tree handbook (NUREG 492). URL:
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf

[53] NASA, “Fault tree handbook with aerospace applications.” URL:
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf

[54] Park, G.Y., Koh, K.Y., Jee, E., Seong, P.H., Kwon, K.C., and Lee, D.H., “Fault Tree
Analysis of KNICS RPS Software,” Nuclear Engineering Technology, Vol. 41, No. 4,
May 2009.

[55] SAE J1739, “Potential Failure Mode and Effects Analysis in Design (Design FMEA),
Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes
(Process FMEA), 2009” URL: http://standards.sae.org/j1739_200901/

[56] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and
Establishing a Critical Items List (CIL) (DRAFT): Flight Assurance Procedure (FAP)- 322-
209,” Nov. 2011, Available: rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-
Reference/GSFC-FAP-322-208-FMEA-Draft.pdf

[57] P.L. Goddard, “Software FMEA Techniques,” Proceedings of the Annual Reliability and
Maintainability Symposium, IEEE, 2000, pp. 118–123 Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294.

[58] G.-Y. Park, “Software FMEA Analysis for Safety Software,” International Conference on
Nuclear Engineering, Brussels, Belgium: ASME

[59] Fenelon P., McDermid J.A., Nicholson M., Pumfrey D.J., Towards Integrated Safety
Analysis and Design, ACM Applied Computing Review, Aug. 1994.

[60] Wallace M., Modular Architectural Representation and Analysis of Fault Propagation and
Transformation, Electronic Notes in Theoretical Computer Science 141 (2005) 53–71.

[61] Hecht, H. and Menes, R., “Software FMEA automated and as a design tool” SAE
08WATC-0023, 2008.

[62] Hecht, H., An, X., Hecht, M., “Computer aided software FMEA for unified modeling
language based software.”

[63] UML Safety Analysis, see:
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_anal
ysis_with_the_uml8?lang=en (last accessed August 2nd 2013)

[64] Garrett, C. and Apostolakis, G., “Context in the risk assessment of digital systems” Risk
Analysis Vol. 19 No. 1 1999.

[65] Garrett, C. and Apostolakis, G., “Automated hazard analysis of digital control systems”
Reliability Engineering and Safety Society 77 (2002) 1-17

[66] Aldemir, Guarro, et al, “A Benchmark Implementation of Two Dynamic Methodologies for
the Reliability Modeling of Digital Instrumentation and Control Systems,” NUREG/CR-
6985, U.S. Nuclear Regulatory Commission, Washington, D.C. (2009).

[67] McDermid, J.A. & Pumfrey, D.J., (2000), Assessing the Safety of Integrity Level
Partitioning in Software, Lessons in System Safety: Proceedings of the Eighth Safety-
critical Systems Symposium, Southampton, UK, Ed. Redmill, F. & Anderson, T., pp. 134-
152, Springer, ISBN 1-85233-249-2.

http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://standards.sae.org/j1739_200901/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_analysis_with_the_uml8?lang=en
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_analysis_with_the_uml8?lang=en
http://www.cs.york.ac.uk/~djp/publications/djp-sss00.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-sss00.pdf

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 104

[68] Conmy P.M., Crook-Dawkins S.K., A Systematic Framework for the Assessment of
Operating Systems, Safety-Critical Systems Symposium, Warwick, UK, February 2004.

[69] Conmy P.M., Safety Analysis of Computer Resource Management Software, PhD Thesis,
University of York, 2005.

[70] Conmy P.M., Bate I.J., Component-Based Safety Analysis of FPGAs, IEEE Transactions
on Industrial Informatics, Vol 6, No 2, May 2010. pp 195-205

[71] Bozzano M., Cimatti A., Katoen J-P., Nguyen V.Y., Noll T., Roveri M., Safety,
Dependability and Performance Analysis of Extended AADL Models, The Computer
Journal, Vol. 54 No. 5, 2011

[72] ParMERASA, see: http://www.parmerasa.eu/ (last accessed August 2nd 2013)

[73] iScade, see: http://iscade.co.uk/ (last accessed 31st July 2013)

[74] Torok, R. and Geddes, B. “Systems Theoretic Process Analysis (STPA) Applied to a
Nuclear Power Plant,” MIT STAMP Workshop, March 26-28, 2013.
<http://psas.scripts.mit.edu/home/wp-
content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf>

[75] Song, Yao, “Applying system-theoretic accident model and processes (STAMP) to hazard
analysis” McMaster University dissertation. URL:
http://digitalcommons.mcmaster.ca/opendissertations/6801/

[76] Thomas, J. et al, “Evaluating the safety of digital instrumentation and control systems in
nuclear power plants” November, 2012. URL: http://sunnyday.mit.edu/papers/MIT-
Research-Report-NRC-7-28.pdf

C.8. Bibliography128

[77] 129Atchison B., The Integration of Safety Analysis and Functional Verification Techniques
for Software Safety Arguments, 2004, PhD Thesis, University of Queensland.

[78] Chambers, L., “A Hazard Analysis of Human Factors in Safety-Critical Systems
Engineering,” 10th Annual Workshop on Safety-Related Programmable Systems (SCS-
05), Conference in Research and Practice in Information, Vol. 55, Sydney, Australia,
2005.

[79] Alexander, R., Kelly, T., “Can We Remove the Human from Hazard Analysis,” University
of York.

[80] ISO/IEC 15026-2:2011, “System and Software Engineering - System and Software
Assurance - Part 2: Assurance Case.

128 References Reviewed but not Yet Cited in Appendix C
129 c

http://www.parmerasa.eu/
http://iscade.co.uk/
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://digitalcommons.mcmaster.ca/opendissertations/6801/
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 105

Appendix D: REFINEMENT
Enabling verifiability earlier in the lifecycle through stepwise refinement

Author: Professor Dr. Manfred Broy, Technische Universität München
http://www4.in.tum.de/~broy/

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission

D.1 Purpose and Scope
This appendix explains refinement (see section 2) as an enabler for the verifiability and thus,
assurability of a system; this is the usage context in RIL-1101 (see Table 7 item # H-S-1.1G1.4).

The scope of this appendix is limited to the introduction of the kind of refinement needed to
support the purpose stated above (rather than covering refinement of all kinds found in
literature). For example, excluded from the scope is the case where a specification is expressed
through an informal language and informal diagrams. Such a specification may be ambiguous
and its meaning may differ, depending on individual subjective judgment, as illustrated in the
following situation:

When a system130 is conceived, typically its specification is expressed in a language natural to the
conceiver (i.e., informal language). The specification may be incomplete (i.e., not all the
properties of the system are expressed, basing the economy of expression on an implicit context),
inconsistent, and ambiguous. Different individuals with different mental models (e.g., of the
conceiver’s implicit context and assumptions) might have different interpretations, using their
different mental models and judgment to fill in the implicit or missing information in different
ways. Transforming the informal description into a complete, consistent, unambiguous131, correct
set of requirements specification may require engineering activities (e.g., elicitation; system-level
hazard analysis; validation) other than refinement [8].

This restricted usage of refinement reduces sources of uncertainty in the verification process.
This benefit is further discussed in Section 3 and the commensurate required restrictions are
introduced in Section 4.

D.2 Abstraction and refinement
Abstraction is a view of an object that focuses on the information relevant to a particular
purpose and ignores the remainder of the information [2].

Conversely, refinement is a detailed description that conforms to another (its abstraction) ….
perhaps in a somewhat different form … [3].

Two specifications S0 and S1 are in a refinement relation if everything described by S0 can also
be concluded by specification S1. This relation also ensures that S1 does not add any behavior
not included in S0 (i.e., no additional behavior is visible at the external interface).

Stepwise refinement decomposes the development process into a sequence of transformation
steps, as depicted in Figure 11, where each successive step refines its input specification [4],

130 “System” refers to the final product (i.e., the implementation installed in a plant).
131 Typically, a formal language is used to eliminate ambiguity and facilitate mechanized reasoning.

http://www4.in.tum.de/~broy/

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 106

[5]. Each transformation step entails some design decisions [6]. In other words, it reduces the
design space available for the remaining steps.

Figure 11: Stepwise refinement: design decisions are made in small steps

The concept of Refinement, in its broadest sense, is applied to the specification of many
aspects of a system and many kinds of its elements, such as:

• Data element (see [7])
• Data structure
• Function
• Requirement
• System interface and interface behavior
• System architecture
• Hardware element
• Software element
• Human element
• System implementation
• Process
• Procedure (e.g., operating instructions)

Some simple examples of refinement are given in Table 24.
Table 24: Simple examples of refinement
Type of
information

Example of abstract level Example of refined level

Data Length. Length in SI units; value has a specified precision
level.

Data structure Sequence of a given length Bounded one-dimensional array
Structured data Sequence of last 10 measured values of

distance (length) in SI units.
One-dimensional array of length 10, where each
element can be stored (written) or retrieved (read)
as a value of length in SI units, but internally the
data is stored in a compact form.

Finished product

S0

S1

S2

S3

S4

S5

Sn
Progressively

reduced design space

Refinements

Design decisions (DD)

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 107

Structured data Location of a point, A, in space, with
respect to a given origin and some
reference frame.

Location and orientation of point A with respect to
a Cartesian reference coordinate frame, C0; all
measurements are in SI units : location is
designated AC0

Function Calculate location of A with respect to
another Cartesian coordinate frame C1,
using IEEE 754 standard for floating point
arithmetic: result designated ACI.

Calculate location of ACI using matrix
representation and matrix functions, conforming to
IEEE 754:
[ACI] = [AC0] - [C1CO]

D.3 Motivation for refinement as a constraint on system development
 Refinement has supported powerful reasoning in software development; success in its use for
program construction leads to its usage in the development of safety-critical software-dependent
systems [8]. Refinement (in the restricted sense stated in Section 4) enables “verification by
construction” that the original specification and initial constraints are satisfied [1].

This approach supports the concept that system properties can be verified analytically by
abstracting the essential information and leaving out all details about the system that are not
needed (because these details may render the analysis infeasible). The abstraction has to suit
the analytical purpose.

The enabling idea is that in the transformation step from the abstract to the refined specification,
the verification performed on the abstract level remains valid also for the refined specification.

This idea can be applied to a sequence of refinement steps: Verification of properties
successfully applied to abstractions hold also for their refinements.

In the ideal state (enabling verification by construction), the final product would not have to be
tested against the initial specification. Key constraints required in developing a system to enable
this ideal are introduced next. To the extent that the ideal is not achieved through the
refinement-based analytical verification approach, residual uncertainties would require
complementary means of verification.

Stepwise refinement serves as a process to make a sequence of design decisions so as to rule
out unsafe choices or choices for which safety cannot be assured (e.g.: the technological base
does not exist; the organization does not have the capability). In other words, the design space
is progressively reduced in a manner that progressively reduces the hazard space also.

D.4 Mathematical underpinnings
Refinement supports correctness notions in a rigorous way, when used with mathematical
underpinnings through refinement calculi. Refinement calculi exist for practically all kinds of
formalisms and programming notations in computer science and for a large number of system
models.

In a refinement calculus for refinement steps, a “chunk” of design activity is decomposed into
elementary steps, such that the specification for the “chunk” is preserved [8].

Refinement calculi introduce a formal refinement relation on the set of specifications as well as
rules to deduce and prove refinement types forming a formal calculus. Moreover, refinement
calculi often define a number of transformation rules for system specifications that are applied to
produce refinements and that guarantee correct refinement steps.

D.4.1 Refinement as logical implication

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 108

Logically, refinement corresponds to implication – the refined specification satisfies its original
specification.

If a refinement specification S0 is refined to specification S1, it connotes that specification S1
expresses more detailed information than specification S0; the logical property formulated by
specification S1 implies the logical property formulated by specification S0.

Formal specifications are logical predicates on systems and thus we can use the concept of
logical implication “⇐” to express a refinement relation:

 S0 ⇐ S1

Note that the arrow goes from S1 (the refinement) to S0 (the abstraction), expressing that each
property expressed by S0 is implied by the property expressed by S1.

The transformation from S0 to S1 is called a refinement step. Specification S1 is called a
refinement of specification S0. Specification S0 and specification S1 are said be in the
refinement relation.

D.4.2 Useful properties of the refinement relation
Refinement relation is a partial order on the semantics of specifications.

The refinement relation is transitive, reflexive, and antisymmetric – it defines a partial ordering
on the (semantics of) specifications of systems and their elements.

The transitivity property is illustrated as follows:

If specification S1 is a refinement of specification S0, i.e.:

S0 ⇐ S1

and S2 is a refinement of S1, i.e.:

S1 ⇐ S2

then we conclude that S2 is a refinement of S0.

S0 ⇐ S2

D.4.3 Sequence of Refinement Steps
In developing a system through the stepwise refinement technique, simple steps of refinement
are put together into larger steps. To explain and comprehend the correctness of refinement
steps of the form

S ⇐ S’

the differences between specifications in adjacent steps must not be too large and
incomprehensible. For example, if

S ⇐ S’

Is a large step,

then it is better to decompose it into a sequence of smaller intermediate steps:

S ⇐ S1

S1 ⇐ S2

…

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 109

Sk-1 ⇐ Sk

Sk ⇐ S’

These smaller steps guarantee that the larger step

S ⇐ S’

is a correct refinement step based on the fact that the refinement relation is transitive.

D.4.4 Refinement and Decomposition
In a design step a “hard-to-analyze” system, represented with its model M, is decomposed into
a number of “easier-to-analyze” (model) elements M1, M2, …, Mk.

D.4.4.1 Composing and Decomposing Interfaces

Composition is an operation on syntactically compatible system interfaces; let [I O] denote
the set of interface behaviors; composition is defined by the operator

⊗ : [I1 O1] × [I2 O2] → [I O]

The operator ⊗ induces a composition operation on specifications [10].

To express this step of decomposition formally we use the composition operator ⊗ for systems
such that

 M = M1 ⊗ M2 ⊗ … ⊗ Mk

This equation expresses both that M is the result of composing M1, M2, Mk and that M may be
correctly decomposed into the elements M1, M2, … Mk.

Following this scheme a specification S is decomposed into a number of specifications S1, S2,
Sk of its system elements. Generalizing the composition to specifications we write

 S1 ⊗ S2 ⊗ … ⊗ Sk

for the specification of all the systems M1 ⊗ M2 ⊗ … ⊗ Mk where the elements M1, M2, Mk fulfill
the specifications S1, S2, Sk respectively.

Such a step of decomposition of a specification into specification of system elements is called a
refinement step if

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk

holds.

D.4.4.2 Compositionality of Refinement
Compositionality of refinement guarantees for systems composed of a set of elements that
refinements of the specifications of system elements guarantee refined system specifications
[1][11][12][13]. A refinement relation is called compositional for a given concept of
composition, if specifications of systems given by a composition of specifications of their
elements are in the refinement relation to systems that are given by a composition of
refinements of the specifications of the elements [13]. In the literature compositionality of
refinement is sometimes also called modularity of refinement.

If we replace in a larger system an element that is required to fulfill specification A (and if for the
correctness of the system this is all that is required) then replacing the element by one fulfilling

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 110

specification B is correct and maintains the correctness, if such an element fulfilling specification
B also fulfills specification A. Formally, given a specification S, a decomposition S1 ⊗ S2 ⊗ … ⊗
Sk which is a refinement

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk

and refinements R1, R2 … Rk of the specification S1, S2 … Sk; if the refinement relation is
compositional for composition we then can conclude:

 S1 ⊗ S2 ⊗ … ⊗ Sk ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk

and by transitivity of refinement

 S ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk

Compositional refinement also captures the idea of compatibility (replaceability) of a system or
its elements. Consider system designs given by a composition of elements where the design is
correct as long as the elements are correct in terms of given specifications. Compositional
refinement guarantees that the replacement of a specification of an element by its refinement
yields a refined design.

D.4.4.3 Example
Figure 12 depicts an example of architectural refinement. The top-level system is represented
through its model M and its behavior, through its specification S. The system model is
decomposed into modeling elements M1, M2, and M3 and their respective behaviors, through
S1, S2, and S3. Their combined behavior results in the behavior S, and does not produce any
behavior not specified in S.

S ⇐ S1 ⊗ S2 ⊗ S3

Note that the refined system contains more information – in this case about the architectural
design decomposing model M into three modeling elements M1, M2, and M3 specified by S1,
S2, and S3.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 111

D.5 References for Appendix D
[1] J. Woodcock, J. Davies: Using Z: specification, refinement, and proof. Prentice-Hal, NJ, USA 1996.

[2] IEEE Standard Glossary of Software Engineering Terminology 610.12-1990. In IEEE Standards Software
Engineering, 1999 Edition, Volume One: Customer and Terminology Standards. IEEE Press, 1999.

[3] Desmond F. D'Souza, Alan Cameron Wills. Objects, Components and Frameworks with UML: The Catalysis
Approach. ISBN 0-201-31012-0, Addison-Wesley, 1999.

[4] M. J. Butler: Stepwise refinement of communicating systems. Science of Computer Programming. Volume 27,
Issue 2, September 1996, Pages 139–173

[5] J.W. de Bakker, W.P. de Roever, G. Rozenberg (Eds.): Stepwise Refinement of Distributed Systems, Lecture
Notes in Computer Science (2nd edition), Vol. 430, Springer, Berlin (1990)

[6] N. Wirth: Program development by stepwise refinement. Communications of the ACM, Volume 14 Issue 4,
April 1971, Pages 221-227

[7] J.M. Morris: Laws of data refinement. Acta Informatica, 26 (1989), pp. 287–308

[8] Michael Jackson; Refinement, Problems and Structures (extended abstract); in Proceedings of Dagstuhl
Seminar 09381, 13-18 September 2009 – see http://mcs.open.ac.uk/mj665/papers.html

[9] Carroll Morgan, “Programming from specifications” (Prentice Hall, 2nd edition, 1994, ISBN 0-13-123274-6).

[10] M. Broy: A Theory for Requirements Specification and Architecture Design of Multi-Functional Software
Systems. Series on Component-Based Software Development – Vol. 2. Mathematical Frameworks for
Component Software. Models for Analysis and Synthesis, 2006, S. 119–154

[11] M. Broy: Compositional refinement of interactive systems. Journal of the ACM (JACM) Volume 44 Issue 6,
Nov. 1997

[12] M. Broy, K. Stølen: Specification and Development of Interactive Systems: Focus on Streams, Interfaces, and
Refinement. Springer 2001

[13] M. Broy: A Logical Basis for Component-Oriented Software and Systems Engineering. The Computer Journal:
Vol. 53, No. 10, 2010, S. 1758-1782

M

S

M1

S1
M2

S2

M3

S3

Figure 12: Example of architectural refinement

http://mcs.open.ac.uk/mj665/papers.html
http://en.wikipedia.org/wiki/Special:BookSources/0131232746

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 112

Appendix E: Checklists to assist hazard recognition
This Appendix is a collection of checklists assimilated from a variety of sources such as
[82][83][84]. It is not an exhaustive coverage of hazard sources, categories or groupings,
relevant to an NPP digital safety system. The intent is to stimulate thought from different
perspectives, leading to recognition of a hazard or a contributor to it.

E.1 Categories of hazard origination
Table 25 is adapted from NASA Reference Publication 1358 [82] Appendix D, organized by
categories of hazard origination or source. For each category, Table 25 identifies a variety of
effects which may lead to loss.

Table 25: Some categories of hazard origination

Category of hazard origination Effect which may lead to loss
Acceleration/Deceleration/Gravity Inadvertent motion

Loose object translation
Impacts
Failing objects
Fragments/missiles
Sloshing liquids
Slip/trip
Falls

Chemical/Water Contamination System-cross connection
Leaks/spills
Vessel/pipe/conduit rupture
Backflow/siphon effect

Common Causes Utility outages
Moisture/humidity
Temperature extreme
Seismic disturbance/impact
Vibration
Flooding
Dust/dirt
Faulty calibration
Fire
Single-operator coupling
Location
Radiation
Wear-out
Maintenance error
Vermin/varmints/mud daubers

Contingencies (Emergency Response by
System/Operators to “Unusual” Events)

“Hard” shutdown/failures
Freezing
Fire
Windstorm
Hailstorm
Utility outrages
Flooding
Earthquake
Snow/ice load

Control Systems Power outage
Interfaces (EMI/RFI)
Moisture
Sneak circuit
Sneak software

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 113

Category of hazard origination Effect which may lead to loss
Lighting strike
Grounding failure
Inadvertent activation

Electrical Shock
Burns
Overheating
Ignition of combustibles
Inadvertent activation
Power outage
Distribution back feed
Unsafe failure to operate
Explosion/electrical (electrostatic)
Explosion/electrical (arc)

Mechanical Sharp edges/points
Rotating equipment
Reciprocating equipment
Pinch points
Lifting weights
Stability/topping potential
Ejected parts/fragments
Crushing surfaces

Pneumatic/Hydraulic Pressure Over-pressurization
Pipe/vessel/duct rupture
Implosion
Mislocated relief valve
Dynamic pressure loading
Relief pressure improperly set
Backflow
Crossflow
Hydraulic ram
Inadvertent release
Miscalibrated relief device
Blown objects
Pipe/hose whip
Blast

Temperature Extremes Heat source/sink
Hot/cold surface burns
Pressure evaluation
Confined gas/liquid
Elevated flammability
Elevated volatility
Elevated reactivity
Freezing
Humidity/moisture
Reduced reliability
Altered structural properties (e.g., embrittlement)

Radiation (Ionizing) Alpha
Beta
Neutron
Gamma
X-Ray

Radiation (Non-Ionizing) Laser
Infrared
Microwave
Ultraviolet

Fire/Flammability—Presence of Fuel
Ignition Source
Oxidizer
Propellant

Explosive (Initiators) Heat

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 114

Category of hazard origination Effect which may lead to loss
Friction
Impact/shock
Vibration
Electrostatic discharge
Chemical contamination
Lightning
Welding (stray current/sparks)

Explosives (Effects) Mass fire
Blast overpressure
Thrown fragments
Seismic ground wave
Meteorological reinforcement

Explosive (Sensitizes) Heat/cold
Vibration
Impact/shock
Low humidity
Chemical contamination

Explosives (Conditions) Explosive propellant present
Explosive gas present
Explosive liquid present
Explosive vapor present
Explosive dust present

Leaks/Spills (Material Conditions) Liquid/cryogens
Gases/vapors
Dusts—irritating
Radiation sources
Flammable
Toxic
Reactive
Corrosive
Slippery
Odorous
Pathogenic
Asphyxiating
Flooding
Runoff
Vapor propagation

Physiological (See Ergonomic) Temperature extremes
Nuisance dusts/odors
Baropressure extremes
Fatigue
Lifted weights
Noise
Vibration (Raynaud’s syndrome)
Mutagens
Asphyxiants
Allergens
Pathogens
Radiation (See Radiation)
Cryogens
Carcinogens
Teratogens
Toxins
Irritants

Human Factors (See Ergonomics) Operator error
Inadvertent operation
Failure to operate
Operation early/late
Operation out of sequence
Right operation/wrong control

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 115

Category of hazard origination Effect which may lead to loss
Operated too long
Operate too briefly

Ergonomic (See Human Factors) Fatigue
Inaccessibility
Nonexistent/inadequate “kill” switches
Glare
Inadequate control/readout differentiation
Inappropriate control/readout labeling
Faulty work station design
Inadequate/improper illumination

Unannunciated Utility Outages Electricity
Steam
Heating/cooling
Ventilation
Air conditioning
Compressed air/gas
Lubrication drains/slumps
Fuel
Exhaust

Mission Phasing Transport
Delivery
Installation
Calibration
Checkout
Shake down
Activation
Standard start
Emergency start
Normal operation
Load change
Coupling/uncoupling
Stressed operation
Standard shutdown
Shutdown emergency
Diagnosis/troubleshooting
Maintenance

E.2 Checklist for hazard sources
Following is a checklist from [83] of some general categories of hazard origination or source.
Note that some of the factors are similar to those in Table 25, but are organized differently.

1. Acceleration

2. Contamination

3. Corrosion

4. Chemical dissociation

5. Electrical
a. Shock
b. Thermal (corresponds to electrical - overheating in Table 25)
c. Inadvertent activation
d. Power source failure (corresponds to electrical - power outage in Table 25)
e. Electromagnetic radiation

6. Explosion

7. Fire

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 116

8. Heat and temperature
a. High temperature
b. Low temperature
c. Temperature variations

9. Leakage

10. Moisture
a. High humidity
b. Low humidity

11. Oxidation

12. Pressure
a. High
b. Low
c. Rapid change

13. Radiation
a. Thermal
b. Electromagnetic
c. Ionizing
d. Ultraviolet

14. Chemical replacement

15. Shock (mechanical)

16. Stress concentrations

17. Stress reveals

18. Structural damage or failure

19. Toxicity

20. Vibration and noise

21. Weather and environment

Following is a checklist of some categories of energy sources of hazards, assimilated from a
variety of sources such as [83]:

1. Fuels
2. Propellants
3. Initiators
4. Explosive charges
5. Charged electrical capacitors
6. Storage batteries
7. Static electrical charges
8. Pressure containers
9. Spring-loaded devices
10. Suspension systems
11. Gas generators
12. Electrical generators
13. Radio frequency sources
14. Radioactive energy sources
15. Failing objects

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 117

16. Catapulted objects
17. Heating devices
18. Pumps, blowers, fans
19. Rotating machinery
20. Actuating devices
21. Nuclear

E.3 Checklist of hazard sources in Semiconductor Manufacturing
Table E.2 is a set of examples from the semiconductor manufacturing industry [84], organized
by categories of sources of hazards and the corresponding potential loss or effect leading to
potential loss.
Table 26: Checklist of hazard sources in semiconductor manufacturing equipment

Categories of hazard sources Potential loss or effect which may lead to loss
Chemical Energy
Chemical disassociation or replacement of fuels, oxidizers,
explosives, organic materials or compounds

Fire
Explosion
Non-explosive exothermic reaction
Material degradation
Toxic gas production
Corrosion fraction production

Contamination
Producing or introducing contaminants to surfaces, orifices,
filters, etc.

Clogging or blocking components
Deterioration of fluids
Degradation of performance sensors or operating components

Electrical Energy
System or component potential energy release or failure.

Includes shock, thermal, and static.

Electrocution/involuntary personnel reaction
Personnel burns
Ignition of combustibles
Equipment burnout
Inadvertent activation of equipment
Release of holding devices
Interruption of communications (facility interface)
Electrical short circuiting

Human Hazards
Human hazards including perception (inadequate
control/display identification), dexterity (inaccessible control
location), life support, and error probability (inadequate data
for decision making).

Conditions due to position (hazardous location/height),
equipment (inadequate visual/audible warnings or heavy
lifting), or other elements that could cause injury to personnel.

Personnel injury due to:
Skin abrasion, cuts, bruises, burns, falls etc.
Muscle/bone damage
Sensory degradation or loss
Death

Equipment damage by improper operation/handling may also
occur

Kinetic/Mechanical Energy (Acceleration)
System/component linear or rotary motion. Change in
velocity, impact energy of vehicles, components or fluids.

Impact
Disintegration of rotating components
Displacement of parts or piping
Seating or unseating valves or electrical contact
Detonation of shock sensitive explosives
Disruption of metering equipment
Friction between moving surfaces

Material Deformation
Degradation of material due to an external catalyst (i.e.,
corrosion, aging, embrittlement, fatigue, etc.).

Change in physical or chemical properties; corrosion, aging,
embrittlement, oxidation, etc. Structural failure
De-lamination of layered material
Electrical insulation breakdown

Natural Environment
Conditions including lighting, wind, flood, temperature

extremes, pressure, gravity, humidity, etc.

Structural damage from wind
Equipment damage
Personnel injury

Pressure
System/component (e.g., fluid systems, air systems)
potential energy including high, low, or changing pressure.

Blast/fragmentation from container over-pressure rupture
Line/hose whipping
Container implosion

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 118

Categories of hazard sources Potential loss or effect which may lead to loss
System leaks
Aero-embolism, bends, choking, or shock
Uncontrolled pressure changes in air/fluid systems

Radiation
Conditions including electromagnetic, ionizing, thermal, or
ultraviolet radiation (including lasers/and optical fibers).

Uncontrolled initiation of safety control systems & interlocks
Electronic equipment interference
Human tissue damage
Charring of organic material
Decomposition of chlorinated hydrocarbons into toxic gases
Fuel ignition

Thermal
High, low, or changing temperature

Ignition of combustibles
Initiation of other reactions
Expansion/contraction of solids or fluids
Liquid compound stratification

Toxicants
Inhalation or ingestion of substances by personnel

Respiratory system damage
Blood system damage
Body organ damage
Skin irritation or damage
Nervous system effects

Vibration/Sound
System/component produced energy

Material failure
Pressure/shock wave effects
Loosing of parts
Chattering of valves or contacts
Verbal communications interference
Degradation or failure of displays

E.4 Hazard sources in physical environment of an NPP DI&C safety
system

Disruption in or emissions from the environment or physical conditions in the environment may
degrade a safety function of the analyzed DI&C system in an NPP; e.g.:

1. Water in unwanted space

2. Transfer of unwanted energy in various forms; for example:
2.1. Fire
2.2. Lightening
2.3. Heat
2.4. Light
2.5. Sound
2.6. Vibration
2.7. Radiation
2.8. Shock
2.9. Seismic event or effect
2.10. Tsunami
2.11. Flooding
2.12. Electrostatic discharge
2.13. Electromagnetic interference, causing spurious signal or signal change.
2.14. Electromagnetic radiation, e.g.:

2.14.1. Pulse
2.14.2. Sunspot; solar flare

3. Interruption of services (primary; secondary; other forms of back-up) ; for example:
3.1. Electric power supply.

4. Disturbance in services, propagating to a disturbance in a main signal; for example:

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 119

4.1. Electric power supply.
4.2. Service water [24]
4.3. Service air

5. Intrusions through breaches of isolation barriers; for example
5.1. Cable penetration
5.2. Other duct penetration

6. Adverse conditions in temperature, pressure, or humidity/moisture; for example
6.1. Too high
6.2. Too low
6.3. Rapid changes

7. Disturbance in incoming signals

8. Misbehaving signals (data; commands) ; for example:
8.1. Byzantine behavior.
8.2. Behaving like a “babbling idiot” in a connected network.

9. Deprivation of resources; for example:
9.1. Overloaded communication bus
9.2. Resource locked up by other “users” of those resources.

Note: Items 8-9 are contributed through “logical” rather than physical sources in the
environment.

E.5 Digital safety system contribution to hazards affecting its
environment

Emissions or outputs from or behavior of the DI&C system having an effect on its environment
may affect safety adversely; for example:

1. Emission of energy in various forms; for example:
1.1. Heat
1.2. Light
1.3. Sound
1.4. Vibration
1.5. Electromagnetic radiation
1.6. Electrostatic discharge.

2. Other unwanted, unplanned effluents, ; for example, those leading to
2.1. Toxicity
2.2. Inflammability

3. Output of signals (data; commands) ; for example:
3.1. Byzantine behavior.
3.2. Behaving like a “babbling idiot” in a connected network.

4. Excessive132, load or demand on resources; for example:
4.1. Electric power overload, due to a short circuit
4.2. Communication bus overload
4.3. Locking up resources, to the exclusion of other “users” of those resources.

132 Excessive: Disruptive by exceeding limit declared or established in design.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 120

Note: Items 3 and 4.2-4.3 are “logical” rather than physical contributory causes.

E.6 References for Appendix E
[82] NASA Reference Publication 1358, “System Engineering “Toolbox” for Design Oriented

Engineers,” 1994.

[83] Ericson II., C.A., “Hazard Analysis Techniques For System Safety,” John Wiley and
Sons, August 24, 2005.

[84] International SEMATECH, “Hazard Analysis Guide: A Reference Manual for Analyzing
Safety Hazards on Semiconductor Manufacturing Equipment,” Technology Transfer #
99113846A-ENG, November 30, 1999.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 121

Appendix F: Organizational qualities to support safety
Author: Dr. Dorothy Andreas, Pepperdine University

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission

This appendix draws upon knowledge from the social sciences for the purpose of informing the
evaluation of hazard analysis of a digital safety system for a nuclear power plant (NPP).
Literature search in the social sciences did not yield any results specific to the context of
engineering critical systems such as a digital safety system for a nuclear power plant (NPP). In
the absence of context-specific research, this appendix assimilates133 information from broader
fields of applicable research, supporting the premise that collective mindfulness (Section F.5)
within the organization is an essential factor for reducing the hazard space in engineering a
digital safety system for an NPP, and for conducting the associated hazard analysis. Most of
the scholarship is concerned with operations of technologically and organizationally intricate
systems (nuclear power plants, aircraft carriers, aviation, petroleum industry, occupational
safety, and healthcare) rather than the engineering of a digital instrumentation and control
system [5], [19], [39]-[41], [44], [57]. Swanson, et al [43], theorizing about the application of HRO
principles (Section F.1) to design of IT systems, is the only research that comes close to the
context of RIL-1101 or the engineering of digital safety systems. Similarly, in this appendix we
map the knowledge from the social sciences to the RIL-1101 context as follows:

In the engineering environment, a high quality organization (HQEO) develops and maintains
technological systems without entailing associated hazards, just as, in the operational
environment, a “high reliability134 organization” (HRO) operates hazardous technologies without
leading to catastrophe” [46]-[47].

The subsequent sections describe specific behaviors and processes to develop collective
mindfulness and discuss these in the context of accountability and standardization.
Organizations can measure all of the factors described in the subsequent sections and use this
information as one piece of evidence that a hazard analysis was performed, utilizing best
communication practices and sound principles from the social sciences.

HQEOs, just as HROs, work hard to address intricacies within technical systems using
processes that cultivate “collective mindfulness.” Collective mindfulness is a set of stable
cognitive processes that allow a group to develop sophisticated mental models that help to
“improve hazard identification and evaluation” [46]-[47]135. These organizations resist patterns of
habitual136 thinking and communicating that may lead them to miss safety-related information
(e.g., contributors to hazards). They intentionally strengthen their collective ability to pay
attention to new information to determine how the information provides insight into the
intricacies of the system and help the organization avoid a hazardous condition137 and prevent
the consequential loss (e.g., degradation of a safety function). Organizational culture is a

133 Assimilation includes mapping certain terms to the context of RIL-1101.
134 Reliability in this context does not have the same definition as used in fault-tolerant engineered
systems.
135 It is implicit in the expression, “risk detection, assessment and management” in the cited references.
136 Interpreting new information through an old reference frame - the traditional belief system.
137 The reference uses the terms, “error, failure”

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 122

contributing factor to individuals’ abilities to develop collective mindfulness. There are also
specific communication behaviors that enable organizations to develop collective mindfulness.

F.1 Five Principles
Following are the five principles to organize for high quality138 processes [44], [46]-[47][72]:

1. Preoccupation with hazard identification139 — treat every piece of information as a potential
symptom that something could be wrong with the system.

2. Reluctance to accept simplistic140 explanations and models — always hold current mental
models in question with a persistent goal to create more complete and nuanced141
explanations and models of the system.

3. Sensitivity to operations — situational awareness of the (current state of the) system — be
able to notice anomalies142, track them, and resolve them.

4. Commitment to resilience — learning from mistakes, correcting143 their perceptions to
represent reality well enough to identify (contributory) hazards their perceptions — detect,
contain, and recover from mistakes144.

4.1. Ability to respond to unanticipated conditions (outside the boundary of the
organization’s deterministic processes) without compromising its end goal145.

4.2. Ability to learn and grow from previous episodes of resilient action.

5. Deference to expertise — cultivate diversity and delegate (empower) people, who are closer
to the situation and can recognize more subtle contributors to a hazard in intricate
environments and assimilate information from their diverse perspectives.

HROs generally practice these principles in their everyday activities. However, there are ways to
measure an organization’s ability to follow their principles with surveys. A survey measure of the
five principles is in [46]-[47].

F.2 Accountability, Standardization, and Adaptation
Many assumptions associated with safety management are based in traditional “scientific”
management, inheriting the following characteristics:

138 The references use the term, “reliability”
139 The references use the term “failure.”
140 In the RIL-1101 context, it means “not adequately representative of reality, missing (contributory)
hazards”
141 In the RIL-1101 context, it means “reflecting subtle details that enable (contributory) hazard
identification.”
142 In the RIL-1101 context, it maps into “(contributory) hazards.”
143 The references use the term “complicating.”
144 The cited reference uses the terms, “failure” and “error” for which “unrecognized hazard” is the
corresponding concept in RIL-1101. Its effect may be an “unwanted loss” for which, in the context of
organizational processes, the cause is traced to some mistake by some human.
145 The cited reference uses the expression, “absorb strain and preserve functioning despite presence of
adversity”

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 123

1. A standardization146 of work process, output, skills, and organization norms (e.g. safety
culture).

2. A strict separation of planning147 and operations processes.

3. The use of “scientific” measurement to develop the standardization and to detect flaw in the
system [3].

The basic assumption of “scientific” management is that standardized processes in normal
operations control output and prevent mistakes [3], [50]. This fundamental assumption is related
to master premises that efficiency and predictability are desirable performance characteristics148
of organizational processes [37], [50]. In the context of safety management, it assumes that
managers can control employee behavior and that mishaps result from performance shortfalls,
which are the product of failing to control employee behavior (e.g. “mistakes”) [3], [37]. The core
assumptions of “scientific” management do not make adequate provision149 for unanticipated
conditions and limit their ability to recognize (contributory) hazards [3], [31], [37], [46]-[47].

Likewise, the desire to establish a clear hierarchical “command and control” tree derives from
these assumptions [50]-[51]. Decades of research about organizations, including the nuclear
industry, clearly document that the very nature of bureaucracy in organizations diffuses150
accountability [50]. In some ways this is a strong point of bureaucracy because their prescriptive
“deterministic” processes enable accomplishment of organizational tasks and goals without full
dependence on an individual thinking for adjusting to situation-specific unanticipated conditions
[50]—thus, individuals often base decisions on the assumptions, underlying the “deterministic”
processes, but not always made explicit [50]. However, as noted in Table 2, H-culture-9, an
overly rigid “command and control” organization structure can increase the hazard space
because the implicit assumptions and premises may not hold.

Organizational research asserts that the nature of bureaucracy creates a powerful force to
diffuse accountability throughout the organization [50]- [51]. In terms of ethics, some
researchers lament this organizational force and call organizations, in general, to become
mindful of this tendency and counteract it whenever possible [50]. But rather than tracing all
decisions through individual accountability, they suggest that organizational members question
assumptions and premises that pervade the organizational culture [50]. The Toulmin model
introduced in Appendix C.3.3 is one technique by which organizational members can question
premises and assumptions as they relate to evidence and claims about hazards or hazard
control. Conversations that seek to make these elements of arguments transparent can help
counteract the diffusion of accountability in bureaucracy. Of course, the intricacy of these
conversations and the amount of information that must be considered in hazard analysis can
make it difficult to keep a record of deliberations, decisions, and rationale. Knowledge
management tools such as dialogue mapping can help organizations keep track of
deliberations, decisions, and rationale and hyperlink the rationale with supporting information
and documents [54]-[56].

146 It includes top-down decomposition and allocation of responsibilities along the organization (command
and control) structure, down to the individual.
147 Rigid hierarchical (top-down) plans limit local autonomy during execution or operation.
148 The references use the term, “outcomes.”
149 Example: Organizational architecture for collective mindfulness.
150 The top-down allocation of roles, responsibilities and performance metrics does not make adequate
provision for bottom-up observation and feedback of real conditions and adaptation to cope with
associated contributory hazards..

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 124

Even though the use of Toulmin’s argumentation model can help counteract diffusion of
authority in organizations, a caveat is in order in the context of complex, high-risk technology.
One of the main goals of Perrow’s Theory of Normal Accidents [68] is to raise awareness of the
faulty assumption that accidents results from a lapse of “scientific” management to control
employees — often referred to as “human error” [68], [70]. In the context of complex, high-risk
technologies, it is worth considering his argument that the nature of complex technical systems
makes it extraordinarily complex for standardization of organizational procedures to anticipate
all possible combinations of mistakes. HROs take this issue seriously by developing collective
mindfulness in order to create requisite diversity and independence in the organizational system
to recognize the complexity of the technical system [39], [46]-[47]. Requisite variety is the
variation in frames of reference and knowledge that makes the organization capable of
recognizing and addressing hazards [44]. In the case of many organizational mishaps, the
paradox is that the standardization of process that was designed to control mistakes, in fact,
minimized the organizations’ ability to develop collective mindfulness that would prevent the
mishap [31]-[32], [69]-[70]. Alternately, HRO-relevant research in nuclear power plants, aircraft
carriers, aviation, and the petroleum industry consistently demonstrates that these organizations
centralize and standardize procedures while also building collective mindfulness about when to
decentralize151 and adapt the procedures [46]-[47], [50]. It is also important to note that too
much emphasis on the separation of planning and execution can lower the organization’s
collective mindfulness because it lowers sensitivity to the context and the system [2]-[3], [50],
[58].

Thus, the desire to develop accountability and standardization within organizations must be
accomplished without minimizing the organizations’ ability to develop collective mindfulness that
allows them to recognize and prevent (contribution to) hazards. The subsequent sections
discuss the relationship between organization culture and decisional premises (Section F.3), the
role of communication for developing collective mindfulness and following Toulmin’s model of
argumentation (Section F.4), and the relationship between professional identification and
collective mindfulness and competence (Section F.5). Additionally, each section references
tools and techniques of measuring the organizational and communication factors.

F.3 Organizational culture and decisional premises
The organization’s culture can create values and decision premises that guide individual
members’ cognition, communication, and processes in a manner that increases safety [8], [58]-
[59], [71]. Organizational culture is a complex concept, and due to its complexity, it is difficult to
define conceptually and difficult to measure [8], [17], [33], [37]. Following is the most commonly
cited definition of organizational culture: “Organizational culture is understood to be deeply
rooted assumptions about human nature, human activities, and social relationship shared by
members of an organization and their expression in values, behavioral patterns, and artifacts
found within the organization” [71].

In the nuclear industry (and others), this concept is often called safety culture defined by IAEA
as “that assembly of characteristics and attitudes in organizations and individuals, which
establishes that, as an overriding priority, nuclear plant safety issues receive the attention
warranted by their significance” [59]. Thus, one important way to think about the role of
organizational culture in the process of hazard analysis is members of the organization would
be motivated by their value of safety to pay close attention to hazard-related information.

151 Delegate and distribute control; provide the autonomy (empower) to adapt, learn, and feedback.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 125

In addition to establishing core values of an organization, the culture carries premises and
assumptions that often become the basis for decisions and evaluation of information in the
organization. It is the HRO’s established premises that allow it to have centralized and
standardized processes while at the same time allowing members interpretive flexibility to
recognize new information and adapt work processes accordingly [5], [58].

The discipline of organizational culture derives from an anthropological tradition of studying
culture and organizations. It examines patterns of meaning, values, and frames of references
that are shared among members of a community. It considers culture to be a complex whole of
knowledge, beliefs, ethics, and customs that is both created and lived within members of a
community. These cultural frames of reference are the lenses through which community
members interpret and evaluate information and behavior. Given the complexity and dynamic
nature of organizational culture, it is a very complex phenomenon to measure. It is best
evaluated with a combination of qualitative and quantitative measures. There are many 3-part
frameworks to measure organizational culture. One framework suggests that it is a dynamic
interrelationship between individual characteristics, behavior, and the environment [60]. A
similar model suggests that individual behavior is influenced by the triad of organizational
structure, organizational processes, and organizational culture [17]. Qualitative measures might
include themes and patterns from a series of employee interviews, thematic analysis of focus
groups, detailed observation of the work environment, and audits of organizational documents.
Another approach uses rubrics to assess five levels of safety culture: (1) organization does not
care about safety, (2) organization increases safety after an accident, (3) organization uses
systems and procedures to prevent hazards, (4) organization tries to anticipate safety problems,
and (5) normalization of safety values within the organization culture (akin to the principles of
highly reliable organizations). Even though these measures of safety provide a sense of the
values and interpretive frames within a community, it is important to recognize that any measure
only captures a moment in time and does not tell the entire story.

There have been many efforts to develop quantitative measures of safety culture. These efforts
are generally considered to be measuring safety climate. Safety climate is an aggregation of
individual attitudes of safety. Thus, safety climate measured in surveys is a manifestation of
some aspect of the organizational safety culture. Even given this qualification of a survey
approach, many scholars question the validity of these surveys and suggest they are simply
measuring employee satisfaction with the organization and their supervisors [17]. Thus, reports
of survey-measures should be evaluated carefully.

One approach to measuring safety culture suggests that the organization should carefully
consider what it really wants to measure [10]. One question interrogates the organizational
culture as an attribute of the organization--as something the organization has. Measurement
methods appropriate to this question include observation and audits. A second question
interrogates how the organizational culture impacts individual attitudes about safety.
Measurement methods for the second question include surveys and observation. A third
question interrogates the organizational climate as seen through the eyes of employees,
contractors, and external audiences. Measurement methods for the third question include
interviews and surveys. This approach suggests that technique of measuring organizational
safety culture should be based on reason (purpose) for measuring it.

See [2] for opinions about: incident reporting, manager, prioritization of worker safety, work
procedures, work situation and stress, competence and training, communication and
cooperation, upper management, lines of responsibility, and perceptions of vocation (in this
case seamanship).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 126

See [10] for attitudes toward management commitment to safety, priority of safety,
communication, safety rules, supportive environment, involvement, personal priorities and need
for safety, personal appreciation of risk, and nature of work.

F.4 Communication for collective mindfulness
Quality of hazard analysis is affected by the quality of interaction among the involved people.
Good interaction quality depends upon individual communication competence (Section F.4.1),
participatory communication climate (Section F.4.2), cross-disciplinary or interdisciplinary
competence (Section F.4.3), and prevention of GroupThink (Section F.4.4).

F.4.1 About Becoming a Competent Communicator
In general, the field of Communication Studies has given considerable thought to the qualities of
a competent communicator. Even though there are many lively debates about this topic, most
scholars accept the fundamental assumption that competent communicators effectively manage
three goals: (1) to present a competent and credible image of self, (2) to escalate, maintain, or
terminate relationships, and (3) to accomplish instrumental tasks [53]. The research about group
communication and inter-disciplinary communication indicates that sole focus on the third goal,
ignoring the other two goals, increases the hazard space and prevents organizations from
developing collective mindfulness. Thus, the assumption about competence communicators
managing these three goals pervades the subsequent discussions.

One commonly referenced model of communication competence identifies six factors of
communication competence, measurable with a survey [53]:

1. Ability to adapt communication to the context.

2. Ability to stay cognitively involved in the conversation and to demonstrate involvement with
appropriate verbal and non-verbal cues.

3. Ability to manage a conversation effectively through turn-taking, questioning, intonation,
topic shifts, extensions etc.

4. Ability to understand a person’s perspective and emotions.

5. Ability to achieve the goal of the conversation.

6. Ability to uphold social norms and expectations for what counts as appropriate for a given
situation.

F.4.2 Participatory Communication Climate
A participatory communication climate at an organization contributes to the organization’s ability
to follow the five HRO principles and develop collective mindfulness. There are four
characteristics of participatory communication climate that contribute to collective mindfulness:
(1) that individuals have voice to express ideas and concerns, (2) that the organization has an
open communication climate, (3) that individuals have easy access to relevant information, and
(4) individuals engage in continuous and ongoing learning. These characteristics of participatory
communication climate are measured with a survey published in [30].

F.4.3 Collective Communication Competence and Diversity

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 127

Communication among individuals from various professional and disciplinary backgrounds has
the potential to increase intellectual diversity and this is a factor that contributes to collective
mindfulness [30], [46]-[47]. Unfortunately, interdisciplinary communication is also challenging.

In particular, the following communication activities are a contributory hazard because they limit
organizations’ ability to develop inter-disciplinary competence:

1. Expressions of negative humor and sarcasm,
2. Debating with team members about whose expertise is more important and jockeying for

control and power,
3. Expressing boredom through verbal and nonverbal messages [49].

Some of the items may seem as though they are addressing organizational minutiae; however,
it is worth examining these behaviors, because, if it is too frequent, these behaviors limit an
organization’s ability to seek and use intellectual diversity for recognizing hazards.

Teams can increase intellectual diversity by developing collective communication competence
of interdisciplinary group communication. The following behaviors increase collective
communication competence [49]:

1. Building trusting relationships.

2. Reflectively talking about the task when members spend time coordinating their
understanding of what to do (this is related to Steps #1 and #2 of group conversational
quality in Section F.4.4).

3. Negotiating meaning by discussing different uses of language that arise from disciplinary
and professional differences (this would be especially important as nuclear engineers
collaborate with software engineers).

4. Demonstrating presence through active listening behaviors.

5. Informal communication, such as shared humor, that builds positive relationships and sense
of shared meaning.

Through these behaviors, individuals can meet all three goals that are related to communication
competence (see Section F.4.1).

F.4.4 Conversation Quality and Deference to Expertise
Groupthink is an organizational phenomenon that leads to poor quality decisions and increases
the hazard space [61]. Groupthink occurs when group members feel a strong sense of
cohesiveness.

F.4.4.1 Characteristics of GroupThink
Six characteristics of groupthink have been identified as follows [48], [61]:

1. Critical thinking is not encouraged or rewarded.
2. Members of the group are so cohesive that they believe they can do no wrong.
3. Members are too focused on justifying their own actions.
4. Members often believe that they have reached a true consensus.
5. Members are too concerned with reinforcing the leader’s beliefs and attitudes.

Groupthink is a contributory hazard because it limits the organization’s ability to develop
collective mindfulness. In the context of hazard analysis of digital safety systems, it can diminish
the organization’s ability to be deferent to expertise across the many relevant contexts.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 128

F.4.4.2 Countermeasures to prevent GroupThink
In order to counter the possibility of groupthink, groups can develop quality conversations that
lead to high quality decisions (or in the context of RIL-1101, high quality hazard analysis of
digital instrumentation and controls).

Five conversational acts152 that can improve conversational quality for hazard analysis have
been identified [62]-[64]:

1. Carefully gather information to identify a hazard; analyze the information in a way that
results in a clearly defined hazard.

2. Set criteria for the quality of the decision about this hazard; examples:

2.1. Explicit articulation of premises and assumptions [67]

2.2. Preventing diffusion of accountability in the organization (see Section F.2)

2.3. Group conversational quality can be measured using the Competent Group
Communicator Scale [48].

3. Identify factors to reduce the hazard space; seek a range of constraint alternatives.

4. Critically evaluate the identified hazard (act 1), and the alternatives to reduce the hazard
space (act 3).

5. Select the best course of action to avoid, eliminate or otherwise control the hazard; remain
open to new information; be willing to revise as needed.

F.5 Collective mindfulness and competence
A survey measure of collective mindfulness is in [4], [30].

F.6 Glossary for Appendix F
Accountability
The quality or state of being accountable (responsible).

Cultivate
Develop (improve) a pattern of behavior.

Cognitive process
The performance of some composite cognitive activity; an operation that affects mental
contents.

Collective mindfulness
A characteristic of an organization of having cognition, the collective mindset, necessary to
detect and understand unanticipated conditions153 and for recovery before they lead to harm.

152 These five conversational acts are modified to adjust to the context of hazard analysis. In the research,
the five acts contribute to a high quality decision: (1) define the problem, (2) set criteria for a solution, (3)
propose possible solutions, (4) critically evaluate proposals, (5) select the best proposal.
153 In the context of RIL-1101, these are mapped into “(contributory) hazards.”

http://www.merriam-webster.com/dictionary/accountable

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 129

Note: Awareness is more than simply an issue of “the way in which scarce attention is allocated.” Mindfulness is as
much about the quality of attention as it is about the conservation of attention. It is as much about what people do with
what they notice as it is about the activity of noticing itself. Mindfulness involves interpretive work directed at weak
signals, differentiation of received wisdom, and reframing, all of which can enlarge what is known about what was
noticed. It is the enlarged set of possibilities that suggests unexpected deviation154 that needs to be corrected and new
sources of ignorance that become new imperatives for noticing.

Complex; complexity
Note: See in Appendix A

High Reliability Organization (HRO)
Organization that operates (works with) hazardous (hazard-contributing) technologies without
leading to catastrophe (loss of safety).

Organizational culture
Deeply rooted assumptions about human nature, human activities, and social relationship
shared by members of an organization and their expression in values, behavioral patterns, and
artifacts found within the organization.

F.7 References for Appendix F
[1] Antonsen, Stian, Safety Culture and the Issue of Power, Safety Science, Vol. 47, No. 2,

2009a.
[2] The Relationship Between Culture and Safety on Offshore Supply Vessels, Safety

Science, Vol. 47, No.8, 2009b.
[3] Antonsen, Stian, Skarholt, Kari, Ringstad, Arne Jarl, The Role of Standardization in

Safety Management – A Case Study of a Major Oil & Gas Company, Safety Science,
Vol. 50, No. 10, 2012.

[4] Barrett, M. Scott, Novak, Julie M., Venette, Steven J., Shumate, Michelle, Validating the
High Reliability Organization Perception Scale, Communication Research Reports, Vol.
23, No. 2, 2006.

[5] Bierly III, Paul E., J.-C., Spender, Culture and High Reliability Organizations: The Case
of the Nuclear Submarine, Journal of Management, Vol. 21, No. 4, 1995.

[6] Carvalho, Paulo V. R., dos Santos, Isaac L., Gomes, José Orlando, Borges, Marcos R.
S., Micro Incident Analysis Framework to Assess Safety and Resilience in the Operation
of Safe Critical Systems: A Case Study in a Nuclear Power Plant, Journal of Loss
Prevention in the Process Industries, Vol. 21, No. 3, 2008.

[7] Carvalho, Paulo V. R., dos Santos, Isaac L., Vidal, Mario C. R., Nuclear Power Plant
Shift Supervisor’s Decision Making During Microincidents, International Journal of
Industrial Ergonomics, Vol. 35, No. 7, 2005.

[8] Choudhry, Rafiq M., Fang, Dongping, Mohamed, Sherif, The Nature of Safety Culture: A
Survey of the State-of-the-Art, Safety Science, Vol. 45, No. 10, 2007.

[9] Cooper Ph.D., M. D., Towards a Model of Safety Culture, Safety Science, Vol. 36, No. 2,
2000.

[10] Cox, S. J., Cheyne, A. J. T., Assessing Safety Culture in Offshore Environments, Safety
Science, Vol. 34, pp. 111–29, 2000.

[11] Le Coze, Jean Christophe, Towards a Constructivist Program in Safety, Safety Science,
Vol. 50, No. 9, 2012.

154 In the context of RIL-1101, deviation is mapped into “(contributory) hazard.”

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 130

[12] What Have We Learned About Learning from Accidents? Post-Disasters Reflections,
Safety Science, Vol. 51, No. 1, 2013.

[13] Denyer, David, Kutsch, Elmar, Lee-Kelley, Elizabeth (Liz), Hall, Mark, Exploring
Reliability in Information Systems Programmes, International Journal of Project
Management, Vol. 29, No. 4, 2011.

[14] Díaz-Cabrera, D., Hernández-Fernaud, E., Isla-Díaz, R., An Evaluation of a New
Instrument to Measure Organisational Safety Culture Values and Practices, Accident
Analysis and Prevention, Vol. 39, No. 6, 2007.

[15] Fernández-Muñiz, Beatriz, Montes-Peón, José Manuel, Vázquez-Ordás, Camilo José,
Safety Culture: Analysis of the Causal Relationships Between Its Key Dimensions,
Journal of Safety Research, Vol. 38, No. 6, 2007

[16] Flin, R., Mearns, K., Connor, P. O., Bryden, R., Measuring Safety Climate: Identifying
the Common Features, Safety Science, Vol. 34, pp. 177–92, 2000.

[17] Guldenmund, Frank W., The Use of Questionnaires in Safety Culture Research – An
Evaluation, Safety Science, Vol. 45, No. 6, 2007.

[18] Hale, A.R., Guldenmund, F.W., van Loenhout, P.L.C.H., Oh, J.I.H.., Evaluating Safety
Management and Culture Interventions to Improve Safety: Effective Intervention
Strategies, Safety Science, Vol. 48, No. 8, 2010.

[19] Hofmann, David A., Jacobs, Rick, Landy, Frank, High Reliability Process Industries:
Individual, Micro, and Macro Organizational Influences on Safety Performance, Journal
of Safety Research, Vol. 26, No. 3, 1995.

[20] Hopkins, Andrew, Studying Organisational Cultures and Their Effects on Safety, Safety
Science, Vol. 44, No. 10, 2006.

[21] Lee, T., Harrison, K., Assessing Safety Culture in Nuclear Power Stations, Safety
Science, Vol. 34, No. 1-3, 2000.

[22] Mariscal, M. A., García Herrero, S., Toca Otero, A., Assessing Safety Culture in the
Spanish Nuclear Industry through the Use of Working Groups, Safety Science, Vol. 50,
No. 5, 2012.

[23] Martínez-Córcoles, Mario, Gracia, Francisco J., Tomás, Inés, Peiró, José M., Schöbel,
Markus, Empowering Team Leadership and Safety Performance in Nuclear Power
Plants: A Multilevel Approach, Safety Science, Vol. 51, No. 1, 2013.

[24] Martínez-Córcoles, Mario, Gracia, Francisco, Tomás, Inés, Peiró, José M., Leadership
and Employees’ Perceived Safety Behaviours in a Nuclear Power Plant: A Structural
Equation Model, Safety Science, Vol. 49, No. 8–9, 2011.

[25] McFadden, Kathleen L., Henagan, Stephanie C., Gowen III, Charles R., The Patient
Safety Chain: Transformational Leadership’s Effect on Patient Safety Culture, Initiatives,
and Outcomes, Journal of Operations Management, Vol. 27, No. 5, 2009.

[26] Mitropoulos, Panagiotis “Takis,” Cupido, Gerardo, The Role of Production and
Teamwork Practices in Construction Safety: A Cognitive Model and an Empirical Case
Study, Journal of Safety Research, Vol. 40, No. 4, 2009.

[27] Nævestad, Tor-Olav, Evaluating a Safety Culture Campaign: Some Lessons from a
Norwegian Case, Safety Science, Vol. 48, No. 5, 2010.

[28] Navarro, M., Latorre, Felisa, Gracia Lerín, Francisco J., Tomás, Inés, Peiró Silla, José
María, Validation of the Group Nuclear Safety Climate Questionnaire, Journal of Safety
Research, Vol. 46, No. 0, 2013.

[29] Neal, A., Gri, M. A., Hart, P. M., The Impact of Organizational Climate on Safety Climate
and Individual Behavior, Vol. 34, pp. 99–109, 2000.

[30] Novak, Julie M., Sellnow, Timothy L., Reducing Organizational Risk through
Participatory Communication, Journal of Applied Communication Research, Vol. 37, No.
4, 2009.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 131

[31] Pidgeon, N., O’Leary, M., Man-Made Disasters: Why Technology and Organizations
(Sometimes) Fail, Safety Science, Vol. 34, No. 1-3, 2000.

[32] Pidgeon, Nick, The Limits to Safety ? Culture, Politics, Learning and Man-Made
Disasters, Journal of Contingencies and Crisis Management, Vol. 5, No. 1, 1997.

[33] Safety Culture: Key Theoretical Issues, Work & Stress, Vol. 12, No. 3, 1998.
[34] Rao, Suman, Safety Culture and Accident Analysis—A Socio-Management Approach

Based on Organizational Safety Social Capital, Journal of Hazardous Materials, Vol.
142, No. 3, 2007.

[35] Reiman, T., Oedewald, P., Measuring Maintenance Culture and Maintenance Core Task
with CULTURE-Questionnaire––A Case Study in the Power Industry, Safety Science,
Vol. 42, No. 9, 2004.

[36] Reiman, Teemu, Oedewald, Pia, Assessing the Maintenance Unit of a Nuclear Power
Plant – Identifying the Cultural Conceptions Concerning the Maintenance Work and the
Maintenance Organization, Safety Science, Vol. 44, No. 9, 2006.

[37] Assessment of Complex Sociotechnical Systems – Theoretical Issues Concerning the
Use of Organizational Culture and Organizational Core Task Concepts, Safety Science,
Vol. 45, No. 7, 2007.

[38] Reiman, Teemu, Oedewald, Pia, Rollenhagen, Carl, Characteristics of Organizational
Culture at the Maintenance Units of Two Nordic Nuclear Power Plants, Reliability
Engineering & System Safety, Vol. 89, No. 3, 2005.

[39] Rijpma, Jos A., Complexity, Tight-Coupling and Reliability: Connecting Normal Accidents
Theory and High Reliability Theory, Journal of Contingencies and Crisis Management,
Vol. 5, No.1, 1997.

[40] Roberts, Karlene H., Rousseau, Denise M., La Porte, Todd R., The Culture of High
Reliability: Quantitative and Qualitative Assessment Aboard Nuclear-Powered Aircraft
Carriers, The Journal of High Technology Management Research, Vol. 5, No. 1, 1994.

[41] Skjerve, A. B., The Use of Mindful Safety Practices at Norwegian Petroleum
Installations, Safety Science, Vol. 46, No. 6, 2008.

[42] Skjerve, A.B., Kaarstad, M., Størseth, F., Wærø, I, Grøtan, T. O., Planning for Resilient
Collaboration at a New Petroleum Installation: A Case Study of a Coaching Approach,
Safety Science, Vol. 50, No. 10, 2012.

[43] Swanson, E. Burton, Neil, C., Innovating Mindfully with IT Technology, MIS Quarterly,
Vol. 28, No. 4, 2004.

[44] Weick, Karl E., Sutcliffe, Kathleen M., Obstfeld, David, Organizing for High Reliability:
Processes of Collective Mindfulness, In Crisis Management Volume III, ed. Boin, Arjen,
Thousand Oaks, CA: Sage, 2008.

[45] Ziegler, Jennifer A., The Story Behind an Organizational List: A Genealogy of Wildland
Firefighters’ 10 Standard Fire Orders, Communication Monographs, Vol. 74, No. 4,
2007.

[46] Weick, K. E., Sutcliffe, K. M., Managing the Unexpected: Resilient Performance in an
Age of Uncertainty, San Francisco, CA: John Wiley and Sons, 2007.

[47] Weick, K. E., Roberts, K. H., Collective Mind in Organizations: Heedful Irrelating on
Flight Decks, Administrative Science Quarterly, Vol. 38, No. 3, 1993.

[48] Beebe, S. A., Masterson, J. T., Communicating in Small Groups: Principles and
Practices (8th ed.), Boston, MA: Allyn & Bacon, 2004.

[49] Thompson, J. L., Building Collective Communication Competence in Interdisciplinary
Research Teams, Journal of Applied Communication Research, Vol. 37, No. 3, 2009.

[50] Cheney, G., Christensen, L. T., Zorn, T., Ganesh, S., Organizational Communication in
an Age of Globalization: Issues, Reflections, Practices (2nd ed.), Long Grove, IL:
Waveland Press, n.d.

[51] Simon, Herbert, Administrative Behavior, 4th edition, New York: Free Press, 1997.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 132

[52] Holford, W. D., Knowledge Construction and Risk Induction/Mitigation in Dialogical
Workgroup Processes, Qualitative Research in Organizations and Management: An
International Journal, Vol. 5, No. 2, 2010.

[53] Canary, D. J., Cody, M. J., Manusov, V., Interpersonal Communication: A Goals-Based
Approach, Boston, MA: Bedford St. Martin’s, 2003.

[54] Bracewell, R. H., Wallace, K. M., Moss, M., Knott, D., Capturing Design Rationale,
Computer-Aided Design, Vol. 41, No. 3, 2009.

[55] Eng, N. L., Aurisicchio, M., Bracewell, R. H., Armstrong, G., More Space to Think: Eight
Years of Visual Support for Rationale Capture, Creativity and Knowledge Management
in Aerospace Engineering, In DETC/CIE, pp. 1–11, Washington, DC: ASME, 2011.

[56] Conklin, J., Dialogue Mapping: Building Shared Understanding of Wicked Problems,
Chichester, UK: John Wiley & Sons, 2006.

[57] Schulman, P. R., The Negotiated Order of Organizational Reliability, Administration and
Society, Vol. 25, No. 3, 1993.

[58] Weick, Karl E., Organizational Culture as a Source of High Reliability, California
Management Review, Vol. 29, No. 2, 1987.

[59] International Nuclear Safety Advisory Group (INSAG), Basic Safety Principles for
Nuclear Power Plants (Safety Series No 75-INSAG-3), International Atomic Energy
Agency, Vienna, 1988.

[60] Geller, E. S., Ten Principles for Achieving a Total Safety Culture, Professional Safety,
pp. 18-24, 1994.

[61] Janis, I. L., Crucial Decisions: Leadership in Policymaking and Crisis Management, New
York: The Free Press, 1989.

[62] Orlitzky, M., Hirokawa, R. Y., The Err is Human, to Correct for it Divine: A Meta-Analysis
of Research Testing the Functional Theory of Group Decision-Making Effectiveness,
Small Group Research, Vol. 32, pp. 313-341, 2001.

[63] Gouran, D. S., Hirokawa, R. Y., Effective Decision Making and Problem Solving: A
Functional Perspective, In Hirokawa, R. Y., Cathcart, R. S., Samovar, L. A., Henman, L.
D., (Eds.), Small Group Communication Theory and Practice: An Anthology (8th ed), Los
Angeles: Roxbury, 2003.

[64] Wittenbaum, G. M., Hollingshead, A. B., Paulus, P. B., Hirokawa, R. Y., Ancona, D. G.,
Peterson, R. S., Jehn, K. A., Yoon, K., The Functional Perspective as a Lens for
Understanding Groups, Small Group Research, Vol. 35, pp. 17-43, 2004.

[65] Foss, S. K., Foss, K. A., Trapp, R., Contemporary Perspectives on Rhetoric, 3rd edition,
Prospect Heights, IL: Waveland, 2002.

[66] Bier, V. M., On the State of the Art: Risk Communication to the Decision-Makers,
Reliability Engineering and System Safety, Vol. 71, pp. 151–157, 2001.

[67] Toulmin, Stephen, The Uses of Argument, Cambridge: University Press, 1958.
[68] Perrow, C., Normal Accidents: Living with High-Risk Technologies, Princeton, NJ:

Princeton University, 1999.
[69] Vaughn, D., The Challenger Launch Decision: Risky Technology, Culture, and Deviance

and NASA, Chicago, IL: University of Chicago Press, 1996.
[70] Perin, Constance, Shouldering Risk: The Culture of Control in the Nuclear Power

Industry, Princeton, NJ: Princeton University Press, 2006.
[71] Schein, E., Organizational Culture and Leadership, San Francisco, CA: Wiley and Sons,

2010.
[72] URL: http://witandwisdomofanengineer.blogspot.com/2011/05/failure-of-imagination.html

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 133

Appendix G: Example case studies
These cases studies illustrate how much can be learned from a single event to prevent or avoid
a broader range of mishaps. When a specific mishap is examined for its causes (contributory
hazards), pre-existing knowledge of cause-effect relationships can be used as the basis for
generalizing from the specific contributory occurrences to more general contributory hazards.

The concept of generalization has been used in a systems engineering process, where a set of
scenarios are used (in addition to general requirements) to imply and represent many similar
situations, conditions, and cases; these scenarios drive the engineering of the system. The
resulting system not only satisfies the requirements explicit in the scenarios, but also many
other implied scenarios.

Experts [85] in such generalization have identified two types of reasoning processes, abduction
and induction.

G.1 Ft Calhoun Event
Following is an excerpt from the “Ft Calhoun Oversight Increase Dec 13 announcement” [86]
and the Fort Calhoun Station Inspection Report [87].

The plant was shut down on April 9 for a refueling outage. The outage was extended due to
flooding along the Missouri River. Then an electrical fire on June 7 led to the declaration of an
“Alert” and caused further restart complications.

The fire had resulted in the loss of spent fuel pool cooling capability for a brief time and caused
significant unexpected system interactions.

The Alert caused by the (electrical circuit) breaker fire resulted from inadequate design or
installation of electrical components. Deficiencies were noted with environmental qualification
analyses for plant structures, systems and components. These analyses are relied on to
demonstrate that key systems will be able to perform their safety functions under a variety of
challenging accident conditions like earthquakes, loss of coolant accidents, high radiation fields,
seismic events, etc.

Figure 13 illustrates the causality relationships extracted from the textual information above. It
illustrates a generalization from the specific occurrence in Ft Calhoun. In this example, the
deficiency in the component design was not caught in the V&V activities. However, if we survey
known causes of “deficient designs”, the leading cause is “deficient requirements.” Experience
in software-reliant systems for many application domains has consistently shown this to be the
leading cause. In the context of RIL-1101, “deficient requirements” implies inadequate HA (e.g.,
inadequate understanding of contributory hazards; inadequate formulation of requirements to
avoid or prevent such contributory hazards, and inadequate validation of the HA and the
resulting requirements).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 134

Flood Fire

CB
fault

CB: inadequate
design

CB: deficient EQ
analysis

These analyses are relied on to demonstrate that
key systems will be able to perform their safety
functions under a variety of challenging
accident conditions like earthquakes, loss of
coolant accidents, high radiation fields, seismic
events, etc.

Significant unexpected
system interactions

Figure 13: Example from event on June 7, 2011 at Ft Calhoun NPP

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 135

“The power of generalizing ideas, of drawing comprehensive conclusions from individual
observations, is the only acquirement, for an immortal being, that really deserves the name of
knowledge. “Mary Wollstonecraft (1759–1797), British feminist. A Vindication of the Rights of
Woman, ch. 4 (1792).” [88]

References for Appendix G
[85] Abduction and Induction – Essays on their relation and integration, Kluwer Academic

Publishers, ISBN 0-7923-6250-0, editors Peter A. Flach and Antonis C. Kakas, 2000

[86] U.S. Nuclear Regulatory Commission, “Inadequate Flooding Protection Due to Ineffective
Oversight,” Licensee Event Report 285-2011-003, May 1, 2011.

[87] U.S. Nuclear Regulatory Commission, “Fort Calhoun Station – NRC Follow-up Inspection
– Inspection Report 05000285/201007; Preliminary Substantial Finding,” NRC Inspection
Report 05000285/20010007, July 15, 2010.

[88] Dictionary.com, "The_power_of_generalizing_ideas_of_drawing_comprehensive," in
Columbia World of Quotations. Source location: Columbia University Press, 1996.
<http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehen
sive>. Available: http://dictionary.reference.com. Accessed: April 27, 2012.

http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive
http://quotes.dictionary.com/The_power_of_generalizing_ideas_of_drawing_comprehensive
http://dictionary.reference.com/

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 136

Appendix H: Example checklist of NPP modes
1. On Power

1.1. Full allowable power
1.2. Reduced power (including zero power)
1.3. Raising power or starting up
1.4. Reducing power

2. Hot Shutdown (reactor sub-critical)
2.1. Hot standby (coolant at normal operating temperature)
2.2. Hot shutdown (coolant below normal operating temperature)

3. Cold Shutdown (reactor subcritical and coolant temperature < 93 °C)
3.1. Cold shutdown with closed reactor vessel
3.2. Refueling or open vessel (for maintenance)

3.2.1. Refueling or open vessel – all or some fuel inside the core
3.2.2. Refueling or open vessel – all fuel outside the core

3.3. Mid-loop operation (PWR)
4. Construction
5. Preoperational
6. Startup test
7. Commissioning
8. Testing or maintenance being performed

8.1. Setpoint adjustment
8.2. Instrument calibration
8.3. Change (switching) of calibration parameters (in [21] CP 2.1.3.2.5)

9. Decommissioning

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 137

Appendix I: EVALUATION OF TIMING ANALYSIS
Author: Professor Dr. John Stankovic, University of Virginia

http://www.cs.virginia.edu/people/faculty/stankovic.html
Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission

This appendix summarizes the state of the art in timing analysis. Timing analysis is used in
design to evaluate its suitability to support timing and related constraints. Timing is re-analyzed
to confirm satisfaction of these constraints after implementation using actual execution times
and delays.

A design description should include the approach being taken to guarantee timing behavior with
accompanying timing schedules and resource assignments that logically guarantee timing. An
evaluator can expect to see different approaches. However, it is very unlikely that there exists
an exact case study or exact match between the principles described below and the system
under evaluation. It will be necessary for the evaluator to apply significant knowledge and
expertise in real-time theory and practice.

In performing timing analysis there are at least four overarching approaches that could be
presented by the developer. First (Sections I.1 and I.2) is a complete and explicit layout of all
tasks on time lines that represent a deterministic execution time for everything and in such a
manner as to meet all timing, ordering, and resource constraints. This would include identifying
the processing elements (CPUs, FPGAs, etc.), the assignment of tasks to each processing
element, and message slots on busses and their purpose. Another proposed approach might
be the use of fixed priority scheduling. This means that the operating system on each
processing element runs tasks according to fixed priorities as assigned by the developers to
guarantee timing. This approach should be supported by fixed priority mathematical analysis
(Section I.3.1). Another approach may be to use dynamic priorities and apply its associated
analysis (Section I.3.2). This approach is less deterministic, but has advantages in many
situations and can be used as an off-line analysis to guarantee timing. A fourth approach is use
of FPGAs (Section I.4). In all the design approaches, realistic, but estimated times should be
identified. Accounting for redundancy and fault tolerance techniques in the design must be
included. Consider each of these in more detail.

I.1 Timing analysis by hand
The developer, using a by-hand approach, may present a set of time lines with all tasks
assigned deterministically. How they created these time lines (possibly by hand) may not be
known and is generally very complex. For the evaluator, once the deterministic time lines are
given, it is much simpler to check (one by one) if the set of assignments and time lines meets all
the timing, ordering, and resource constraints. This approach is sometimes used for small and
simple subsystems. It is not recommended for complex designs since any change at all results
in a complete re-creation of the timelines and allocations which is error-prone and costly.

I.2 Timing analysis by a program
In this approach a developer may create the deterministic time lines and assignments using
some algorithm or heuristics implemented as a computer program. The evaluator would analyze
the resultant schedules as in Section I.1. This approach is more desirable than in Section I.1,
since changes can be more easily handled rather than having to recreate schedules and time
lines by hand. Cyclic schedulers and time triggered approaches [1] are examples of this
approach.

http://www.cs.virginia.edu/people/faculty/stankovic.html

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 138

I.3 Mathematical Analysis of timing
Many analysis techniques might be applied to the design. Two of the most common are fixed
and dynamic priorities. These both assume that there is an underlying operating system (OS)
that executes tasks based on priority.

I.3.1 Mathematical Analysis of timing with fixed priorities

Rate Monotonic (RM) analysis [2] is a set of techniques to assign fixed priorities and perform an
associated timing guarantee analysis. It focuses on periodic tasks, but can be extended to
address both periodic and aperiodic tasks. RM analysis can incorporate the complexities
discussed below in section I.1. As an example, for a large number of periodic tasks if the sum of
the cpu utilizations of these tasks is below 69% then it is guaranteed that all deadlines will be
met. This is true even though there are preemptions. RM analysis assumes that deadlines equal
periods. If deadlines are less than periods then a different set of analysis is required, called
Deadline Monotonic (DM) [2]. RM has been used successfully in some avionics systems and
control systems in automobiles.

I.3.2 Mathematical Analysis of timing with dynamic priorities

Dynamic priorities normally refer to the OS scheduler choosing the next task to execute based
on current task priorities which can change at runtime. These solutions are usually based on the
earliest deadline first (EDF) algorithm. However, if all tasks and their requirements are known at
design and implementation time, then EDF and its analysis [3] can be applied off-line, and
timing guarantees are possible. In this case the results are very similar to the fixed priority
approach except the OS is running an EDF scheduler instead of a fixed priority scheduler. An
evaluator may also see EDF as a basis for the By-a-Program approach mentioned above.

I.4 FPGAs
Various functions in the system may be implemented in hardware (today typically via an FPGA)
[5]. Then execution speed of the function can be greater than on a CPU. Functions implemented
on a FPGA can be considered tasks in the overall timing analysis and subject to the analysis
techniques155 described in this appendix. Of course, issues such as I/O, ordering,
synchronization etc. must all be considered.

I.5 Practical considerations in applying mathematical analysis
Basic scheduling theory is often presented with many simplifying assumptions. Fortunately,
many practical issues can be addressed with extensions to the basic theory for analysis.

I.5.1 Interrupts
Sometimes interrupts may be necessary. By careful design it is possible to limit the maximum
number of interrupts. The time it takes to handle each interrupt can be bounded. Consequently,
the basic timing analysis can account for the worst case delays for task executions due to
interrupts. See Ch. 5 in [2].

I.5.2 Resources

155 National Instruments (LabView development system together with the Real-Time Module and and
FPGA module) is an example of a source of tools currently available for use in common practice.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 139

Tasks often require resources beyond the cpu, e.g., access to a data structure or bus. Tasks
can contend for these resources. In addition, to guaranteeing no deadlock it is necessary to
determine the worst case blocking delay for any exclusively shared resource. In RM analysis
this is handled by the priority ceiling version of RM - see pages 5-47 to 5-60 in [2]. For EDF see
Ch 7 in [3].

I.5.3 Ordering
In many systems a set of tasks must execute in a fixed order. For example, the sensor must first
sample, AD conversion must execute, the result then sent to a processor, a task executes to
process the data, this result is then converted to an actuator control, and possibly also sent to a
display. Classical scheduling theory has many results for job shop scheduling in this area.
Ordering constraints can also be imposed on task sets when using cyclic, time triggered, RM or
EDF based approaches. See pages 3-10 to 3-11 in [2] and Ch 7 in [3].

I.5.4 I/O
Any inputs for tasks must be ready when an instance of a task is “released” for execution. This
is normally analyzed as precedence constraints. If the task produces an output it must be made
clear when that output happens, e.g., only at the end of execution of the tasks or possibly at any
point within the execution of the task. Controlling jitter is often necessary for I/O. See Ch. 6 in
[2].

I.5.5 Distributed Systems
Communication between distributed parts of a system introduces delays. Such delays can be
deterministic if bus slots are defined and allocated. Redundant slots can be allocated for fault
tolerance. The time triggered approach is a well-known way to do this [1]. These
communications delays can also be addressed by RM (Ch. 6 in [2]).

I.6 Caveats and Things to Watch Out For
Timing design and analysis is very difficult and fraught with hazards. A slight change in
assumptions can make a major difference in the accuracy of the analysis. Following are some
examples of common misunderstandings.

I.6.1 Task semantics
Most periodic task analysis assumes that the semantics of a task period means that a task
executes once per period P. This does NOT guarantee a minimum or a fixed time between two
instances of a periodic task. For example, with this semantics two executions of a task could run
back-to-back without any time interval between them.

I.6.2 Non-determinism introduced by hardware
Worst case execution times must be determined for tasks. This is difficult to determine and often
just measured which is not recommended. Measurements can be way off if non-deterministic
features on hardware, such as caching, branch prediction, virtual memory, or multi-core
contention, are involved.

I.6.3 The overhead of the OS

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 140

Logical analysis may not account for the time it takes to select and switch between tasks. This
would be incorrect. See p. 392-395 in [4].

I.6.4 Richard’s Anomalies
Scheduling can lead to hazardous conditions subtly. For example, if a set of time lines is
analyzed as correct and then the developer decides to use faster processors (maybe with idea
to give more slack time thereby increasing a safety margin), then the previous schedules which
worked (i.e., all deadlines met) may now miss deadlines even though individual tasks are
executing faster. There are 4 variations of these anomalies (pages 42-51 in [4]).

I.6.5 Overloads
Many hard real-time systems assume that all timing is guaranteed so there is no such thing as
an overload. Safety margins can be built into task execution times and resource requirements to
make overload even less likely. However, understanding the consequences of an overload,
even if not expected, is important. Will the system fail safe? Could there be a catastrophic
cascade of deadline misses due to the overload? See Chapter 9 in [4].

I.7 Integrating timing analysis in engineering
See [6] for an approach to integrate timing analysis in model-based engineering.

References for Appendix I
[1] H. Kopetz, Real-Time Systems, Second Edition, Springer, 2011.

[2] M. Klein, T. Ralya, B. Pollak, R. Obenza, and M. Gonzales Harbour, A Practictioner’s
Handbook for Real-Time Analysis, Kluwer, 1993. (second printing 1994)

[3] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo, Deadline Scheduling for Real-
Time Systems, EDF and Related Algorithms, Kluwer, 1998.

[4] G. Buttazzo , Hard Real-Time Computing Systems, Predictable Scheduling Algorithms and
Applications, Springer, Third Edition, 2011.

[5] National Instruments LabVIEW FPGA Module. URL:
http://sine.ni.com/nips/cds/view/p/lang/en/nid/11834

[6] P. Feiler and D. Gluch, Model-Based Engineering with AADL: An Introduction to the SAE
Architecture Analysis & Design Language, Published Sep 25, 2012 by Addison-Wesley
Professional. Part of the SEI Series in Software Engineering series.

http://www.awprofessional.com/
http://www.awprofessional.com/
http://www.informit.com/imprint/series_detail.aspx?ser=335488

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 141

Appendix J: ASSUMPTIONS
Author: Professor Dr. John Stankovic, University of Virginia

http://www.cs.virginia.edu/people/faculty/stankovic.html
Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission

In reasoning that is part of safety analysis, an assumption is a premise that is not yet validated.
Explicit assumptions are documented. Implicit assumptions are not documented, because they
are not known or understood or were lost over time. Assumptions, especially implicit
assumptions, that turn out to be invalid (not true) are the root cause of many system failures and
a contributor to hazards in many other cases. An initially valid assumption may become invalid
over time. It is also common that combinations of assumptions may cause failure or contribute
to hazards. For example, a component (hardware or software) may get reused without full
awareness and consideration of assumptions that invalidate its fitness for reuse in a different
context. Assumptions occur in every phase of the system development lifecycle (e.g.:
requirements; design and analysis; implementation; testing). Overall, it is necessary to
document, manage and assess the impact of assumptions throughout the life cycle, particularly
if some critical property of the system, such as SAFETY, has to be assured.

Assumptions often affect timing analysis - see Appendix I. Assumptions also affect
dependencies - see Appendix K.

J.1 Systematized consideration of assumptions – state of the art
There is a lack of accepted approaches towards systematic assumption declaration,
management, and assessment. Statement of assumptions may be classified in three ways:

1. Formal-like languages: For example, in AADL [1] an assumption can be stated with an
assumes keyword and some written in predicate or temporal logic. Then automatic
assumption matching checks can be run.

2. Semi-Formal: For example, in XML, an assumption may be may be categorized by type
(e.g., see Table 27) and incorporated into an assumption management system [2], as
shown in Figure 14.

3. Informal: Used mostly in current practice, an assumption is stated in a natural language
such as English. Because it is subject to misinterpretation, which can contribute to hazards,
it is not adequate and not recommended for use in engineering a very critical system.

Assumptions can also be categorized as static and dynamic assumptions and indicate a level of
criticality. These notions should be part of the assumption descriptions.

<assumption>
 <type>

 Control
</type>
 <description>

Statement of control assumption in a previously declared language.
 </description>

 </assumption>

Figure 14: Example of semi-formal statement of an assumption

http://www.cs.virginia.edu/people/faculty/stankovic.html

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 142

Table 27 includes the different types of assumptions which could be stated in XML, with brief
associated examples.

Table 27: Different types of assumptions which could be stated in XML

Type of Assumption Example of an informal statement of an assumption

Management Person X is responsible for a particular task.
Environment (of system) Back-up power is available 24x7.
Software Component
Design (Decisions)

Minimum amount of data required for a component to make a decision is <…>.

System Software Background processing runs at infrequently scheduled times.
Hardware Caches are not to be used.
Timing Some declared minimum time must elapse between two consecutive executions of a

task.
Control Only one module must control a particular actuator.
Data Data set X must be replicated at physically distinct memories.
Semantics of Application Property X exists for a given component when executed, e.g., the accuracy of a signal

processing module when assessing critical condition of the plant.
Faults A particular fault will not occur more than x times in interval y.
Security Communication X is encrypted.

When an assumption is stated in this form, a management system can analyze it for potential
problems (e.g., contributory hazards) and updates can occur over time. For example, the
analysis may find that across the entire set of assumptions there are two or more assumptions
that cannot simultaneously be true. It is also possible to match assumptions among composed
components. Some software development kits, such as Eclipse [3], integrate environment,
assumptions, architecture and source code in the same tool.

A complex system may entail an enormous number of assumptions of all types (Table 27) and
for various purposes (Table 28).
Table 28: Examples of assumptions for different purposes
Context of Assumption Example of assumption
Timing All worst case execution times are known.
Timing All tasks always meet their deadlines.

(What is the impact of a task missing its deadline?)
Timing There is enough memory assigned to each task.
Timing No hardware will be changed; etc.
Fault tolerance On power failure a battery backup is available and it is functional
Fault tolerance More than “n” simultaneous failures do not occur.
Security A particular module will not be attacked.
Security An encryption key won’t be compromised
Control Only one module controls a particular actuator.
Control Data sent to control algorithm is correct and in-time.

J.2 Monitoring an assumption at run time
Since underlying assumptions have been the cause of many failures and can contribute to
hazards, assumption-aware work products of engineering are valuable – indeed, necessary, in
complex critical systems (e.g., for which the SAFETY property has to be assured). If an
assumption can change over time, runtime monitoring for such change may be considered.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 143

Does the presented design have an assumption that can change over time? If so, does the
design include run time monitoring of the change in the assumption?

J.3 Statement of assumptions within code
Sometimes, assumptions are also written into source code (with a keyword such as assumes),
so that source code can be scanned by programs to collect and analyze all the assumptions.
This technique often deteriorates over time as code is updated and assumptions are not.

J.4 Statement of assumptions within models
Assumptions can also be added to graphic representations of work products, using tools based
on languages such as SysML [4]. This tends to be imprecise and difficult to maintain. Academic
tools such as Ptolemy have some support for specifying assumptions [5].

J.5 References for Appendix J
[1] P. Feiler, D. Cluch, J. Hudak, The Architecture, Analysis and Design Language (AADL), An

Introduction, CMU/SEI-2006-TN-011.

[2] G. Lewis, T. Mahatham, and L. Wrage, Assumptions Management in Software
Development, Technical Note, CMU/SEI-2004-TN-021, August 2004.

[3] Eclipse http://www.eclipse.org/home/index.php

[4] SysML: http://www.sysml.org/

[5] Ptolemy: http://ptolemy.eecs.berkeley.edu/

http://www.eclipse.org/home/index.php
http://www.sysml.org/
http://ptolemy.eecs.berkeley.edu/

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 144

Appendix K: DEPENDENCY
Authors:

Prof. John Stankovic, University of Virginia http://www.cs.virginia.edu/people/faculty/stankovic.html

Prof. Manfred Broy, Technische Universität München http://www4.in.tum.de/~broy/

Prof. John McDermid, University of York http://www-users.cs.york.ac.uk/~jam/

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission

K.1 Purpose and Scope
This appendix explains the term, dependency, as used in Section 2.7.6.

In software it is often noted that if module A uses module B, then module A depends on module
B. However, dependencies are much more complicated than a simple uses relation. This
appendix provides a comprehensive understanding of these complications.

A dependency between two or more system elements may exist or occur through their structure,
their behaviors, or their values, in the form of some cause-effect relationship.

There exist a number of dependencies within developed systems, between their elements and
their constituents as well as in their descriptions as included in their work products [1].

K.2 Safety significance of dependency
A safety system in an NPP is an independent layer of defense. An independent layer of defense
protects against the unknowns and uncertainties in the other layers of defense. An obscure
dependency can undermine the intended defense strategy.

Dependencies on common sources of defects or deficiencies can render homogeneous
redundancy ineffective, because the same defect can repeat in each redundant element; for
example:

• Defect or deficiency156 in a requirement.
• Defect or deficiency in implementation of the application software.
• Defect or deficiency in implementation or configuration of the system software.

Dependencies can propagate the effect of a deficiency to independent and functionally different
units; consider the following cases:

• Dependency on common internal information; for example:
o Year 2000 “bug.”
o Count of cycles since the last reset.

• Dependency on conditions, external to the units; for example:
o Usage of resources dependent upon process transients.

Section 3.4.2 Item 3 refers to the concern of compromise of redundancy through a dependency.
The effect of these dependencies should be analyzed to prove that the safety function is not
degraded.

156 Issue: If requirements are deficient, the terms “failure” and “defect” are not applicable; the CCF notion,
applied to a specified system, does not serve well; failure analysis and defect analysis do not serve as
adequate hazard analysis.

http://www.cs.virginia.edu/people/faculty/stankovic.html
http://www4.in.tum.de/~broy/
http://www-users.cs.york.ac.uk/~jam/

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 145

K.3 Types of Dependency
Any factor on which an identified hazard depends (or by which it is influenced) is a contributory
hazard. Dependency may be through many kinds of coupling157; for example:

1. Function.
2. Control flow.
3. Data; information.
4. Sharing or constraint of resources.

4.1. Explicit preference-order.
5. Conflicting goals or losses of concern.
6. States or conditions in the environment.

6.1. Controlled processes.
6.2. Supporting physical processes.

7. Fault
8. Constraints
9. Assumptions
10. Concept.
11. Some unintended, unrecognized form of coupling.

K.4 Examples of dependencies
Dependencies exist within and across hardware and software components and also result from
the interaction with the physical world. To organize the ideas of dependencies we first list and
give a few examples of those dependencies that arise from the hardware and the physical
world.

1. Sensors: software signal processing and decision making algorithms are dependent on the
properties of sensors such as range, accuracy, repeatability, sensitivity, resolution,
overshoot, drift, and power as well as the numbers and placement (location) of the sensors.

2. Actuators: power needed to run the actuator; accuracy of applying command signal

3. CPU/Memories: speed of cpu; implementation features such as caches, branch prediction;
size of memory; type and location of memories on busses; power requirements

4. FPGAs: speed; power; timing; availability of inputs

5. Busses: communication between distributed devices/software depend on the bus speed and
access protocols; may also depend on a hierarchy of busses.

6. I/O devices: speeds; power; location; read and write techniques

7. Physical properties: sizes of sensors, actuators, computing; I/O; temperatures produced by
devices; reliability of devices; fault models; will system degrade over time without
renewing/maintenance (a form of entropy)

157 In addition to the factors directly in the causal paths, hazards can also be contributed from side effects
such as interferences across activities and resources.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 146

8. Time: guaranteeing deadlines depends on the time requirements of real world phenomena,
the speed of hardware, the software processing required, scheduling algorithms;
accumulated delays

9. Location: where sensors, actuators, displays are placed

10. Environmental: external conditions such as earthquakes, hurricanes, power outages;
humidity; fire

11. Control: accuracy of models upon which control algorithms were created; availability or max
delay of inputs to controller

12. Chain of events: collection or order of sets of events

13. Humans: reaction time; awareness; expertise

Examples of dependencies that arise primarily in software include the following:

1. Numbers and types of parameters: This is straightforward to check and often given in
Interface Definition Languages (IDLs).

2. Uses relationship: A call graph (usually automatically generated) can identify simple uses
relationships.

3. Runtime environment: The OS, its version, and particular settings (configurations) and
algorithms being used constitute the runtime environment. It is necessary to ensure that
there are not unexpected modules being run, e.g., for system monitoring or periodic cleanup
modules unless required and accounted for.

4. Resources: amount of cpu time, memory, bus bandwidth

5. Name: components assumed named consistently

6. Data: location, synchronization, availability, redundancy

7. Ordering: some sets of components must run in a strict or partial order

8. Race Conditions: if components can execute in different orders the result may be a race
condition.

The following examples demonstrate how tight specifications, assumptions, and constraints
interrelate logically and may lead to implicit dependencies that can be discovered by analysis of
explicitly documented dependencies.

K.4.1 Example of a data dependency

For instance, two state attributes, A and B, for data values in a system are in a dependency if
given the value of A, the value of B is affected by the value of A (e.g.: fixed to a specific value;
bounded within a specific range).

K.4.2 Example of a timing dependency

Other examples are timings of events or causal dependencies between events such as shown
in the following simple example

• event A: “temperature of water gets too high while valve is closed”;
• event B: “valve opens”;

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 147

• dependency in the system: “whenever event A happens then event B happens within x
milliseconds”.

K.4.3 Example of a dependency on a hardware function
A function or information in software can be dependent on a function implemented in hardware.
Example:

 “sensor 1 data available” depends_on “power supply X failure”

 “sensor 2 data available” depends_on “power supply X failure”

which indicates a common cause failure. Such a dependency is different from direct
dependency.

A common cause dependency between events A and B can be denoted as follows:

 common_cause A, B

if there is an event C where the condition

 A depends_on C
and

B depends_on C

holds.

K.4.4 Example of a resource dependency
These different types of dependencies may interact. For instance, a resource dependency may
cause a functional dependency. If there are two functions, A and B, that as intended to be
independent but use the same resources, unintentionally become dependent. If function A may
compromise the shared resource in a certain situation such that the function B is no longer
available, this is an unwanted (and unspecified) dependency from A to B.This example
illustrates that the hazard analysis of systems should consider the logical relationships between
dependencies and should consider rules to deduce further dependencies from explicitly
documented ones.

K.4.5 Dependency through assumptions and constraints
There are constraints on interactions that cause dependencies:

• Assumptions about the environment: properties of the environment that are represented
as assumptions (example: “The water temperature cannot change by more than 10
degrees with 10 milliseconds”).

• Properties of system elements: interact with assumptions (example: “Whenever the
temperature changes by more than 1 degree the sensor issues a signal”).

• Constraints on interactions (example: “There is a delay of at least 1 millisecond between
two signals issued by the temperature sensor”).

Assumptions are often not given to the developer as part of the specification and are not direct
relationships between components of the system. Note that the overall system depends on
assumptions being valid so there are dependencies related to assumptions, but they are treated
separately (see Appendix J: ASSUMPTIONS).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 148

K.4.6 Example of logical dependency between logical entities

Let us consider examples of system properties expressed by logical entities:

(P1) “The temperature changes within 1 millisecond by less than 1 degree.”

(P2) “The temperature sensor updates the variable that stores the measured temperature
every 10 milliseconds.”

(P3) “The variable that stores the measured temperature holds a value that deviates at most by
10 degrees from the actual temperature.”

These logical entities may be contained in different work products or in one work product at
different positions.

(P3) expresses a system dependency.

(P3) is a logical consequence of (P1) and (P2). This is an example of a dependency between
logical entities.

If the property “The water is too hot” is a hazard (or a contributing hazard) and if its mitigation
depends on the preciseness of the stored measured temperature, then the dependency “(P3) is
a logical consequence of (P1) and (P2)” is of relevance for the hazard analysis. If (P1) or (P2) are
changed, then the conclusion of the hazard analysis may no longer be valid.

Specific logical dependencies may relate logical entities formulated at different levels of
abstraction. Assume that a sensor sends an alarm signal S1 if the water temperature gets too
hot. Then the dependency between event “signal S1 sent” and the event “water temperature too
hot” is only understandable by the additional information “signal S1 indicates water too hot”. This
way we get a relationship between the technical information “signal S1 sent” and the domain
specific event “water temperature too hot”.

For dependencies between system properties the dependency model basically captures logical
dependencies between logical statements (in terms of logical entities). The network of logical
dependencies is basically addressing logical implication. Although logical implication seems to
be a rather straightforward concept, as well known given a number of logical propositions
(documented by logical entities), their implication relationships can be very sophisticated by
combining them in applying deduction rules leading to proof trees, which represent sub-
networks of the networks of logical dependencies (see [1]).

K.5 Dependencies can network

For a system of the kind in RIL-1101 focus, dependencies are not simple chains or trees, but a
network (also known as directed graph or digraph [64]); for example:

• The same factor may recur in many places in the network (i.e., common causes).

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 149

• There are feedback paths; the dependency structure is a directed cyclic graph. It is a
well-known generic control structure, for which well-known analysis techniques exist. It
can be applied to a safety-related system in its concept phase (Section 3.4) or to its
element (Sections 3.7; 3.8-3.9). It can also be applied to the technical processes
(Section 3.3), for developing a safety related system or its element. It can also be
applied to the organizational processes (Section 3.2) that influence the development
processes.

K.6 Dependencies can propagate through faults
Also for faults in systems there exist many dependencies. Hazard analysis should include the
analysis of the dependencies across faults to find whether a fault can propagate to degrade a
safety function. This requires (see [3]158) a fault propagation specification and component fault
behavior specification, an explicit specification of fault types propagated, and an explicit
specification of system fault states.

K.7 Unrecognized dependency
Missing, wrong, unwanted, or misunderstood dependencies may contribute to a hazard. If A can
have an unwanted effect on B, then B is in some sense dependent on A. In other words, B is not
independent of A. Dependence of this type motivated RIL-1101, in which it is characterized as
Interference. Furthermore, in such cases (of unwanted interactions), the effect on B may not be
determinable. For example, consider

• effect of resource sharing

• effect of a memory leak.

There are so many sources of unwanted dependencies that it is easy159 to miss one. As soon as
one is discovered or suspected, it should be documented. Then, known methods can be applied
to perform the analysis.

Unrecognized dependencies are defects in hazard analysis and may lead to degradation of a
safety function.

For complicated dependencies many observations are needed to uncover dependency [2].

K.8 Expressing dependencies
System dependencies are general relations between

• system functions
• system elements
• platform (infrastructural) services
• system events, messages, and signals
• system data
• system states

158 This reference uses the term “error” which is mapped into the term “fault” in RIL-1101.
159 In current practice

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 150

• system timing

This documentation can be made very explicit (example: proposition P1: “event A leads to event
B”; proposition P2: “event B leads to event C”) or implicit where a dependency can be concluded
from explicit stated dependencies (example: from the two propositions P1 and P2 we can
conclude proposition P3: “event A leads to event C”). If all three propositions P1, P2, and P3 are
explicitly included in work products in logical entities, say E1, E2, and E3 resp., then we get an
instance of dependencies between logical entities of work products. The contents of E1 and E2
imply proposition P3 being part of the content of E3.

The following predicate expresses dependencies in a formalised way for events A and B in a
system160:
 A depends_on B

This proposition expresses that there is some causal relationship between A and B. Actually
there are many instances for such a relationship:

• A cannot happen before B has happened; example: consider a system which is
supposed to raise an alarm (event A) as soon as the pressure in a tank gets too high
and where there is a sensor that measures the pressure and sends the values to the
alarm manager (event B).

• A is guaranteed to happen if B has happened; example: consider a system which is
supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high
and where there is a sensor that measures the pressure and sends the values to the
alarm manager; then the “incorrect pressure too high data measured at sensor” (event
A) leads to an incorrect alarm (event A).

• A cannot happen if B has happened; example: consider a system which is supposed to
raise an alarm (event A) as soon as a the pressure in a tank gets too high and where
there is a sensor that measures the pressure and sends the values to the alarm
manager over a communication line; assume that the energy supply for the
communication line can be interrupted (event B).

Note that the proposition

 A depends_on B

does not require that in every behavior the event A may interfere with B; it means that there is
some instance of behavior where A does interfere with B.

Note furthermore that the relationship

 A depends_on B

Is not symmetric, in general, and even not transitive. The same holds for its negation

 A independent_of B

160 This is an example of a formal predicate on dependecies between events. Similar relationships can be
introduced between data attributes in states or, more generally, rules for dependencies in data and
control flow and how their dependencies relate.

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 151

The missing transitivity of the independence relation makes it very difficult to reason about
independence and freedom from interference.

The examples show that dependencies between system constituents lead to dependencies
between logical entities of work products. Since the content of logical entities of work products
can be understood as logical propositions and predicates, these dependencies can be treated
as logical relations between propositions or predicates.

System dependencies can be reflected in system models. The models should contain enough
information to understand dependencies and propagation paths for contributory hazards (see
Table 22 Note 1. Appendix C.6 suggests how a dependency model can help HA.

A model captures and describes certain classes of dependencies (such as process
dependencies) including rules to derive dependencies and to analyze their effects. This does
not imply that a separate model is needed exclusively for this purpose. A separate model could
lead to inconsistencies with the primary engineering model. For dealing with dependencies
within the work product, the primary engineering model of the (work) product should suffice:
model of requirements; model of architecture; model of detailed design; source code could also
serve as a “model” of the executable. These models should be expressive enough to capture all
kinds of dependencies.

For dependencies within the development process, the primary engineering model of the
process should suffice. In other words, all factors affecting the product (of the process) should
be identified in the process model.

Semantics of the relationships should be explicit.

K.9 Deriving dependencies
Note the difference between an implicit dependency, which is not documented explicitly, but can
be deduced by combination from explicitly documented dependencies, and a dependency that
is not identified at all - thus, not discoverable through analysis.

The system behavior can be deduced from the architecture and the specification of the interface
behavior of its elements, when rules of composition and refinement are followed (see Appendix
D: REFINEMENT). Similarly, system behavior can also be deduced from some fault condition in
an element of the system, if the architecture includes the relationships that affect fault
propagation [4].

Thus, a well-specified architecture is essential for dependency analysis (see [3][4]).

K.10 Avoiding unwanted dependency
Careful explicit specification of constraints and system properties and subsequent analysis
make hidden dependencies explicit and help to avoid unwanted dependencies and to reason
about dependencies in hazard analysis.

K.11 Languages available for modeling dependencies

 DRAFT September 2014
Rev. 4

DRAFT RIL-1101 Page 152

Examples of means that have been used to model161 dependencies include the following: Call
graphs, IDLs [5], data flow diagrams, and design languages (graphical or not) such as AADL [6]
and SysML [8]. AADL, with extensions and supporting tools, is in use as a research platform in
many countries, with ongoing extension activities to support safety evaluation [3].

For Want of a Nail
For want of a nail the shoe was lost.

For want of a shoe the horse was lost.
For want of a horse the rider was lost.

For want of a rider the message was lost.
For want of a message the battle was lost.
For want of a battle the kingdom was lost.
And all for the want of a horseshoe nail.

K.12 References for Appendix K
[1] M. Broy: A Logical Approach to Systems Engineering Artifacts and Traceability: From

Requirements to Functional and Architectural Views. In: M. Broy, D. Peled, G. Kalus (eds):
Engineering Dependable Software Systems, IOS Press 2013, P. 1-48.

[2] J. L. Pfaltz: Logical implication and causal dependency. Conceptual structures: inspiration
and application, volume Springer Verlag LNAI, 4068, 145-157. (2006).

[3] J. Delange, P. Feiler: Supporting Safety Evaluation Process using AADL. Layered
Assurance Workshop ’2013, New Orleans, USA

[4] P. Feiler, A. Rugina: Dependability Modeling with the Architecture Analysis & Design
Language (AADL). CMU/SEI-2007-TN-043, Technical report, Carnegie Mellon Software
Engineering Institute, July 2007

[5] http://www.omg.org/gettingstarted/omg_idl.htm

[6] P. Feiler, D. Cluch, J. Hudak, The Architecture, Analysis and Design Language (AADL), An
Introduction, CMU/SEI-2006-TN-011.

[7] S. Si Albir, UML in a Nutshell, O’Reilly, 1998.

[8] http://www.sysml.org/

161 These are not necessarily complete and are only as good as the information recorded in them.

http://www.omg.org/gettingstarted/omg_idl.htm
http://www.sysml.org/

	1 Executive Summary
	2 Introduction
	2.1 Regulatory basis
	2.2 Work authorization
	2.3 Relationship with licensing experience
	2.4 Significance of the technical basis in licensing reviews
	2.5 Background
	2.6 Purpose and intended audience
	2.7 Scope
	2.7.1 Immediate scope limited to learning cycles
	2.7.1.1 Assumptions about areas not well understood
	2.7.1.2 Extrapolation from recent licensing experience
	2.7.1.3 Support for application-specific customization of the SRP Chapter 7
	2.7.2 Focus on evaluation rather than performance of hazard analysis
	2.7.3 Focus on licensing reviews of safety automation
	2.7.4 Focus on safety related systems for NPPs
	2.7.5 Types of systems intended in scope
	2.7.6 Focus on contributory hazards rooted in systemic causes
	2.7.7 Scope excludes risk quantification
	2.7.8 Relation between hazard analysis and safety analysis

	2.8 Organization of RIL-1101

	3 Considerations in evaluating Hazard Analysis
	3.1 Evaluation of Overall Hazard Analysis
	3.1.1 Considerations for hazards within the system being analyzed
	3.1.2 Considerations for hazards contributed through processes

	3.2 Evaluation of hazard analysis - organizational processes
	3.3 Evaluation of hazard analysis - technical processes
	3.4 Evaluation of Hazard Analysis - System Concept
	3.4.1 Hazards associated with the environment of the DI&C system
	3.4.1.1 Hazards related to interaction with plant
	3.4.1.2 Contributory hazards from NPP-wide I&C architecture
	3.4.1.3 Contributory hazards from human machine interactions
	3.4.2 Contributory hazards in conceptual architecture
	3.4.3 Contributory hazards from conceptualization processes

	3.5 Evaluation of hazard analysis - Requirements
	3.5.1 System Requirements
	3.5.1.1 Quality requirements
	3.5.1.2 Contributory hazards through inadequate system requirements
	3.5.1.3 Contributory hazards from system requirements engineering
	3.5.2 Software Requirements
	3.5.2.1 Contributory hazards in software requirements
	3.5.2.2 Contributory hazards from software requirements engineering

	3.6 Evaluation of hazard analysis - Architecture
	3.6.1 Contributory hazards in System Architecture
	3.6.2 Contributory hazards from system architectural engineering
	3.6.3 Contributory hazards in Software Architecture
	3.6.4 Contributory hazards in Software architectural engineering

	3.7 Evaluation of Hardware-Related Hazard Analysis
	3.8 Evaluation of Hazard Analysis related to Software Detailed Design
	3.9 Evaluation of Hazard Analysis related to Software Implementation

	4 Discussion of regulatory significance
	5 Conclusions
	6 Future research, development and transition
	6.1 Transition, knowledge transfer and knowledge management
	6.2 Integration of safety significant information from NPP level analysis
	6.3 Harmonization and disambiguation of vocabulary
	6.4 International harmonization
	6.5 Learning from other application domains and agencies
	6.6 Analysis earlier in the system development lifecycle
	6.7 Risk-informed evaluation
	6.8 Integrated hazard analysis for safety, security and other concerns
	6.9 Integrated assurance framework
	6.10 Ideas received through review comments

	7 Abbreviations and Acronyms
	8 References
	Appendix A: Glossary
	Appendix B: Technical Review Process
	Appendix C: Evaluating Hazard Analysis - State of the Art
	C.1 Reference model for hazard analysis: Vocabulary
	C.1.2 Object of analysis
	C.1.3 Analysis at different levels in the dependency network

	C.2 Reference model for hazard analysis in development lifecycle
	C.3 HA tasks – an example set
	C.3.1 Evaluating the quality of HA output
	C.3.2 Hazard identification and logging
	C.3.3 Evaluation of a logged hazard

	C.4 Effect of competence on quality of HA work products
	C.5 Quality of information input to HA at each development phase
	C.6 Hazard Analysis Techniques – useful extractions from survey
	C.7. References

	Appendix D: REFINEMENT
	D.1 Purpose and Scope
	D.2 Abstraction and refinement
	D.3 Motivation for refinement as a constraint on system development
	D.4 Mathematical underpinnings
	D.4.1 Refinement as logical implication
	D.4.2 Useful properties of the refinement relation
	D.4.3 Sequence of Refinement Steps
	D.4.4 Refinement and Decomposition
	D.4.4.1 Composing and Decomposing Interfaces
	D.4.4.2 Compositionality of Refinement
	D.4.4.3 Example

	D.5 References for Appendix D

	Appendix E: Checklists to assist hazard recognition
	E.1 Categories of hazard origination
	E.2 Checklist for hazard sources
	E.3 Checklist of hazard sources in Semiconductor Manufacturing
	E.4 Hazard sources in physical environment of an NPP DI&C safety system
	E.5 Digital safety system contribution to hazards affecting its environment
	E.6 References for Appendix E

	Appendix F: Organizational qualities to support safety
	F.1 Five Principles
	F.2 Accountability, Standardization, and Adaptation
	F.3 Organizational culture and decisional premises
	F.4 Communication for collective mindfulness
	F.4.1 About Becoming a Competent Communicator
	F.4.2 Participatory Communication Climate
	F.4.3 Collective Communication Competence and Diversity
	F.4.4 Conversation Quality and Deference to Expertise
	F.4.4.1 Characteristics of GroupThink
	F.4.4.2 Countermeasures to prevent GroupThink

	F.5 Collective mindfulness and competence
	F.6 Glossary for Appendix F
	F.7 References for Appendix F

	Appendix G: Example case studies
	G.1 Ft Calhoun Event

	Appendix H: Example checklist of NPP modes
	Appendix I: EVALUATION OF TIMING ANALYSIS
	I.1 Timing analysis by hand
	I.2 Timing analysis by a program
	I.3 Mathematical Analysis of timing
	I.4 FPGAs
	I.5 Practical considerations in applying mathematical analysis
	I.5.1 Interrupts
	I.5.2 Resources
	I.5.3 Ordering
	I.5.4 I/O
	I.5.5 Distributed Systems

	I.6 Caveats and Things to Watch Out For
	I.6.1 Task semantics
	I.6.2 Non-determinism introduced by hardware
	I.6.3 The overhead of the OS
	I.6.4 Richard’s Anomalies
	I.6.5 Overloads

	I.7 Integrating timing analysis in engineering
	References for Appendix I

	Appendix J: ASSUMPTIONS
	J.1 Systematized consideration of assumptions – state of the art
	J.2 Monitoring an assumption at run time
	J.3 Statement of assumptions within code
	J.4 Statement of assumptions within models
	J.5 References for Appendix J

	Appendix K: DEPENDENCY
	K.1 Purpose and Scope
	K.2 Safety significance of dependency
	K.3 Types of Dependency
	K.4 Examples of dependencies
	K.4.1 Example of a data dependency
	K.4.2 Example of a timing dependency
	K.4.3 Example of a dependency on a hardware function
	K.4.4 Example of a resource dependency
	K.4.5 Dependency through assumptions and constraints
	K.4.6 Example of logical dependency between logical entities

	K.5 Dependencies can network
	K.6 Dependencies can propagate through faults
	K.7 Unrecognized dependency
	K.8 Expressing dependencies
	K.9 Deriving dependencies
	K.10 Avoiding unwanted dependency
	K.11 Languages available for modeling dependencies
	K.12 References for Appendix K

