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DRAFT RESEARCH INFORMATION LETTER 1101:  
Technical basis to review hazard analysis of digital safety systems 

1 Executive Summary 
This research information letter (RIL) provides the US Nuclear Regulatory Commission (NRC)’s 
licensing staff the technical basis to support the exercise of judgment in their review of hazard 
analysis (HA) performed on a digital safety system by an applicant seeking design certification 
or a license amendment. 

The RIL is prepared in response to a user need request from the Office of New Reactors (NRO), 
dated December 8, 2011, asking the Office of Nuclear Regulatory Research (RES) for 
assimilation of the technical basis to support regulatory review of an applicant’s HA relevant to 
digital instrumentation and control (DI&C) safety systems in nuclear power plants (NPPs). NRC 
does not have explicit guidance on review of HA; therefore, NRO intends to use this RIL to 
develop and support review guidance for piloting in a project proposing new digital technology 
for a small modular reactor. From this learning cycle, NRC expects to identify needs for future 
improvements in its review guidance, regulatory guidance, and the underlying technical basis. 
Thus, this RIL is intended for these early adopters. 

The RIL has been focused on issues encountered in NRO’s recent licensing reviews – 
particularly hazards which are rooted in systemic causes such as inadequacies in engineering; 
these causes are called contributory hazards in the RIL. The technical basis is focused on 
evaluation of an applicant’s HA rather than performing HA.   

Digital safety systems are becoming more difficult to analyze and evaluate for safety, due to 
rapid changes in the nature of systems and the underlying technologies, increasing inter-
connectivity and interactions across systems, and resulting shortening of relevant accumulated 
experience. Unwanted interactions and side effects are becoming significant contributors to 
hazards in many critical application domains of digital technology. In contrast to a hardware 
failure event, which, typically, occurs in a particular component, engineering deficiencies in 
complex digital systems tend to be pervasive in nature. Traditional techniques of hazard 
analysis (e.g, failure modes and effects analysis; fault tree analysis; event tree analysis) are 
rendered ineffective when the causes are systemic and pervasive. Typically, uncertainty from 
such hazards is best addressed by rooting out the causes. However, often, the causes are hard 
to find. RIL-1101 identifies some common hazard contributing scenarios and, for each, 
examples of conditions that reduce the respective hazard spaces. These cause-effect 
relationships form the core of the technical basis in RIL-1101, which the staff assimilated from 
existing knowledge through a combination of literature search and expert-consultation. These 
causal relationships also serve as a safety goal focused organizing framework for an applicant’s 
analysis, whether it is for a new system in a new reactor or modification of a module in an 
existing system. 

The broader hazard analysis approach covered in RIL-1101  can be applied first on an early-
stage functional concept and iterated as the development progresses on the successive work 
products. The resulting design criteria and design bases include constraints to avoid conditions 
contributing to hazards. Identification of such conditions early in the development lifecycle to 
drive subsequent engineering helps avoid problems downstream. It not only reduces uncertainty 
about safety, but also improves lifecycle economics.  
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2 Introduction  
This research information letter (RIL) provides the US Nuclear Regulatory Commission (NRC)’s 
licensing staff the technical basis to support the exercise of judgment in their review of hazard 
analysis (HA) performed on a digital safety system by an applicant seeking design certification 
or a license amendment. Section 2.5 provides a brief background on HA, supported with 
elaboration in Appendix C. Section 2.6 states the purpose and intended audience. 

2.1 Regulatory basis 
Hazard analysis of a digital safety system could address clauses 4.8 and 5.6 in [3] and the 
analysis aspect of 10 CFR 50.34(a)(3) [35] and 10 CFR 52.47(a)(2) [36]. In support of 
requirements in 10 CFR 50.34(a)(3)(i) and 10 CFR 52.47(a)(3)(i), hazard analysis could support 
developing principal design criteria. In support of requirements in 10 CFR 50.34(a)(3)(ii) and 10 
CFR 52.47(a)(3)(ii), hazard analysis could lead from principal design criteria to design bases. 
Section 4 discusses the regulatory significance of this work further. 

2.2 Work authorization  
The RIL is prepared in response to a user need request from the Office of New Reactors (NRO), 
dated December 8, 2011, asking the Office of Nuclear Regulatory Research (RES) for 
assimilation of the technical basis to support regulatory review of an applicant’s HA relevant to 
digital instrumentation and control (I&C) safety systems in nuclear power plants (NPPs). The 
user need arose, because NRC does not have explicit guidance to review HA for a digital safety 
system of the kind seen in recent licensing reviews.  

2.3 Relationship with licensing experience 
The RIL has been focused on issues encountered in NRO’s recent licensing reviews – 
particularly hazards, which are rooted in systemic causes such as inadequacies in engineering; 
these causes are called contributory hazards in the RIL. The technical basis is focused on 
evaluation of an applicant’s HA rather than performing HA.  Thus, the RIL is not intended to be a 
self-contained, comprehensive, and complete stand-alone technical reference for reviewing HA 
of digital safety systems in NPPs. Section 2.7 elaborates the scope. Section 2.8 explains the 
organization of the RIL. 

Digital safety systems are becoming more difficult to analyze, due to many factors, such as the 
following: 

• Rapid changes in the nature of systems and the underlying technologies. (H-OTproc-7)  

• Increasing inter-connectivity. (Section 3.4  H-ProcState-5) 

• Resulting shortening of accumulated experience relevant to a new system. (H-OTproc-7)  

Examples of associated contributory hazards include the following:  

• Inadequately constrained interactions of the digital safety system being analyzed with other 
systems and elements in its environment. 

• Incorrect decomposition and allocation of NPP-level safety functions into NPP-wide I&C 
architecture and then to the digital safety system being analyzed.  
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• Inadequate identification of the quality properties1 (e.g.: safety assurability; verifiability; 
analyzability) associated with safety functions. 

• Incorrect flow-down into constraints on the architecture of the system and then the 
architecture of the software or other forms of logic.  

• Inadequate flow-down to identify requirements and constraints on technical processes, 
supporting processes, organizational and processes. 

• Declining supply and replenishment of requisite competence. (Section 3.1 H0-2).  

• Longer less track-able supply chains. (Section 3.1.2 item 2 under note for H0-9)  

• Inadequate quality of cross-organizational cross-disciplinary communications, etc. (Section 
3.2 H-culture-9) 

2.4 Significance of the technical basis in licensing reviews 
For each “contributory hazard scenario” (which illustrates some hazard space2) the RIL provides 
examples of conditions that reduce the hazard space. These cause-effect relationships form the 
core of the technical basis in RIL-1101, assimilated from existing knowledge, acquired through a 
combination of literature search and expert-consultation. These causal relationships also serve 
as a safety goal focused organizing framework for an applicant’s analysis. 

To suit project-specific needs, NRC’s licensing offices can select “contributory hazard 
scenarios” and corresponding conditions to reduce the respective hazard spaces, and transform 
these conditions into review criteria; NRO’s mPower design specific review standard (DSRS) 
Appendix A [1] is an example. 

2.5 Background 
A hazard, in general, is defined as “potential for harm.” In RIL-1101, the scope of “harm” is 
limited to the degradation of the performance of an NPP safety function allocated to the system 
to be analyzed.  

Hazard analysis (HA), a systems engineering activity3, is the process of examining a system 
throughout its lifecycle to identify inherent hazards and contributory4 hazards, and requirements 
and constraints to eliminate, prevent, or otherwise control them.  

HA is a subset of safety analysis; its evaluation is a subset of safety evaluation – the 
relationship is explained in Section 2.7.8. 

Current practice exhibits a wide variation in usage of the terms, hazard and hazard analysis. For 
example, some experts distinguish between a hazard, its source, and its cause. To avoid 
confusion, RIL-1101 bounds the scope of HA as follows: 

                                                 
1 In common practice, these are treated as “non-functional” requirements. 
2 Hazard space: All the possible combinations of specific conditions, relevant to a scenario that could lead 
to the degradation of a safety function. 
3 This implies use of systematic and replicable methods in performing HA. 
4 It includes causal factors 
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1. NPP-level safety analysis (including NPP-level HA5) identifies functions required for NPP-
level safety (known as safety functions) and correctly identifies the functions to be 
allocated to the I&C level. 

2. All hazards leading to the degradation of a safety function allocated to the I&C level are 
identified. 

3. Causes, including contributory causes, (collectively known as contributory hazards) are 
identified. 

4. Commensurate requirements and constraints6 are identified.   

2.6 Purpose and intended audience 
The purpose of this research information letter (RIL) is to provide the technical basis to support 
NRC I&C staff in the exercise of judgment during licensing reviews they7 perform on an 
applicant’s hazard analysis (HA) of a digital safety system in a nuclear power plant (NPP).  

Since NRC does not have any relevant explicit guidance on review of HA, this RIL is intended 
for NRO’s early adopters, to support their development of review guidance to be piloted in a 
new project applying new technology in a digital safety system for a small modular reactor. This 
application will serve as a learning cycle, from which NRC expects to identify needs for future 
improvements in its review guidance, regulatory guidance, and the underlying technical basis 
(i.e., successors to RIL-1101).  

The RIL is not intended as an interim or surrogate regulatory guide to licensees or applicants. 
However, as a technical basis for the limited scope described in the next subsection, it may also 
be useful to stakeholders outside the NRC. 

2.7 Scope 
The RIL is a response to NRO’s user need request for supporting a specific project. However, 
the content is sufficiently generic to evolve a successor for broader application, after learning 
from NRO’s first experience [Section 2.7.1]. Content has been selected to support evaluation 
rather than performance of HA [Section 2.7.2] for NPP safety automation [Sections 2.7.3-2.7.5]. 
Content is focused on hazards contributed through systemic causes, especially inadequacies in 
engineering [Section 2.7.6]. Content is focused on supporting a deterministic review process 
[2.7.7]. 

2.7.1 Immediate scope limited to learning cycles  
Although the content provided in RIL-1101 is intended to be more broadly applicable, the 
adequacy for broader application has to be validated through experience. Known limitations are 
identified below. 

                                                 
5 The technical basis for evaluating NPP-level HA is outside the scope of RIL-1101. The interactions 
between a digital safety system and its environment (the plant) are within scope. 
6 Specifically, in its scoping of HA, RIL-1101 leaves the creation of constraint-satisfying solutions to the 
primary development activities. See Appendix C.2. 
7 It includes their agent or a third party 
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2.7.1.1 Assumptions about areas not well understood 
Within the scope described above, RIL-1101 focuses on areas that are not well understood or 
recognized (e.g., those rooted in systemic causes and contributed through engineering 
deficiencies in system development). To quote from [2]: 

“Common underlying factors8 involve organizational culture, safety culture, fatigue, other fitness 
for duty issues, training, experience, habit, habituation, dysfunctional schedule pressure, adverse 
ambient conditions, work-related distractions, and the like. Nevertheless, addressing ineffective 
hazard recognition instances, addressing the factors that resulted in them, and addressing their 
extents would be a highly cost-effective initiative.” 

Judgment used in the selection of coverage of the subject matter is based on assumptions 
about what is not well understood.  Such assumptions should be re-evaluated through learning 
cycles, before broader application of RIL-1101. 

It is assumed that hazards internal to the DI&C system, contributed by hardware elements are 
well understood. Therefore, review of hardware-related HA is addressed in Section 3.7 only 
briefly9. 

2.7.1.2 Extrapolation from recent licensing experience 
Subject matter (e.g., contributory hazard scenario) was selected in consideration of issues 
experienced by the licensing offices in the last several review projects, with the assumption that 
those issues were indicative of a trend. It is possible that new issues10 surface in upcoming 
reviews that were not explicitly addressed in RIL-1101. Its adequacy should be tested through 
several learning cycles, before broader application. 

2.7.1.3 Support for application-specific customization of the SRP 
Chapter 7 

Selection and extent of treatment of subject matter is further narrowed to support customization 
of the SRP Chapter 7 specific to the needs foreseen for the mPower project.   

2.7.2 Focus on evaluation rather than performance of hazard analysis 
RIL-1101 is focused on providing the technical basis for exercising judgment during licensing 
review activities. RIL-1101 is not intended as an interim or surrogate regulatory guide to 
licensees or applicants. RIL-1101 is not intended to provide guidance on how to perform HA.  

Prevalent public standards and guides on HA elaborate on techniques to perform HA, but there 
is little information available on criteria for evaluating the results of HA, even though the 
systematization of hazard analysis is over four decades old. 

2.7.3 Focus on licensing reviews of safety automation 
Although results from HA, in general, include requirements for aspects outside the initially 
commissioned DI&C safety system (e.g., training, maintenance, and operational and 
maintenance environments), RIL-1101 does not provide the technical basis to evaluate 
requirements concerning operation and maintenance and the people engaged therein. 
                                                 
8 RIL-1101 scope does not include all the quoted factors. 
9 Appendix C leads to more information through links to supporting references. 
10 Example: Ha 
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In keeping with the scope of the SRP Chapter 7, the scope of RIL-1101 is limited to the safety 
automation. The human, the human-automation interface, and the associated control room are 
treated as part of the environment (Section 3.4.1) of the system in scope. 

2.7.4 Focus on safety related systems for NPPs 
Prevalent public standards [3] and guides [5], [6], and [7] on HA are oriented to the general case 
of a system implementing a variety of functions with varying degrees of criticality. In contrast, 
RIL-1101 focuses on safety related systems for NPPs, where the consequence of a mishap, 
unwanted release of radioactivity into the environment (known in HA vocabulary as the loss), is 
of the highest degree of severity. The scope includes a system realizing a safety function, as 
well as any system or element on which the correct timely performance of a safety function is 
dependent (see Appendix K).   

Review of analysis for hazards external to the DI&C system, in general, is covered in other parts 
of NRC’s standard review plan [8]. RIL-1101 considers external hazards primarily from the 
perspective of issues with interfaces and interactions that can affect a safety function allocated 
to the system being analyzed. 

RIL-1101 does not elaborate on reviewing the analysis of hazards from the physical 
environment (Section 3.4.1; Appendices E.4 and E.5)), because these are not new 
considerations.  

2.7.5 Types of systems intended in scope 
RIL-1101 describes the evaluation of an applicant’s HA associated with digital safety systems 
for new and advanced reactors. The scope of this RIL is limited to a system realizing a safety 
function or on which the correct timely performance of a safety function is dependent (see 
Appendix K). Other elements interfacing with, interacting with or affecting the DI&C safety 
system are treated as parts of its environment; to that extent, such environment is also within 
the scope (see Section 3.4.1). 

The scope treats any change to a previously analyzed DI&C safety system as a new hazard 
analysis review cycle. 

2.7.6 Focus on contributory hazards rooted in systemic causes 
The RIL is focused on hazards rooted in systemic causes such as inadequacies in engineering 
(elaborated in Sections 3.1-3.6 and 3.8-3.9).  

Systemic causes are a special kind of common causes of failure11 (CCF), such that, often, their 
propagation is pervasive; that is, there could be many propagation paths, and these are not 
easy to discover and analyze. (In contrast, the propagation path from a CCF due to the 
breakdown of a component in a hardware system is relatively easier to identify and analyze). In 
a system with complex logic12, recognizing and understanding the cause-effect relationships or 
influence paths well enough requires explicit identification of a variety of dependencies (see 
Appendix K). Some dependencies can be recognized in the analysis of the system itself (e.g., 
Sections 3.4.2, 3.6.1, 3.6.3). Some can be recognized through analyzing interactions of the 
system with its environment (e.g., Section 3.4.1). Many other dependencies occur through 
organizational processes (e.g., Section 3.2), technical processes (e.g., Sections 3.3, 3.4.3, 3.5, 

                                                 
11 Meaning in this context: Loss of the top-level safety goal. 
12 For example, in the form of software. 
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3.6.2, 3.6.4), and supporting or auxiliary processes. RIL-1101 does not enumerate all 
contributory factors and relationships exhaustively, but uses examples: Scenarios to illustrate 
certain hazard spaces and examples of related conditions that reduce the respective hazard 
spaces. These relationships are causal dependencies, known in the respective underlying 
scientific disciplines and have been validated through expert reviews of RIL-1101.  

2.7.7 Scope excludes risk quantification 
Given the focus on hazards rooted in systemic causes, the scope excludes quantification13 of 
severity of consequence and probability of occurrence14 for the following reasons:  

1. The consequence of the failure of a safety function is treated at the highest level of severity.  

2. Logic15 leading to a safety function must execute correctly or the consequence is of the 
same level of severity as the DI&C safety system - no mitigation is possible. 

3. A safety system in an NPP is an independent layer of defense; no credit for meeting the 
allocated safety requirements is assumed from another layer of defense16.  

4. Contributory hazards originating in the system development lifecycle or rooted in systemic 
causes17 are pervasive (permeating) in their effects. The governing variables are not 
sufficiently controlled in the current state of practice even to identify the contributors, their 
contribution paths, and the effects of their interactions. The relationships of the systemic 
causes to the degradation of a safety function are not linear.  

5. Since design certification for DI&C platforms, tools, processes, etc. allows multiple future 
applications, the same elements could be replicated for different NPP functions, multiplying 
vulnerability to the same contributory hazard. This multiplication effect is not bounded. 

2.7.8 Relation between hazard analysis and safety analysis 
Hazard analysis is an intrinsic part of safety analysis (see Appendix C.2). 

Figure 1 shows the relationship of HA18, as treated in RIL-1101, to other activities contributing to 
the applicant’s safety analysis report (SAR), as explained below:  

1. The result of HA activities (depicted in the upper left sector of Figure 1) is a set of safety 
requirements and constraints (included in the design bases), which are verifiable 
independently by a third party not involved in the development of the safety system. Also 
included are derived requirements and constraints on the design and implementation of the 
safety system. This set of requirements and constraints is intended to be a part of the 
licensing basis.  

2. Activities in the scope of inspection, tests, analyses, and acceptance criteria (ITAAC) 
(depicted in the upper right sector of Figure 1) verify that these requirements and constraints 

                                                 
13 Scope also excludes qualitative classification or gradation. 
14 Exception: Section 3.7 pertaining to hardware components. 
15 Example: Software 
16 An independent layer of defense protects against the unknowns and uncertainties in the other layers of 
defense.  
17 The focus of RIL-1101 

  18 Figure 1 is a simplified depiction, See note. 
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have been satisfied. These verification activities are not a part of reviewing hazard analysis, 
as delineated in RIL-1101. 

3. Figure 9 shows the relationships of HA activities with mainstream system development 
activities and verification activities. 

4. Whereas each verification activity yields corresponding evidence (e.g., that a certain item, 
such as hardware or firmware or software has met the requirements and constraints 
allocated to it), overall verification includes the integration of all the various evidence items 
(depicted in the lower sector of Figure 1) in a way that demonstrates that the overall safety 
requirements and constraints of the system have been satisfied. These activities are also 
not a part of hazard analysis, as delineated in RIL-1101. 

5. Safety analysis (SAR), depicted by the circle in the center of Figure 1, includes the validated 
results of HA (i.e., validation that safety requirements and constraints have been identified 
correctly, completely, consistently, and unambiguously), as well as the results of verification 
(i.e., the former have been satisfied). 

Note: Figure 1 is simplified for illustrating the relationship with the overall safety analysis, 
omitting the following:  

1. HA is iterated at each phase in the development lifecycle of a system (see Figure 9) and the development lifecycle 
of each of its elements.  

2. Iteration at any phase may reveal that the phase has introduced a new hazard.  

3. The corrective action may simply be a revision within that phase or it may require a change in a preceding phase, 
invalidating the result of the preceding phase.  

4. The latter case may require multiple iterations and tradeoffs, making the analysis correspondingly more difficult.  

5. V&V activities during the mainstream system development are also iterative (discovery of anomaly; identification 
of root cause(s); corrective action on the artifact; corrective action on the process), with each change generating 
another iteration. Examples of activities included in corrective actions: An additional constraint is identified; an 
assumption is made explicit; a task is formulated to validate an assumption. 

 
 

 
Figure 1: Relationship of HA-evaluation scope in RIL-1101 to overall safety analysis 
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2.8 Organization of RIL-1101 
Section 3 provides the technical basis to support NRC I&C staff in exercising judgment during 
the review of an applicant’s HA.  As requested by NRO (the sponsoring User), supporting 
explanatory information is in the appendices. For example, Appendix C, which is incorporated 
by reference in Section 3.1 Table 1 item H0-1G, summarizes the state-of-the-art in HA. 

Section 3 is organized by groups of contributory hazards, as explained below. 

1. These groupings serve as different perspectives on (or projections of) intertwined19 issues, 
and are not intended to be mutually exclusive partitions. 

2. Subsections 3.1 - 3.3 group contributory hazards that are applicable to all phases of the 
development lifecycle; typically, these are controlled before starting the development of a 
particular system. 

3. Subsections 3.4 - 3.9 group contributory hazards from the perspectives of individual phases 
of the development lifecycle.  

4. While contributory hazards might manifest themselves or might be discovered in any of 
several phases of the development lifecycle or levels of integration of a digital safety 
system, the RIL attempts to place the item in a group corresponding to the earliest 
prevention opportunity.  

5. Relationships between scenarios of contributory hazards (illustrating corresponding hazard 
spaces) and conditions that reduce these hazard spaces are organized in tables as follows: 

5.1. The table title (explained in the narrative introducing it) bounds the scope and context of 
entries in the rows of the table.  

5.2. In a particular row, the left cell includes an example of a scenario20 illustrating some 
hazard space.  

5.3. A right cell, associated with a contributory hazard in a row, includes an example of a 
condition that reduces the respective hazard space. Many such conditions could be 
associated with a particular scenario. 

5.4. Each contributory hazard is uniquely identified with a label of the type “H-alpha-<i>” 

5.4.1. The “H-alpha-” part of the label is in the column title, applicable to each row, but 
not repeated. Examples: H-0-; H-culture-; H-OTproc-. 

5.4.2. The <i> portion of the label is a numeric, unique to each scenario of contributory 
hazards. 

5.4.3. For example, H-SAE-1 is a complete label for a scenario of contributory hazards. 

5.5. A label of the type “H-alpha-<i>-G<j>” identifies a condition G<j> that reduces the H-
alpha-<i> space. 

5.5.1. For example, H-SAE-1G1 is a condition: associated with H-SAE-1. 

6. Hyperlinks are used selectively to identify other salient relationships of the following kinds: 
6.1. between scenarios of contributory hazards - possibly across groups (tables) 
6.2. between scenarios and conditions reducing the respective hazard spaces 
6.3. between conditions reducing the various hazard spaces. 

                                                 
19 “Many-to-many” interrelationships exist. 
20 In many cases, the scenario is described as a class or category of scenarios. 
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7. The symbol ↑ as used in the form [H-culture-8↑] in a cell indicates that the item in the cell 
“contributes to” or is “derived from” the linked item (e.g., H-culture-8). 

8. The symbol ↓ as used in the form [H-S-1.1G1↓] in a cell indicates that the item in that cell 
“requires” the linked item (e.g., H-S-1.1G1). 

9. All of the many-to-many relationships are not hyperlinked.  

10. Where needed, a note structure, distinguished by indentation, font type and size provides a 
brief explanation or example for an “H-alpha-<i>” or “H-alpha-<i>-G<j>” paragraph. 

11. A link to an item in an appendix leads to further elaboration and background.  

Section 4 explains how HA-review fits in the regulatory framework. 

Section 5 summarizes the contribution of RIL-1101 and Section 6 outlines the follow-on 
research and development (R&D) identified in the course of this work (e.g., unresolved review 
comments). 

Where a word or expression is used in a meaning more specific than or different from the 
common usage defined in mainstream dictionaries, it is defined in Appendix A: Glossary. Its first 
occurrence is hyperlinked to that definition. 

3 Considerations in evaluating Hazard Analysis  
RIL-1101 addresses primarily factors contributing to the degradation of a safety function, rooted 
in engineering21. These factors are part of a network of causes or dependencies (see Appendix 
K) that result in some defect or deficiency in the system, which could lead to the degradation of 
a safety function. RIL-1101 refers to these factors as contributory hazards.  

 
                                                 
21 rather than random hardware failures during operation 

Controller 
(organization;  

team; individual; automation) 

Controlled entity, e.g.:  

Process; system; device 

Control signal 

(command; corrective action; actuation) 

Process state 

(sensed; measured; estimated; assessed) 
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However, recent experience has revealed that propagation paths of hazards are not always 
linear, and cause-effect relationships are not always direct chains. The indirect propagation of 
effects (e.g., degradation of a safety function), contributory interactions and propagation paths 
are not well understood. For example, [11] characterizes these as “issues that transcend the 
functions of individual components and involve interactions between components within the 
system as well as the interaction of the system with the environment.” Traditional techniques for 
hazard analysis, as used in common practice, such as fault tree analysis (FTA) [12][13], and 
failure modes and effects analysis for design (DFMEA) [14][15], do not support the discovery of 
such contributory hazards well. RIL-1101 is intended to address these gaps. 

Experience with complex systems in general [16] and with digital systems for critical functions in 
diverse application sectors  has revealed that common practice does not assure absence of 
conditions contributing to hazards.  

The difficulties NRO experienced (e.g., as reported to ACRS [17]) are examples of the more 
general trends of increasing system complexity and increasing contribution of systemic causes 
towards malfunctions. Generally accepted engineering standards22 do not provide sufficiently 
specific guidance to ensure their technically consistent, efficient application to digital systems 
with such complexity. Such reviews require significant additional information [17] from the 
applicant, significant additional review effort and reliance on judgment, in order to address the 
gap in the existing review guidance. These gaps were identified in [19] as uncertainties in the 
assurance of digital safety systems. As depicted in Figure 3, RIL-1101 focuses on the challenges 
from these uncertainties, characterized as contributory hazards, and identifies corresponding 
conditions that reduce the respective hazard spaces. 

                                                 
22 This expression is mentioned in 10 CFR 50.34(a)(ii)(B); examples are referenced in NRC’s regulatory 
guides. 

Figure 2: Example of a dependency structure (cyclic graph) 
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Figure 3: Contributory hazard space in focus 
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3.1 Evaluation of Overall Hazard Analysis  
From the wide range of approaches, methods and techniques to perform hazard analysis, the 
selection should be well-matched to the object23 being analyzed. The performers (typically a 
team) should have the requisite24 competence. Obscure hazardous conditions are difficult to 
identify. The corresponding hazard controls should be adequate. The analysis should flow down 
to all the elements and factors upon which the safety function or its integrity depends. Table 1 
includes such overarching considerations in evaluating the HA of a digital safety system. As 
these factors affect the quality of HA broadly, they are treated as contributory hazards in Table 1. 
Key considerations are explained in notes after the table and in Appendices C and F.  

Table 1: Considerations in broadly evaluating hazard analysis 
Contributory hazard Examples of conditions that reduce the hazard space 
ID 
H-0- 

Description ID 
H-0- 

Description  

1 HA approach is not suitable to 
the system, element, 
intermediate-phase work 
product, process or activity 
being analyzed. 

1G The selected HA approach is well-matched to the system 
aspect, element, development phase, or work product being 
analyzed, with considerations discussed in Appendix C. 

2 Competence in performing HA 
is not adequate for the system 
being analyzed. 
(Also see H-SRE-1) 

2G1 The HA is performed with the requisite complement of 
competence; see Appendix C.4  
and [H-culture-6G2]. 
Also see Appendix F.4 

3 Validation is inadequate – 
impaired, because people in the 
developer’s organization are 
unable to think independently. 
Intra-organizational reviews 
suffer from “GroupThink.” 
See Appendix F.4.4 
 

3G1 The HA, including elements upon which it is dependent 
(see: H0-8; H0-9; Appendix K)↓) and the resulting 
requirements and constraints, is validated (in [21] common 
position (CP) 2.1.3.2.6) independently, without exacerbating 
H-culture-9. Also see Appendix F.3.  
1. The HA-validation team has the requisite competence 

[H0-2G1]. 
2. The HA-validation team provides perspectives and 

background different from the team performing the HA. 
3G2 See Appendix F.2 (diversity and independence) and F.4.4 

(GroupThink) 
6 Hazard controls needed to 

satisfy system constraints 
(which prevent hazards) are 
inadequate 

6G1 Hazard controls are identified and validated to be correct, 
complete, and consistent. 
[H0-7G1↓] 

7 Flow down from the controls 
[H0-6-G1↑] to verifiable 
requirements and constraints is 
inadequate.  

7G1 Requirements and constraints [H0-6G1↑] are formulated and 
validated to be correct, complete, and consistent in 
consideration of the preference25 order 1-4 as follows: 

1. Prevent hazard 

2. Eliminate hazard 

3. Contain hazard (prevent propagation) [H-SR-4G4↓] 

                                                 
23 For example, techniques in common practice such as FTA, FMEA) may not be very helpful in a 
situation confounded with interactions and feedback paths. 
24 Proficiency only in FMEA for random hardware failures may not suffice. 
25 It is based on extent of reduction of hazard space, potential fault space, and uncertainty space. 

http://www.psysr.org/about/pubs_resources/groupthink%20overview.htm
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Contributory hazard Examples of conditions that reduce the hazard space 
ID 
H-0- 

Description ID 
H-0- 

Description  

4. Monitor, detect and mitigate26 hazard 

4.1. Monitor [H-SR-4G1↓] 

4.2. Detect [H-SR-4G2↓] 

4.3. Intervene [H-SR-4G3↓ ] 

4.4. Notify (some independent agent)27 [H-SR-4G5↓ ] 

4.5. (Recipient28 of the notification) Perform safety-
supporting function  

4.6. Confirm safe state 

8 The analysis is not 
propagated to elements in an 
NPP on which the system 
being analyzed depends or 
the safety functions 
allocated to it depend. 
See in Table 4 
 H-ProcState-5 

8G1 All dependencies  (see Appendix K) (see: Appendix C Section 
C.1.1) are identified and analyzed, to confirm that a safety 
function is not degraded. 
Also see H-culture-12G2. 
 
 

9 The analysis is not propagated 
to processes and process 
activities on which the integrity 
of the system being analyzed 
depends or the safety functions 
allocated to it depend. 
See in Table 4 

H-ProcState-6↓ 
H-ProcState-7↓ 
H-ProcState-8↓ 

9-G All dependencies are identified and analyzed, to assure that a 
safety function of the engineered system is not degraded. 
Processes include organizational processes, management 
processes, supporting processes, and technical processes. 
Also see H-culture-12G2. 
 

10 Propagated effect of changes 
introduces inconsistencies, 
invalidating previously 
performed HA. 

10G1 Starting from the initial HA performed on the functional 
concept (in [21] CP 2.1.3.2.3) the HA is revised at every 
phase29 in the development lifecycle, with change control 
management and configuration management. 
Examples of contributory hazards that may be discovered 
include: 
1. Hardware faults  
2. Unanalyzed conditions [H-S-1.1.1G1↑]. 

10G2 The HA has been iterated until no new hazards are identified 
[H0_8G1↑].  

1. Added monitoring, detection, mitigation or other 
requirement has not introduced some new hazard. 

2. Some complexity-increasing side effect from the change 

                                                 
26 Maintain safe state 
27 e.g.: Operator; another automation device or system. 
28 e.g.: Operator; another automation device or system. 
29 Also apply these considerations to successive phases of the system development lifecycle. 
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Contributory hazard Examples of conditions that reduce the hazard space 
ID 
H-0- 

Description ID 
H-0- 

Description  

has not introduced some other, yet-unanalyzed hazard. 
10.1 Hazard-introducing effect of 

iterations is not well 
understood. 

10.1G H0-9.1{G1 – G7}↑ 
H0-10-G1↑ 
H0-10-G2↑ 
 

11 Required hazard control action 
is degraded. 

11G1 Each required control action is analyzed for ways it can lead 
to the hazard; for example: 

1. Not provided; for example: 
1.1. Data sent on a communication bus is not delivered. 

2. Provided when not needed 

3. Incorrect state transition (e.g., combination of 4-5 
below). 

4. Incorrect value provided; for example: 
4.1. Invalid data 
4.2. Stale input value is treated inconsistently. 
4.3. Undefined type of data 
4.4. Incorrect message format 
4.5. Incorrect initialization 

5. Provided at the wrong time or out of sequence 

6. Provided for too long a duration (e.g., for continuous-
control functions). 

7. Provided for too short a duration; for example: 
7.1. Signal is de-activated too early (e.g., for 

continuous-control functions). 

8. Intermittent, when required to be steady; for example: 
8.1. Chatter or flutter 
8.2. Pulse; spike 
8.3. Degradation is erratic 

9. Interferes with another action; for example: 

9.1. Deprives access to a needed resource; for example: 
9.1.1. “Babbling idiot” 
9.1.2. Locking up and not releasing resource 

9.2. Corrupts needed information 

10.  Byzantine behavior 
12 Hazards in modes of operation 

other than the “at power” 
normal mode, or in transition 
from one mode to another are 
not adequately understood or 
analyzed. 

12G1 HA is performed for all modes of operation (in [21] CP 
2.1.3.2.7) and corresponding requirements & constraints are 
derived (e.g., see checklist in Appendix H). 

As HA evaluation progresses further, the selection of information from Sections 3.2-3.9 will be 
case-specific, depending upon the nature of the object and completeness of product-based 
analysis. 

3.1.1 Considerations for hazards within the system being analyzed 
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Referring to Table 1, the following notes explain certain contributors to hazards within the system 
being analyzed: 

H0-{6-7; 11}: These factors address the flow down from direct hazards to system 
constraints to required controls to verifiable requirements and constraints. Sections 3.2-
3.9 elaborate on hazard-contributors encountered in the flow down. 

H0-{8,9}: Whereas “ineffective hazard recognition” has been recognized as a serious 
issue [2], unrecognized dependencies (see Appendix C Section C.1.1) are an increasing 
contributor to this issue, as the complexity of organizations, processes, and systems 
increases. In addition to the lack of awareness, lapses could occur because of inability to 
track and maintain a consistent understanding of the dependencies. 

H0-8: The extent of dependencies in a system and its elements may not be fully 
understood or may not be understood in the same way across all parties engaged in 
developing the system or multiple changes might introduce obscurity. The intent of 
reviewing for dependencies  is to check that the system on which HA is to be performed  
and its context (environment) are correctly identified, the dependencies correctly 
understood, conditions that may degrade a safety function (external and internal) are 
identified, and the commensurate constraints are formulated.  

3.1.2 Considerations for hazards contributed through processes  
When absence of hazards cannot be ascertained from HA of the system, certain residual 
uncertainties are addressed by extending HA to the corresponding process-
dependencies. When HA has to be extended to processes, a third party certification of 
the system could provide the requisite confirmation that all process-related dependencies 
have been identified and their effects analyzed.  

H0-9: The extent of dependencies on processes, including the physical processes in the 
plant, may not be fully understood. For example, Figure 4 depicts an abstraction of 
process-related direct dependencies. Figure 4 is an example of a generic dependency 
structure, illustrating how the transformation of a work product depends upon the process 
activity and factors upon which that activity depends. This process dependency structure 
can be applied to organize and understand the contribution of organizational processes 
(Section 3.2), as well as technical processes (Section 3.3). This process dependency 
structure is also applicable to any other creative, but deterministic, activity, from which 
predictable, verifiable, analyzable results are needed. Each activity step is affected by the 
procedures and resources, such as competence (e.g., H-culture-6G2), information, tool, 
or other aid) employed in performing that activity. The quality of the work product 
depends upon the quality of the procedures, resources and their utilization, that is, any 
deficiency is a contributory hazard).  Following are examples, indicating less than 
adequate controls and thus less than adequate understanding of inter-dependencies 
across processes.  

1. Organizational processes lack such controls; or  

2. The organization does not apply such controls to the feeder processes or food chain 
or supply chain; or 

3. The organization does not plan for such understanding at the system concept phase 
of the lifecycle.  

H0-10.1: When HA is performed at some stage in the development lifecycle of the system 
and its elements, additional safety requirements and constraints could be discovered. 
Inclusion of those requirements30 could change the system concept or design, requiring 
another HA cycle to evaluate the impact of such changes. The cumulative and cascading 

                                                 
30 Incorrect, incomplete, inconsistent, or ambiguous safety requirements can lead to hazards. 
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effects of these iterations may not be well understood, with the potential to miss subtle 
implications of a change. 

 
Figure 4: Factors influencing the work product of development 

3.2 Evaluation of hazard analysis - organizational processes 
Organizational processes include management processes, infrastructural processes, and other 
supporting processes. The term, “supporting processes” includes change impact analysis 
process and maintenance processes upon which the system design is predicated. 

The culture of an organization with respect to safety engineering and the processes of 
managing and engineering safety (included within “organizational processes”) have pervasive, 
permeating effects, that is, the contribution of culture-dependent factors cannot be analyzed31 
as causal events. In software-dependent systems, where the hazard space is much larger than, 
say, in engineered mechanical structures, these contributors can render the hazards 
unanalyzable.   

                                                 
31 This aspect of HA roughly corresponds to but is significantly broader than the HA mentioned in [6] 
Table 1a. 

Intent, needs, requirements, specifications, procedures, constraints 

Incoming item, e.g.:  
work product of preceding phase 

Process 
activity Work Product 

Resources 

applied to 

Aids 

Information 

Others 

Tools 

Human 
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Table 2 identifies some common concerns. 

Table 2: Organization’s culture: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
culture-  

Description ID 
H-
culture- 

Description  

1 The reward system favors short-term 
goals, placing cost and schedule over 
safety and quality (sliding on a 
slippery slope, not fully cognizant of 
the cumulative effect of 
compromises). 
(Adapted from Annex B in [25]) 

1G1 The reward system supports and motivates the 
effective achievement of safety. Safety is the 
highest priority.  
Also see Appendix F.3. 

1G2 The reward system penalizes those who take 
shortcuts that jeopardize safety or quality. 

1G3 The organization has integrity32. 
1G3.1 The process33 state is consistent between reality 

and its representation. 
1G4 Lifecycle economics supporting safety and quality 

drive the organization. 
2 Accountability (e.g., as illustrated in 

Figure 2 and Figure 4)  is not 
traceable; achievement of safety 
cannot be assured. 
Individual accountability becomes 
lost, because (often without careful 
reflection) individuals make decisions 
and evaluate information based on the 
master premise of the organization. 
See Appendix F.2. 

2G1 The process assures the accountability for effective 
achievement of safety. 

2G1.1 Influencing factors are organized in an effective 
control structure34 (Figure 2), without exacerbating 
H-culture-9. Also see Appendix F.3. 

2G2 Management commitment to safety motivates 
effective achievement of safety. 

3 Personnel assessing safety, quality, 
and their governing processes are 
influenced unduly by those 
responsible for execution   [H-culture-
1↑] 

3G1 Although information in the processes for safety, 
quality, verification & validation, and configuration 
management should be functionally integrated with 
the main development process to prevent 
information-loss, the performing personnel are 
independent (free from undue influence) without 
exacerbating H-culture-9. Also see Appendix F.3. 

4 Personnel feel pressure to conform: 
1. "Stacking the deck" when forming 

review groups. 
2. Dissenter is ostracized or labeled 

as "not a team player" 
3. Dissent reflects negatively on 

performance reviews. 
4. "Minority dissenter" is labeled or 

treated as "troublemaker" or "not a 
team player" or "whistleblower."  

5. Concerned employees fear 
repercussion. [H-culture-1↑] 

4G1 Such behavior is discouraged and penalized. See 
Appendix F.4.4. 

4G2 The process uses diversity to advantage. 
1. Intellectual diversity is sought, valued, and 

integrated in all processes. 
2. “Speaking up” (raising safety concern) is 

rewarded. 
3. See Appendix F.4.2 and F.4.4. 

4G3 Supporting communication and decision-making 
channels exist and the management encourages 
their usage (e.g., individual can express safety 
concern directly to those ultimately responsible). 
See Appendix F.4.2. 

                                                 
32 Integrity: Honesty and strength of will to make a safety conscious decision even when it is not popular. 
33 Applicable to any activity in any process in the organization, influenced by its management. 
34 It is a comprehensive safety governance structure, including the higher levels of management. 
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 4G4 Each identified hazard is logged and tracked to its 
closure, as explained in Appendix C.3.2-C.3.3.  
See Appendix F. 

4.1 
Diminished team ability to seek and 
use intellectual diversity. 

4.1G1 Avoid negative behavior and encourage expression 
of diverse viewpoints, as explained in Appendix 
F.4.3. 

5 Management reacts only when there is 
a problem in the field. 
(Adapted from Annex B in [25]) 

5G1 Safety and quality issues are discovered and 
resolved from the earliest stage in the product 
lifecycle. See Appendix F. 

5G2 The organizational culture has a strongly 
established master premise of “safety” as the basis 
for decisions and daily activity. This becomes the 
guiding premise for analyzing and reducing the 
hazard space. See Appendix F. 

6 The required resources (quality; 
quantity) are not planned or allocated 
in a timely manner. 

6G1 Resources required35 are estimated with adequate 
accuracy36 in a timely manner. 

6G2 The required resources are allocated in time. 
6G3 Skilled resources have the competence 

commensurate to the activity assigned. [H0-2G1; 
H-SRE-1G{1,2,3}] 

6G4 Teams ensure that their knowledge and mental 
models are properly considered by using 
communication processes that improve collective 
mindfulness. See Appendix F.4. 

7 A critical cognitive task is interrupted 
to switch its assignee across multiple 
tasks; such interruptions could 
increase the potential of mistakes, 
thereby increasing the potential fault 
space or contributory hazard space. 
(Adapted from Annex B in [25]) 

7G1 Run critical cognitive tasks to completion (default 
practice of the organization). Interruption is 
allowed only when the task has progressed to a 
stable, well-understood state, such that the 
interruption does not increase the hazard space. 

8 Processes do not produce 
deterministic, predictable results. 
 

8G1 A defined, documented, disciplined process is 
followed in all dimensions at all levels, as needed 
for consistent achievement of safety; for example: 

1. Management 
2. Engineering 
3. Procurement 
4. Verification 
5. Validation 
6. Safety assessment  
7. Safety audit 

8G2 The organization follows disciplined 
communication and cognitive processes to achieve 
collective mindfulness and know when to adjust 
and adapt the standardized processes, and learn 
from the shortcomings. See Appendix F.2 and F.4. 

9 When system lifecycle activities are 
distributed across multiple 
organizations or parts of the same 

9G1 Cross-organizational dependencies are understood 
clearly..  
Also see H-culture-8G2. 

                                                 
35 Example: Type of competence; degree or level of competence or proficiency; amount of effort time 
36 Implied constraint: Processes are adequately designed and controlled. [H0-9.1G1; H-culture-8G1; H-
OTproc-1G] 
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organization, safety-relevant 
information37 is not communicated 
efficiently, letting key items of 
information “fall through the cracks.” 
See note at end of table. 
[H-SRE-7↓] 
 

9G1.1 The organization maintains cross-organizational 
connections that improve collective mindfulness; 
for example, using working groups. See Appendix 
F. 

9G2 Organizational culture promotes open collaborative 
communications across boundaries to realize a 
system that achieves its safety goals. 
See H-culture-{12G2, 12G3}. 

9G3 Decomposition of safety goals from NPP level 
analysis and allocation to safety related systems is 
complete, correct, and consistent and unambiguous. 

10 Mistakes repeat. 10G1 Continuous improvement is integral to all 
processes. See Appendix F.4. 

11 Heavy dependence on testing38 at the 
end of the product development cycle. 
By that stage:  
1. It often becomes infeasible to 

correct the problem soundly.  
2. Patches increase complexity and 

impair verifiability. 

11G1 H-culture-5G1 
11G2 Technical processes are designed to prevent safety 

and quality issues as early in the development 
lifecycle as possible. 
See Appendix F. 

11G3 Processes for safety, quality, V&V and 
configuration control are planned39 and designed to 
prevent and discover safety and quality issues as 
early in the development lifecycle as possible. 
See H-culture-12G2, 12G3} and Appendix F.2. 

12 Dependence on implicit information, 
e.g. implicit assumptions. [H-
ProcState-4H0_5↑] 
[H-OTproc-8↓] 
[H-SR-11↓] 

12G1 All information upon which assurability of safety 
depends is explicit and configuration controlled. 

12G2 Even while making information explicit and 
unambiguous, the organization maintains collective 
mindfulness by persisting in the evaluation of 
mental models and the development of more 
accurate and nuanced mental models. This 
necessarily involves continuous situation awareness 
of the context and the cultivation of diverse 
perspectives. See Appendix F. 

12G3 The organization establishes a system for tracking 
the basis and premise for engineering decisions. 
See Appendix F.2 and Appendix J. 

Note for H-culture-9: Cross-disciplinary, cross-organizational communications quality is affected by stretched lines 
of communication across the NPP operator (the utility-licensee), the supplier of the plant, the supplier of the DI&C 
system, and the supplier of components of the DI&C system. 

3.3 Evaluation of hazard analysis - technical processes 

Improperly designed or executed technical processes can lead to defects in a system. 
Examples of technical processes include, but are not limited to the following: 

• Requirements engineering – see Section 3.5. 
• Architecture engineering – see Section 3.6. 

                                                 
37 Implied constraint: H0-9G 
38 It is unlikely that testing as the only means of verification will suffice. 
39 Examples of work products: Safety plan; quality plan; V&V plan, demonstrating completeness of 
coverage. 
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• Detailed design - see Section 3.8. 
• Implementation - see Section 3.9. 
• Verification activities by those performing these development activities. 
• Third party verification. 
• Process assessment. 
• Process audit.  

Examples of some general contributory hazards and conditions to reduce the respective hazard 
spaces are given in Table 3 (adapted from Appendix A.1 in [19]), premised on the satisfaction of 
constraints identified in Table 2. 

Table 3: Technical processes: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
OTproc-  

Description ID 
H- 
OTproc- 

Description  

1 Technical processes are not 
deterministic [H-culture-8↑], that 
is, correctness of results cannot be 
assured. 

1G The organization’s technical processes are defined to a 
level of detail such that for each work element 
involved, there is a specification of the competence, 
tools, information, and other resources required (see 
Figure 4) to execute that work element correctly and to 
integrate results of such work elements correctly. [H-
culture-8G1↑]. 
Also see H-culture-8G2. 

2 Any process variable in any work 
element may contribute to some 
defect, if not adequately 
controlled.  
[H-OTproc-1↑] 

2G Each process variable in each work element is 
controlled and supported with commensurate methods, 
tools, and competence to execute that work element 
correctly and to integrate results of such work 
elements correctly.. 
[H-OTproc-1G↑] (Figure 2; Figure 4) 

3 Cognitive load (or intellectual 
complexity) imposed by a 
specified work element exceeds 
the capability of assigned 
personnel. See Note. 
 [H-culture-6↑] 

3G1 The cognitive load imposed by a specified work 
element, including an integration activity, is assured to 
be well within the capability40 of personnel available 
to perform that activity. 
Also see H-culture-6G4. 

3.1 Difficulty of understanding the 
architecture is a contributor to the 
cognitive load. Example: 
Inadequate description. 

3G2 The system architecture is analyzable and 
comprehensible. [H-OTProc-3G1↑].  
[H-S-1.1G1↓; H-S-2G6↓] 

4 Mistakes (leading to defects) 
occur41; however, technical 
processes are not designed with 
the commensurate robustness and 
resilience to protect from such 
mistakes. 

4G1 The organization’s technical processes include 
processes to detect and recover from mistakes (e.g., 
verification, audit). 
 

4G2 H-culture-8G2. 
 

5 The organization believes 
incorrectly that its processes are 
adequate, exposing it to unknown 
sources of defects, for which it 

5G1 The process is assessed and certified independently.  
5G2 Qualified independent resources assess the process.  

[H-culture-6G1; H-culture-6G2] 
5G3 H-culture-8G2. 

                                                 
40 This may require certification of personnel through a standardized process. 
41 Perfection in human performance is not achievable – at least, not in a sustainable manner. 
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cannot identify the causes. [H0-
9.1↑; H0-9.3↑] 

6 The processes in real-life 
execution deviate from the 
designed processes, resulting in 
exposure to unknown sources of 
defects, for which it cannot 
identify the causes. 

6G1 [H-culture-{1G3.1; 2G1.1} 
6G2 The process in execution is audited independently.  
6G3 Qualified resources are available to audit the process. 
6G4 H-culture-6G4 H-culture-8G2.  

Also see and Appendix F.4. 

7 Less accumulated experience and 
reusable results than in previous 
generation systems,; for example, 
shorter lifecycles of implemented 
systems or configurations leading 
to  
• Less accumulated experience 

on the same item 
• Changing environments for 

the same item 

7G1 H0-9G 
H-culture-{2G1.1; 8G1} 
H-OTproc-{1G; 2G} 

7G2 More rigorous analysis – see Table 1,  
Table 2. 
 
Commensurate conservatively derived requirements 
and constraints. 

7G3 H-culture-{8G2; 12G2; 12G3} 

8 Engineering models lack 
adequate fidelity to reality, i.e. 
modeling abstractions are not 
sound. 

8G1 Modeling abstractions are validated. 
8G2 H-culture-8G2 

Note for H-OTproc-3: Increasing complexity  [16]  of systems, processes, and organizations, involving people from 
multiple organizations, multiple disciplines, multiple locations, and increasing content of software (or other 
implementation of logic) are increasing the contribution to hazards from engineering activities; for example:  
• Requirements engineering (elaborated in Section 3.5; HA results in safety requirements & constraints). 
• Architecture engineering (elaborated in Section 3.6) 
• Software engineering, elaborated in Sections 3.6.4 and 3.8 

3.4 Evaluation of Hazard Analysis - System Concept  
The system concept, sometimes known as the functional concept (of the intended system), is 
described in terms of the initial requirements associated with it and its relationship with its 
environment, including the boundary and the assumptions (see Appendix J) on which these are 
based. Sometimes, the associated requirements are embodied in a “concept of operations” 
document. Sometimes HA42 of a functional concept is called preliminary hazard analysis 
(PHA43) – (also see Appendix C-2.  

In practice, the degree of specificity of a system concept varies over a wide range; sometimes 
the initial concept is so vague that it leads to misunderstandings, lapses, or inconsistencies, 
which contribute to hazards. Application and evaluation of HA (Section 3.1) is most effective in 
the concept phase of a system development lifecycle. Avoidance of these contributors to 
hazards (see Table 1; Table 21 tasks T1-T3.) requires clear description and tracking of the 
evolving system concept and its relationship with its environment, as discussed in this section. 

3.4.1 Hazards associated with the environment of the DI&C system  
Hazards can be contributed through an ill-understood relationship between the conceived 
system and its environment, some examples of which are given in Table 4, Table 6, and Table 7. 
These tables also identify conditions that reduce the respective hazard spaces.  
                                                 
42 It roughly corresponds to but is significantly broader than the HA mentioned in [6] Table 1b. 
43 These are good candidates for discussion with the applicant before it submits the license application. 
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Hazards (including contributory hazards) may originate in the environment of the analyzed DI&C 
system, or may originate in the DI&C system, or may result from their interactions. See 
Appendix E.4 for hazard sources from the physical environment. See Appendix E.5 for ways in 
which a DI&C system may affect its environment adversely.   

Section 3.4.1.1 includes examples of hazards related to interactions with the plant processes.  

Section 3.4.1.2 includes examples of hazards related to interactions with instruments, controls, 
and networks in the system’s environment.  

Section 3.4.1.3 includes examples of hazards contributed through human-interaction aspect of 
the system’s environment.  

Section 3.4.2 includes examples of hazards contributed through deficiencies in the architectural 
concept. Conditions reducing the hazard space are applicable recursively to architecture inside 
the intended safety system in every phase in the development lifecycle (from conception to 
implementation), to every level in the system architecture integration hierarchy, and to 
transformations from one level to another. 

3.4.1.1 Hazards related to interaction with plant  

Often, hazards arise from an inconsistency between the perceived process state and the real 
process state. Here, the term “process state” is used in the general sense, for example: the 
state of the nuclear reaction process, the state of some supporting physical process in the NPP, 
the state of control automation, the state of some instrument, or even the degradation process 
of some device. Hazards can also arise from unanalyzed conditions in the joint behavior of the 
plant (including equipment and processes) and the safety system. Table 4 shows examples of 
contributory hazards and conditions that reduce the respective hazard space. 

Table 4: Interaction with plant: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H- 
Proc 
State 
-  

Description ID 
H- Proc 
State - 

Description  

1 The nature of change in some 
monitored physical phenomenon44 
in the process of interest in the 
environment of the digital safety 
system is not well understood or 
not characterized correctly.  
Also see H-SR-23 

1G1 The physical processes45 in the monitored phenomenon 
are modeled and represented correctly; for example: 

1G1.1 • Nature of variation over time 
1G1.2 • Dependencies on other phenomena 
1G2 The perceived state matches reality with the fidelity 

required in value and time. 

1.1 The temporal aspect of change in 
a continuously varying 
phenomenon is not well 
understood or not characterized 
correctly. 

1.1G1 Temporal behavior of a continuously varying 
phenomenon is characterized correctly. such that timing 
requirements for monitoring it can be derived without 
loss of fidelity. This includes timing relationships across 
monitored phenomena, 

1.1G1.1 The physics of the phenomenon (e.g., dynamic behavior, 

                                                 
44 Examples: Pressure; temperature; flow; neutron flux density 
45 Examples: Energy-conversion; equipment degradation; component degradation 
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including disturbances) is understood well and 
characterized mathematically. 

1.2 The temporal aspect of change in 
a sporadic phenomenon is not 
well understood or not 
characterized correctly. 

1.2G1 
Requirements for reacting to sporadic events (e.g., 
sudden change) include the minimum inter-event arrival 
time, based on the physics of the event-generating 
process.  

1.2G2 Signal indicating event of interest is not filtered out. 

1.2G3 Signal indicating event of interest is not missed due to 
inadequate sampling, as determined through 
mathematical analysis. 

1.2G4 Capturing event of interest does not disrupt any other 
action upon which a safety function depends. 

2 
 

Unanalyzed joint behavior of the 
safety system and the plant 
equipment and processes degrades 
a safety function. 
 

2G1 
Safety system and its environment, including the NPP 
equipment and processes are analyzed as a coupled 
system with sufficiently deep models of the behaviors 
(e.g.: processes; instruments; controls; networks) to 
represent reality with fidelity46. 

3 Allocation of safety functions and 
properties from a system at a 
higher level of integration to one 
at a lower level, is not correct, 
complete or consistent, or is 
ambiguous. 
See notes. 
 

3G1 
Relationships with losses of concern identified at NPP 
level analysis and commensurate safety goals formulated 
in NPP level analysis are explicit. 

3G2 
Decomposition of safety goals into required safety 
functions (design bases) is complete, correct, and 
consistent and unambiguous. 

3G3 
Allocation of safety requirements to safety related 
systems47) is complete, correct, consistent and 
unambiguous. Also see Table 9. 

3G4 
Allocation of safety properties, including corresponding 
decomposition or flow-down or derivation of constraints, 
is complete, correct, and consistent. See Section 3.5.1.1. 
Table 8. 

3G5 
The boundary of the system being analyzed is well-
defined with respect to its environment (in [19] CP 
2.1.3.2.1). 

3G6 
Interface to and interactions with the plant are specified 
and constrained in a manner that the system is 
understandable [H-S-2↑], verifiable48 [H-S-1.1],  and 
free from interference [H-S-3]). Examples of elements in 
the environment include interfaces to and interactions 
with: 
1. Sensors 
2. Actuators 
3. Services needed; for example: 
3.1. Electricity 
3.2. Air flow 
3.3. Compressed air 
3.4. Water 
4. Human-machine interfaces 
4.1. Roles, responsibilities, functions. 
4.2. Procedures specifying 4.1. 

                                                 
46 Traditional FMEA and FTA of I&C systems in the plant will not suffice, as noted elsewhere. 
47 If there are multiple levels of assembly (integration) this criterion applies to each level-pair. 
48 i.e., satisfaction of the constraint or specification is verifiable by analyzing the system concept. 
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3G7 
Constraints on other elements in the environment of the 
system are explicit. 
Restrictions & constraints placed on the system are 
explicit; example constraints: 
1. Compatibility with existing systems. 
2. Physical and natural environment.  
3. Protection against propagation of non-safety system 

faults and failures. 
3G8 Restrictions & constraints placed on the system are 

explicit; example constraints: 
4. Compatibility with existing systems. 
5. Physical and natural environment.  
6. Protection against propagation of non-safety system 

faults and failures. 
4 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interactions of the system with its 
environment, including effects of 
assumptions, are not well-
understood. [H-ProcState-3↑] 
See note. 
(In [19] Appendix A.3 item 3). 
[H-culture-12↓] 

4G1 See: H-ProcState-3G7; H-culture-{12G2, 12G3}; 
Appendix J. 

4G1.1 [H-culture-12G1↓]  
The organizational processes (Section 3.2) include 
explicit tasks or activities to validate each assumption in 
time to avoid adverse impact on the system safety 
properties and HA activities. 
Also see H-culture-{12G2, 12G3}. 

4G1.2 If an assumption is found to be invalid or there is a 
change from the previous assumption:  

1. There is a corresponding change impact analysis, 
maintained as an independently evaluated 
configuration item. 

2. The affected part of the HA is repeated 

3. Commensurate changes in constraints or 
requirements are identified. 

4. There is an analysis of the impact of those changes. 

5. The change impact analysis is an independently 
evaluated configuration item. 

4G2 Hazards from the physical environment are analyzed. 
See Appendix E.4 

4G3 Hazards from the DI&C system on its environment are 
analyzed. See Appendix E.5 

Note for H-ProcState-{3-4}: The intent of reviewing for these factors is to check that the system on which HA is to 
be performed  and its context (environment) are correctly identified, the dependencies are correctly understood, the 
primary hazards (external and internal) are identified, and the commensurate constraints are identified. 
Note for H-ProcState-3: When a large complex system, such as an NPP (including its environment and 
processes for operation and maintenance) is decomposed into manageable subsystems and components, the 
constraints necessary to prevent the losses at the top level (e.g., NPP-level) may become obscure. For 
example, subtle couplings across the decomposed elements might arise. In an evolving configuration of the 
overall (e.g., NPP-level) system, the boundary of the system being analyzed and assumptions (see 
Appendix J) about its environment may not be well-defined, leading to appropriate considerations “falling 
through the cracks.” 
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Figure 5 depicts a “progressive49” migration from normal operational process state region 
(shown in green) to an unsafe state region (shown in red). Actions to avoid the unsafe state 
region (i.e. to effect safe recovery) need some time (shown as the brown region). To allow for 
the needed time, the temporal aspect of change in the monitored phenomena must be 
understood well and departure  (shown in yellow) from normal operational state, monitored. 
Intervention must be completed within this (yellow) region. 

 
  

                                                 
49 Premise: Degradation is not sudden or unpredictable, and progression can be monitored. 

Unsafe region 

Normal 
operationa

l region 

Boundary of 
safe recovery 

Intervention must be  

completed in this 
region 

Figure 5: Regions of state space for hazard analysis 
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Table 5: Interdependencies: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H- 
Dep 
-  

Description ID 
H- 
Dep 
- 

Description  

1 Unrecognized inter-
dependencies in the system: 
Inter-dependencies in the 
system, its elements, and its 
environment (see H-ProcState-
4) are not understood, 
recognized or explicitly 
identified, leaving some 
vulnerability, which can lead to 
the degradation of a safety 
function. 
[H0_8↑] 

1G1 All inter-dependent systems, elements, processes, and factors 
affecting a safety function are identified.  
See H-culture-{8G2, 9G2}. 

1G1.1 Design rationale is recorded and tracked. See Appendix F.2. 
1G2 The items identified in are configuration items.  
1G3 The inter-dependencies or relationships among these items are 

unambiguously described, especially those affecting emergent 
behavior. [H-ProcState-5G1↑] 
Also see H-culture-{12G2, 12G3}. 

1G4 Semantics of the relationships are explicit: Relationships may 
not merely be sequential (chained) or tree-structures, but also 
cycles – often feedback control loops50. [H-ProcState-5G1↑] 

1G5 The inter-relationships of these configuration items are 
identified (e.g., by means of an overall NPP-level architecture).  
[H-ProcState-5G1↑] 

1G6 These inter-relationships are also a configuration item or set of 
configuration items. [H-ProcState-5G5↑] 

1G7 Independent verification assures that these configuration items 
represent reality. 
[H0-8.1G1↑] 

1G8 Effect of these dependencies is analyzed to prove that the 
safety function is not degraded. 

1G9 Any change in any of these configuration items is managed 
through a change control process, with a documented analysis 
of the impact of change. (Generalized from CP 2.7.3.1.5 in 
[21]) [H-ProcState-5G1↑] 
See Appendix F.2. 

1G10 The change impact analysis is independently verified. [H-
ProcState-5G8↑] 

1G11 The change impact analysis is a configuration item. [H-
ProcState-5G8↑] 

1.1 Dependencies through the 
environment of the digital 
safety system are not 
recognized; for example: 
• The physical 
processes 
• Degraded 
behavior of related 
instrumentation and peripheral 
equipment 

1.1G1 Effect of these dependencies is analyzed to prove that the 
safety function is not degraded. 

1.1G2 H-culture-8G2 

2 Unrecognized inter-
dependencies in the 
development process: Inter-
dependencies in the system 
development process, feeder 

2G1 All inter-dependent processes (including feeder and supporting 
processes), resources used in these processes and factors 
affecting these processes and resources are identified (e.g., see 
Figure 4).  
See H-culture-{8G2, 9G2}. 

                                                 
50 Contrast with a chain of events initiated by failure of a hardware component 
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processes, supporting 
processes, elements, and 
environments, are not 
understood, leaving some 
vulnerability, which can lead to 
a defect in the system, which 
could lead to the degradation of 
a safety function. [H-0-9↑] 

2G2 These are configuration controlled items (henceforth, 
configuration items). [H-ProcState-6G1↑] 

2G3 The inter-dependencies or relationships among these items are 
unambiguously described, including cycles created through 
feedback loops51. [H-ProcState-6G1↑] 
Also see H-culture-{12G2, 12G3}. 

2G4 The inter-relationships across these configuration items are 
identified (e.g., by means of an overall process architecture), 
and are also a configuration item or set of configuration items. 
[H-ProcState-6G1↑] 

2G5 Some combination of independent assessment, audit, and 
verification assures that these configuration items represent 
reality. [H-ProcState-6G1↑] 

2G6 Any change in any of these configuration items is managed 
through a change control process. [H-ProcState-6G1↑] 

2G7 Effect of these dependencies is analyzed to prove that the 
safety function is not degraded. 

2G8 H-culture-8G2 
3 Dependencies through 

supporting services and 
processes are not recognized 

3G1 Effect of these dependencies is analyzed to prove that the 
safety function is not degraded. 
See H-culture-{8G2, 9G2}. 

3G2 H-culture-8G2 
4 Dependencies through 

resource52 sharing are not 
recognized; examples: 
• Contention 
for the shared resource 
• Corruption of 
resource ( e.g., data) 

4G1 Effect of resource-sharing is analyzed to prove that the safety 
function is not degraded. 
See H-culture-{8G2, 9G2}. 

Note: Whereas “ineffective hazard recognition” has been recognized as a serious issue [1], unrecognized 
dependencies are an increasing contributor to this issue, as the complexity of organizations, processes, and systems 
is increasing. In addition to the lack of awareness, lapses could occur because of inability to track and maintain a 
consistent understanding of the dependencies. The state of practice in representing and analyzing such dependencies 
is relatively weak, as discussed in Appendix C. 

 

3.4.1.2 Contributory hazards from NPP-wide I&C architecture 
The scope of NPP-wide system architecture includes the safety system under evaluation and its 
relationship with its environment, that is, all systems, elements, processes and conditions that 
support or affect the performance of a safety function. “Relationship” includes interfaces, 
interconnections, and interactions, whether these are direct, intended, explicit, static, “normal,” 
indirect, implicit, unintended, dynamic, or “abnormal.” Any relationship that affects the 
performance of a safety function is a dependency. HA of the NPP-wide I&C architecture should 
examine it for hazards relevant to the safety related system to be analyzed. Figure 6 provides a 
simplified view. 

                                                 
51 These can also be analyzed as control loops influencing safety properties of the affected system.  
52 Examples: Skilled resources for development; Computing memory or processor-time during execution. 
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Constraints on the NPP-wide I&C architecture are derived from the quality53 attributes or 
properties of the safety related system being analyzed. Quality attributes are discussed in 
Section 3.5.1.1, including Table 8, which also applies to the NPP-wide I&C architecture. 

Note: Criteria for the HA-evaluation the NPP-wide architecture are predicated on the correct 
and complete performance of HA, as illustrated in Table 1, including considerations of 
combinations of multiple contributory hazards, exemplified through Table 4, Table 2, Table 3, 
Table 6, and Table 7. 

Table 13, derived from considerations in Table 8, also applies to the NPP-wide I&C architecture. 
in the context of hazards contributed through interference. 

 

 

  

                                                 
53 Other terms for these properties: Quality-of-service (QoS) properties; non-functional requirements 

 NPP-wide I&C  architecture 
NPP-level HA 

Losses to be prevented 

Hazards leading to losses 

Preventative constraints 
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Safety 
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I&C 
Safety  
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Other  
(non I&C) 
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Allocation of  
other  
functions 

Other 
systems 

Figure 6: NPP-wide I&C architecture - allocation of functions in concept phase 
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3.4.1.3 Contributory hazards from human machine interactions  
Hazards of the kind grouped in Table 1 - Table 4 could also affect human-automation 
interactions 

Table 6 supplement those with some examples of more specific hazards contributed through 
human-automation interactions and Table 7, those through inadequacies in the associated 
engineering.  

Table 6: Human machine interactions: Examples of Contribution to hazards  
Contributory 
hazard 

Conditions that reduce the hazard space 

ID 
H-
hmi- 

Description 
(e.g., 
Scenario) 

ID 
H-
hmi- 

Description  

1 Inconsistency 
between 
human-
perceived 
process state 
and real 
process state 

1G1 Process state presented to the human represents the real physical state in 
value and time. 

2 Inconsistency 
between 
human-
perceived state 
of an 
instrument54 
and real state 
of the 
instrument 

2G1 Instrument (e.g., actuator) state presented to the human represents the real 
physical state of the instrument in value and time. 

3 Mode 
confusion 

3G1 Human is notified of the current mode and a mode change in progress (the 
loop is closed with feedback). 

3G2 Human has a correct understanding of the mode-change model 
(human is equipped with correct mental model of the mode-switching 
behavior of the automation) 

3G3 Potential for mistaken interpretation of the information presented by the 
human-machine interface is eliminated. 

3G4 Inconsistent behavior of automation is avoided; or, automation detects its 
inconsistency and notifies human. 

3G5 Unintended55 side effects are avoided 
3.1 Confusion 

about line of 
authority (who 
or what entity 
is in control at 
the moment) 

3.1G1 Multiple concurrently active paths of control authority (logical control flow) 
are avoided 

3.1G2 Change of mode by automation without human confirmation is avoided. 
3.1G3 Correct division of tasks is ensured through analysis of human tasks, 

including human-automation interactions. 

                                                 
54 Example: A sensor; an actuator. 
55 Any intended effect is explicit (e.g., as a part of the specification) and analyzed for its effect on a safety 
function. 
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4 Inappropriate 
division and 
allocation of 
tasks between 
human and 
automation. 

4G1 H-OTproc-3G1 

5 Normally 
useful 
cognitive 
processes are 
defeated or 
fooled by a 
particular 
combination 
of conditions 
[11] 

5G1 See H-hmi-6G1 

6 Human 
mental model 
of how the 
system works 
is not 
consistent 
with the 
reality. 

6G1 “How the system works” (the information needed by operating personnel about its 
behavior and needed automation -human interaction) is described clearly, including 
behavior and automation-human interaction under off-normal conditions (e.g.: 
presence of a fault; all combinations of such conditions). 

Table 7: Human machine interaction engineering: Examples of Contribution to hazards  
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
hmiP- 

Description (e.g., Scenario) ID 
H-
hmiP- 

Description  

1 Loss of information across disciplines (e.g., 
automation engineering, human factors 
engineering, control room design). 
[H-culture-9↑][H-SR-3↑] 

1G1 System is engineered holistically, including 
crosscutting analysis. (Adapted from [19] 
Appendix A.3 footnote 82) 

2 Confusing human-machine interface design 2G2 H-hmi-3G3 
3 Cognitive overload 3G3 H-OTproc-3G1 

3.4.2 Contributory hazards in conceptual architecture  
The term “conceptual architecture” refers to the architecture of the system concept, as it evolves 
in relation to its environment (also see Sections 3.4.1.2).  

Here, the focus shifts from the interactions of the conceived system with the environment to its 
internal architecture, as driven by the requirements allocated to it, that is, the inter-relationships 
of the various requirements and constraints to be satisfied by the conceived system. The 
information in Table 8 and Table 13 is applicable to the conceptual architecture, especially with 
respect to the following concerns: 

1. Freedom from interference across redundant divisions [Table 13 H-S-3G3 - 2↑]. 

2. Freedom from interference between a monitoring element and its monitored element [Table 
13 H-S-3G3 - 4↑]. 
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3. Compromise of redundancy through a dependency (e.g., input data; resource-sharing). Also 
see Table 1 item 8-10.  

4. Compromise of redundancy in the concept of voting56 logic. 

The conditions (to reduce the respective hazard spaces) provided in Table 8 and Table 13 apply 
recursively to the finest grain level of the system architecture and recursively to the finest grain 
level of the software architecture. These conditions also apply to the mappings (e.g., through 
composition-decomposition) from one level to another in the architecture hierarchy57 and 
through all stages of derivation of requirements & constraints and the subsequent development 
lifecycle stages (e.g., detailed design and implementation). 

3.4.3 Contributory hazards from conceptualization processes  
Examples of hazards contributed through weaknesses in the cultural and general technical 
processes of the organization (Table 2 and Table 3), which were introduced in Section 3.2, apply 
to the concept phase of the system development lifecycle strongly. 

Requirements engineering (Section 3.5) and architectural engineering (Section 3.6) apply to the 
concept phase also – see Table 12, Table 13, and Table 14.  

Planning the rest of the development lifecycle goes hand in hand with the conceptualization, as 
stated in Appendix C.3 Table 21, tasks T1-T3. 

3.5 Evaluation of hazard analysis - Requirements  
Identifying valid requirements for the digital safety system has been found to be one of the 
weakest links in the overall process, in the experiences of many critical application domains. 
Inadequacy in requirements is one of the most common causes of a system failing to meet 
expectations. Failures traceable to shortcomings in requirements cannot be caught through 
such verification activities as simulation and testing alone. Formal methods do not help in 
understanding intent or eliciting missing requirements, when the intent is not clear [19]. For a 
safety system, requirements and constraints emerge from hazard analysis and are validated 
through independent hazard analysis. Although initial requirements for a digital safety system 
come from a higher level of integration (e.g., from a NPP-level safety analysis), additional 
requirements and constraints are discovered at every phase of the development lifecycle. 

3.5.1 System Requirements  
In the general context of systems engineering, the specification of a primary function, valued 
and required by its user, is called a functional requirement. In the context of digital safety 
systems, example groups of functional requirements include (but are not limited to) monitoring 
departure from a safe state, detecting threshold for intervention, and intervention for mitigating 
the consequence of departure from safe state. Key prerequisite activities for identifying safety 
requirements were discussed in Sections 3.1 (overall hazard analysis, understanding 
dependencies leading to loss events), 3.4.1 (understanding hazards in relation to the 
environment of the safety system), including hazards contributed from inadequate definition of 
the boundary of the safety system, invalid assumptions (see Appendix J), and interactions with 
                                                 
56 Example: In a quad-redundant system for a space system, four computers were connected by a 
multiplexor/de-multiplexor module. A diode in the interconnections failed in an unanticipated way, such 
that the condition was not observed by the 4 computers similarly. (In [19] Appendix A.3 footnote 84) 
57 The mapping could contribute a hazard, e.g., Some abstractions can mask problems. 
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other systems and humans). The analysis reviewed in those sections contributes to an early 
stage of requirements engineering. Given the requirements resulting from those analytical 
activities, Section 3.5.1.1 introduces the concept of associated quality requirements. Section 
3.5.1.1 also introduces the concept of derived quality characteristics or requirements in an 
organizing framework, known as a “quality model” [30]. Section 3.5.1.2 identifies some common 
weaknesses in formulating verifiable requirements, and Section 3.5.1.3 identifies some common 
weaknesses in the associated requirements engineering processes. 

3.5.1.1 Quality requirements  
Figure 7 shows quality requirements associated with functional requirements. In the context of 
this RIL, examples of top-level quality requirements are Safety and Security.  

 

 

For a safety system58, as shown in Figure 8, the “Assurability” property distinguishes it from 
systems that do not require similar assurance59. Figure 8 also shows other quality attributes that 
contribute to or support “Assurability.” The corresponding quality requirements may also be 
viewed as constraints to be satisfied by the digital safety system, that is, constraints on the 
solution space (also known as design space), such that system concepts that do not satisfy 
these constraints are eliminated from further consideration (i.e., the hazard space is reduced). 
Table 8 shows the logical derivation of these constraints (with the derivation relationships shown 
in Figure 8) to support the “Assurability” property with the following informally expressed 
reasoning: 

1. To be able to assure that a system is safe, one must be able to verify [H-S-1] that it meets 
all its safety requirements.  

2. For a system to be verifiable, it must not be possible for one element of the system to 
interfere with another. [H-S-3] 

                                                 
58 As stated in Section 2.3.3, the scope is limited to the automation. People are part of its environment. 
59 Example: A commercial-grade system or element on which no safety function is dependent. 

Quality requirements  Quality requirements  

Figure 7: Quality requirements should be explicit 
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3. If the conceived system is too complex, adequate verification is infeasible. [H-S-1.1] 

4. If one cannot even understand it, how can one assure that it is safe? [H-S-2] 

5. Verifiability is a required system property, flowing down from the system to its elements 
(constituents) progressing to the finest-grained element; it implies corresponding verifiable 
specifications. Verification also includes analysis at various phases in the development 
lifecycle, well before60 an artifact is available for physical testing. Examples of conditions for 
verifiability: 
5.1. Ability to create a test (or verification) case to verify the requirement.   
5.2. Observability 
5.3. Ability to constrain the environment of the object of verification. 

6.  For “analyzability” the system must have predictable and deterministic61 behavior. [H-S-1.2]. 

 
Table 8: Constraints derived from quality attributes: Scenario-based examples 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-S- 

Generalized Scenario ID 
H-S- 

Description  

1 The system is not sufficiently verifiable and 
understandable, but this deficiency is discovered 
too late. Appropriate considerations and criteria are 
not formulated at the beginning of the development 
lifecycle; therefore, corresponding architectural 
constraints are not formalized and checked. When 
work products are available for testing, it is 
discovered that adequate testing is not feasible 
(e.g., the duration, effort, and cost are beyond the 

1G1 Verifiability is a required system 
property, flowing down from the system 
to its constituents progressing to the 
finest-grained element. 
(Adapted from CP 2.2.3.11 in [21]) 
[H-S-1.1G1↓] 

1G1.1 
Verifiability of a work product is 
checked at every phase of the 
development lifecycle, at every level of 

                                                 
60 When performed on a computer program (code), it is known as static analysis. However, analysis in the 
same “static” sense can also be performed on work products of earlier phases, e.g. on models. [H-S-
1.1.1] 
61 Yields deterministic results. 

Safety 
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Determinism Predictability 

Comprehensibility 
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Simplicity 

Figure 8: Quality characteristics to support safety 
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Contributory hazard Conditions that reduce the hazard space 
ID 
H-S- 

Generalized Scenario ID 
H-S- 

Description  

project limitations). integration, before proceeding further in 
the development. 

1.1 System is not verifiable (e.g., it is not analyzable or 
very difficult to analyze). 

1.1G1  Avoidance of unnecessary62 complexity 
1.1G1.1 The behavior is unambiguously 

specified for every combination of 
inputs (including unexpected inputs) at 
every level of integration in the system 
(in [19] Appendix A.4 item 4).  

1.1G1.2 The flow-down ensures that 
1. Allocated behaviors satisfy the 

behavior specified at the next higher 
level of integration; 

2. Unspecified behavior does not 
occur. 

1.1G1.3 The behavior of the system is a 
composition of the behaviors of its 
elements, such that when all the 
elements are verified individually, their 
compositions may also be considered 
verified63. This property is satisfied at 
each level of integration, flowing down 
to the finest-grained element in the 
system. 

1.1G1.4 Development follows a refinement 
process. 

1.1.1 
There are unanalyzed or un-analyzable conditions.  
For example, all system states, including unwanted ones 
such as fault states, are not known and not explicit. 
To that extent, verification and validation (V&V) of the 
system is infeasible. [H-S-1.1↑] 

1.1.1G1 Static analyzability: System is statically 
analyzable. 
1. All states, including fault conditions, 

are known. 
2. All fault states, leading to failure 

modes, are known (in [21]CP 2.2.3.14 
1st item). 

3. Safe state space of the system is 
known (in [21] CP 2.2.3.14 2nd item). 

1.1.2 There is inadequate evidence of verifiability. [H-S-
1.1↑] 

1.1.2G1 Verification plan shows the coverage 
needed for safety assurance. 

1.2 System behavior is not deterministic64. [H-S-
1.1.1↑] 

1.2G1 System has a defined initial state. 
 

1.2G2 System is always in a known 
configuration. 

1.2G3 System is in a known state at all times 
(e.g., through positive65 monitoring and 
indication): 
1. Initiation of function 

                                                 
62 Meaning: [Complexity] that is not essential to support a safety function. 
63 No unspecified behavior emerges. 
64 Yields deterministic results. 
65 If indirect indication or inference is used, HA confirms satisfaction of H-ProcState-1G1.2. 
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Contributory hazard Conditions that reduce the hazard space 
ID 
H-S- 

Generalized Scenario ID 
H-S- 

Description  

2. Completion of function (in [21] CP 
2.1.3.4 last item) 

3. Intermediate state, where needed to 
maintain safe state in case of 
malfunction. 

1.3 System behavior is not predictable. [H-S-1.1.1↑] 1.3G1 Each transition from a current state 
(including initial state) to some next 
state is specified and known, including 
transitions corresponding to unexpected 
combination of inputs and transition 
conditions. 

1.3G2 A hazardous condition can be detected 
in time to maintain the system in a safe 
state. (in [21] CP 2.2.3.14 3rd item). 

2 Comprehensibility: System behavior is not 
understood completely and correctly by its 
community of users (e.g., reviewers, architects, 
designers, and implementers), that is, the people 
and the tools they use.  
[H-S-1↑] 

2G1 Behavior is completely and explicitly 
specified. Also see H-culture-{12G2, 
12G3}. 

2G2 Behavior is completely understandable. 
Also see H-culture-{12G2, 12G3}. 

2G3 Behavior is understood completely, 
correctly, consistently, and 
unambiguously by different users 
interacting with the system. Also see H-
culture-{12G2, 12G3}. 

2G4 The allocation of requirements to some 
function and that function to some 
element of the system is bi-
directionally66 traceable. (in [19] 
Appendix A.4 item 2). 

2G5 The behavior specification avoids mode 
confusion, esp. when functionality is 
nested (in [19] Appendix A.4 item 3). 

2G6 The architecture is specified in a manner 
(e.g., language; structure) that is 
unambiguously comprehensible to the 
community of its users (e.g., reviewers, 
architects, designers, implementers), that 
is, the people and the tools they use (in 
[19] Appendix A.4 item 9). 

Considering that the state of practice is especially weak in the derivation of verifiable constraints 
from quality requirements, a careful review is needed. The architecture should satisfy these 
constraints, starting from the system concept phase and continuing at every successive phase 
of development, refinement and decomposition, including all phases of the software 
development lifecycle. Commensurate architectural constraints are identified in Section 3.6. 

                                                 
66 It is not implied that one-to-one relationships are necessary. 
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3.5.1.2 Contributory hazards through inadequate system requirements 
Activities leading to identification of functional requirements for safety were introduced in 
Sections 3.1 (overall hazard analysis, including understanding dependencies leading to a loss 
event or degradation of a safety function), 3.4.1 (understanding hazards in relation to the 
environment of the safety system), including hazards contributed from inadequate definition of 
the boundary of the safety system, invalid assumptions (see Appendix J), and interactions with 
other systems and people). Table 9 identifies further contributory hazards due to weaknesses in 
identifying and formulating requirements. The content of Table 9 is adapted mostly from 
Appendix A.3 in [19]; other sources are referenced within the respective item in Table 9. For 
hazards contributed through weaknesses in interfaces and interactions across elements of the 
system, see Section 3.6.1. 

Table 9: Inadequacy in system requirements: Examples of contribution to hazards  
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SR- 

Description 
(e.g., Scenario) 

ID 
H-SR- 

Description  

1 Mistakes occur due 
to misunderstanding 
the environment 

1G1 [H-SRE-{1G1, 1G2, 1G3}↓] 
See: H-culture-{4G1, 4G2, 4G3, 6G3}; See Appendix C.3.2-C.3.3; 
Appendix F, esp. Appendix F.1 

2 Input constraints 
misunderstood or 
improperly captured  
[H-SR-1↑] 

2G1 [H-SRE-{1G1, 1G2, 1G3}↓] 
See: H-culture-{4G1, 4G2, 4G3, 6G3}; Appendix C.3.2-C.3.3;  
Appendix F, esp. F.1. 

2G2 Criteria for input validation are correctly established. 
See Appendix F.2 and F.4. 

3 Incompleteness 3G1 See Table 1 
3G2 H-ProcState-3G5 
3G3 HA includes interactions with the environment of the system – see 

Section 3.4.1.  
3G4 Inter-relationships and interactions with the environment are analyzed in 

all configurations and modes (including degraded ones), and changes 
from one mode to another. [H-SR-3G3↑] 

3G5 In HA at system concept phase (Section 3.4), an architectural model or 
representation of the system (e.g., functional; behavioral) concept 
includes a (functional; behavioral) model or representation of the 
environment, especially the physical processes (Appendix H) [26]).  
[H-SR-3G3↑] [H-SAE-{1G1, 2G1, 3G1, 4G1}↓] 

3G6 Process behavior models67 (H-SR-3G5) include identification of safe 
state regions and trajectory68 of safely recoverable process state. [26], 
See Figure 5  

3G7 Process behavior models (H-SR-3G5) include time-dependencies, 
relationships and constraints. [11] [H5-G0] 

3G8 [H-SRE-{1G1, 1G2, 1G3}↓] 
4 Inadequate 

protection or defense 
against residual 

4G1 Monitoring: Feasible trajectories70 of appropriate state variables71 or 
parameters and expected values are known and monitored. 
 (Generalized from [21] CP 2.1.3.2.3, 2.1.3.2.4)  

                                                 
67 The scope is limited to I&C-relevance. 
68 State space within which recovery is provable. 
70 For example: Values over time; rate of change. 
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faults69.  
[H-SR-3↑] 
Note tension with 
[H-SR-20] 

4G2 Detection: Appropriate parameters of the system or element are 
monitored to detect departure from safe state (e.g., by applying 
discriminating72 logic on the monitored parameters) in conjunction with 
predictive behavior models, but considering [H-SR-{19, 20}] 

4G3 Intervention: Upon detection of departure from safe state, intervention 
maintains the plant in safe state. 
(Adapted from [21] CP 2.2.3.7) 

4G4 Containment: The system or element is able to contain, localize, and 
isolate the source of the fault (e.g., a hardware or software component).  

4G5 Notification:  Notification is timely, but avoids “flooding.” 
4G6 [H-SRE-{1G1, 1G2, 1G3}↓] 

5 Inadequate 
identification of 
sources of 
uncertainty, their 
effects, and their 
mitigation. [H-SR-
3↑] 

5G1 [H-SRE-{1G1, 1G2, 1G3}↓] 

6 Deficiency in 
requirements for 
fault containment. 
[H-SR-3↑]  

6G1 [H-SRE-{1G1, 1G2, 1G3}↓] 

7 Inadequate or 
improper 
generalization to 
capture classes of 
issues 

7G1 [H-SRE-{1G1, 1G2, 1G3}↓] 
See H-culture-{4G1, 4G2, 4G3, 4G4, 6G3} and Appendix F, esp. F.1. 

8 Inconsistency 8G1 [H-SRE-{1G1, 1G2, 1G3}↓] 
9 Inadequate 

protection or defense 
against invalid input  
[H-SR-4↑] 

 H_SR_2G2 
9G1 Validity of value of each input is monitored (in [21] CP 2.1.3.2.4). 
9G2 Intervention upon detecting invalid input is specified to maintain system 

safe state. 
10 Uncorrected or 

inadequately 
compensated 
instrumentation 
errors 

10G1 Required calibrations and corrections are known and applied (in [21] CP 
2.1.3.2.5) [H-SR-9G1↑] 

11 Implicit assumptions 
about the 
environment. 
[H-culture-12↑] 

11G1 Each assumption about the environment is made explicit (e.g., 
documented; in [19] Appendix A.3 item 3). See Appendix J. 
[H-culture-{12G1-12G3}↑] 

12 Invalid assumption 
about the 
environment. 

12G1 See: Appendix J; H-culture-12G3; Appendix C.3.3; Appendix F.2. 
12G2 Each assumption about the environment is validated (e.g., through 

treatment as a “constraint or condition to be validated).”  
13 Unclear expression 

of the consequences 
of an assumption 
[Table 1][H-SR-12↑] 

13G1 Record of each assumption [H-SR-12G1] includes the consequences if 
the assumption turns out to be false. (In [19] Appendix A.3 item 4). Also 
see Appendix J. 

13G2 Requirements include measures to mitigate the consequences of 
assumptions that fail to hold. (In [19] Appendix A.3 item 4). 

                                                                                                                                                          
71 Include inputs and outputs. 
69 It refers to faults internal to digital safety system and its elements; also known as resilience. 
72 e.g.: through infeasible or unexpected value. 



 DRAFT  September 2014 
Rev. 4 

DRAFT RIL-1101 Page 38 
 

13G3 Each assumption (e.g., constraint or condition to be validated) is tracked 
as a configuration item. 

13G4 Assumptions about the downstream design are made explicit (e.g., 
through explicit derived requirements or constraints on the architecture, 
design and implementation, and the associated methods and tools). (In 
[19] Appendix A.3 item 3.1). See: Appendix J; H-culture-{12G2, 12G3}. 
Examples:  
1. Requirements from the application software on system platform 

services (HW & SW), including HW and SW resources to support 
the workload.  

2. Timing constraints to be satisfied. 
3. Compatibility across maintenance updates.  

13G4.1 The safety plan and supporting plans include activities and tasks 
specifying how and when these assumptions will be validated. 

14 Unmitigated 
consequence of 
invalid assumption 

14G1 Record of each assumption [H-SR-12G1] includes how and when it will 
be validated. (In [19] Appendix A.3 item 3) 

15 Incorrect order of 
execution or timing 
behavior [H-
ProcState-1.3] 

15G1 An explicit, verifiable (as determined through mathematical analysis) 
specification for the order of execution and timing inter-relationships, 
especially considering multiple concurrent physical processes, inter-
process synchronization and shared resources (in [21] CP 2.1.3.2.2, 
2.2.3.5). See Appendix I. 

16 Inter-relationships 
and inter-dependence 
across requirements 
are not clearly 
understood or 
recognized [H0-4 – 
H0-8], resulting in 
unanalyzed 
conditions 

16G1 Applicable types of dependencies across requirements are identified (see 
examples herein), modeled, and tracked. For example, if A and B are 
two requirements, their relationship types (See note) may be: 

• A requires B 
• B supports A  
• B hinders A  
• B is a selection for A (an exclusive one among many choices) 
• B is a specialization of A  

16G2 Hidden dependencies between functions (e.g., “unwanted feature 
interactions”) do not exist. 

17 Interference from 
unintended  
interactions or side 
effects. [H-S-1↑] 

17G1 Interactions are limited provably73 to those required for the safety 
functions. 

17G2 Absence of other unspecified behavior or side effects is assured. 

18 Effects of sudden 
hardware74 failure, 
esp. semiconductors 

18G1 Requirements include failure or fault detection and containment 
measures, including offline ability to locate and isolate the source of the 
fault (e.g., a hardware or software component). [H-SRE-7G1↓] 

Note for H-SR-16G1: Relationships may be one-to-one, one-to-many, many-to-one, and many-to-many. 
19 Allocated set of 

requirements leads to 
conditions that are 
unanalyzable or 
difficult to analyze. 

19G1 [H-SRE-{1G1, 1G2, 1G3}↓] 

20 Adding backups (or 
fault protection) can 
introduce new hidden 
dependencies and 
impair analyzability. 
[H-SR-19↑] 

20G1 [H-SRE-{1G1, 1G2, 1G3}↓] 

                                                 
73 Example: Unspecified interactions are not allowed. 
74 Also see Table 16 
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21 Although layered 
protection has 
benefits, there can be 
dilemmas from 
keeping software 
protected with 
several layers – 
analyzability may be 
impaired.  
[H-SR-19↑] 

21G1 [H-SRE-{1G1, 1G2, 1G3}↓] 

22 Inability to integrate 
correctly elements of 
a system (e.g., 
subsystems, 
hardware 
components, 
software 
components). 
[H-SR-{1, 2, 3, 8, 12, 
13, 15, 16, 19↓] 
[H-SwR-2↓] 
[H-SRE-7↓] 
[H-SwRE-1↓] 
[H-HwP-1↓] 

22G1 [H-SRE-{1G1, 1G2, 1G3}↓] 
[Table 14↓] 

22G2 There are no deficiencies in the specifications. 
22G3 There are no deficiencies in the elements to be integrated. 
22G4 The system is modularized properly, so as to 

allow concluding correctness from the correctness of the architecture and 
the correctness of the elements. 
H-S-1.1G1.4↑ 

23 Anomaly in the state 
of the process75 is 
not recognized or 
identified or 
correctly understood 
or correctly 
specified.  
[H-SR-3↑] 
[H-SR-4↑] 

23G1 See H-SR-3G6 
The trajectory of safely recoverable process state variables (i.e., state 
space within which recovery is provable) is specified correctly. 

In other words, when departure from this state space or region is 
recognized, intervention can prevent departure from safe state. See 
Figure 5. 

See Appendix F. 

3.5.1.3 Contributory hazards from system requirements engineering 
The requirements engineering phase of the lifecycle is most sensitive to the quality of 
processes, including the resources applied. Requirements elicitation and analysis aspects are 
most sensitive to the competence [H-SRE-1] applied. 

Table 10 identifies hazards contributed through weaknesses in the process of engineering 
requirements for the system. 

Table 10: Inadequate system requirements engineering: Examples of contribution to hazards  
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SRE
- 

Description 
(e.g., Scenario) 

ID 
H-SRE- 

Description  

                                                 
75 The process that the safety system is observing or monitoring for safety-related intervention. 
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1 Inadequate 
competence  
[H-culture-6↑] 
 

1G1 The team engaged in these activities is an assemblage of high 
competence in multiple disciplines, capable of creatively 
eliciting and synthesizing information from diverse sources, 
including implicit, experiential knowledge about the 
environment. The combined competence of the team matches 
the expertise needed in each phase in the engineering 
lifecycles, noting that the nature of expertise is not the same 
in all phases. 
See H-culture-{4G2, 4G3} and Appendix F. 

1G2 A different and independent diverse team reviews the 
requirements and their validation. 

1G3 The review team has expertise in discovering the types of 
mistakes or shortcomings identified in Table 9 and Table 10 
H-SRE-{2-6}. 
See H-culture-6G3 and Appendix F. I item 5 

2 

 

Ambiguity in the 
natural language 
textual description  
[H-SAE-2↓] 

2G1 A subset of the natural language is used such that 
requirements can be described unambiguously to the 
community of its users76; for example: 
1. Closed set of language elements 
2. Unambiguous semantics of each language element 
3. Unambiguous compositions of language elements and 

their compositions 
Also see H-culture-{12G2, 12G3}.  
[H-SAE-1G1↓; H-SAE-1G2↓] 

2G1.1 Formal properties are abstracted, for later use in verification 
of next phase work product. [22][23] 

2G2 The language subset (H-SRE-2G1) supports distinct 
identification and description of the following: 
1. Assumptions about the environment [26]; 
Appendix J. 
2. Input from the environment (e.g., 
command, i.e., some signal requiring state-changing effect + 
required behavior), query, process state, other data. 
3. Output (e.g., some signal having state-
changing effect, state-notification, exception-notification) 
4. Functions assigned to a human. 
5. Procedure for the execution of each 
function assigned to a human (required behavior). 
6. Other elements of the system being 
analyzed 
7. Functions assigned to each element; 
required behavior. 
8. Interactions required across elements 
9. Constraints on the behavior and 
interactions of each element, e.g. timing constraints [11], 
Appendix I; QoS constraints.  
10. Criteria to monitor and detect violation of a 
constraint [25]. 

3 Incorrect 
formalization from 

3G1  [H-SRE-2G1↓; H-SRE-2G2↓] [H-SAE-1G1↓; H-SAE-
1G2↓] 

                                                 
76 Users include people and tools, employed in creation, modification, interpretation, transformation. 
maintenance, V&V, and regulation (adapted from CP 2.3.3.1.1 last sentence in [21]). 
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intent or natural 
language text 

3G2 Persons performing the task (see H-SRE-2G1.1) know the 
vocabulary of the application domain and know how to 
translate it into formal properties. 

3G3 1. Multiple independent persons/teams perform the task.  
2. The discrepancies across their results are analyzed.  
3. Another independent panel is engaged in resolving the 

discrepancies. 
4 Input constraints are 

ambiguous. 
4G1 Valid value type and range of each input are explicitly 

identified (in [21]CP 2.1.3.2.4). Also see Table 1. Also see 
H-culture-{12G2, 12G3}. 

5 Loss of information 
in transfer and 
traceability of HA-
results to 
requirements. 

5G1 Activities of HA and Requirements Engineering are formally 
integrated (also see Table 1). 

6 An atomic 
requirement is not 
traceable 
individually.  

6G1 Each atomic requirement is  traceable (in [21] CP 2.1.3.1; in 
[19] Appendix A.4 item 2) [H-S-2G4↓]. 

6G2 Each requirement is a configuration controlled item77.  

7 Loss of information78 
across disciplines, 
processes, and 
organizational units 
(e.g., system 
engineering, software 
engineering, 
hardware 
engineering, safety, 
quality). 
[H-culture-9↑][H-SR-
3↑] 
[H-SwRE-1↓] 

7G1 Systems are engineered holistically, including crosscutting 
analysis. (Adapted from [19] Appendix A.3 footnote 82). 
See H-culture-9G1 and H-culture-9G2 and Appendix F. 1. 

7G1.1 The interaction across a system or an element and its 
environment is identified explicitly.  
Example: Models at every level of integration, such that the 
models are compatible and information can be integrated and 
analyzed across the various models. 

 H_culture_{12G1, 12G2, 12G3}. 

3.5.2 Software Requirements  
Contributions to hazards through inadequacies in requirements at the system level (and 
corresponding conditions to reduce that hazard space) also apply to requirements for software. 
Even though correct, complete, consistent unambiguous requirements for software are 
supposed to flow down from the system engineering lifecycle, typically in practice, V&V for 

                                                 
77 Other relevant references: IEEE 828 and 1042 
78 Current practice divides systems engineers, software engineers, and hardware engineers; often failures 
occur due to gaps in between. (From [19] Appendix A.3 footnote 82) 
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these properties occurs from the software engineering perspective79 as a part of the software 
engineering lifecycle.  

Some of the requirements from the system engineering lifecycle may be allocated directly (as is) 
to software. For other requirements from the system engineering lifecycle (e.g., quality 
requirements) additional requirements and constraints for software may be derived as part of 
the software engineering lifecycle. Also see Section 3.6 for constraints on software architecture. 
Contributory hazards and constraints identified in Section 3.6.1 for the system architecture also 
apply to software. Derived constraints on software design and implementation (D&I) are 
included in Sections 3.8 and 3.9.  

                                                 
79 Focus: Check correctness of understanding; make explicit and unambiguous. 
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3.5.2.1 Contributory hazards in software requirements 
The contributory hazards identified in Table 9 also apply to software requirements. Table 11 
provides examples of additional hazards contributed through inadequacies in software 
requirements. 

Table 11: Inadequacy in software requirements: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SwR- 

Description (e.g., Scenario) ID 
H-
SwR- 

Description  

1 Inadequate flow-down of properties 
(Table 8) and other constraints from the 
system engineering lifecycle (Table 9)  
[H-SwR-2↓] 

1G1 Corresponding constraints (Table 8; Table 9) are 
derived and applied to software  
 

2 Inadequate flow-down of requirements & 
constraints to support integration of 
elements into a correctly working system. 

2G1 Corresponding constraints (Table 8; Table 9) are 
derived and applied to software  

3 Inadequate flow-down of requirements & 
constraints from NPP level to the safety 
system and then to its elements, including 
software. 

3G1 Decomposed and derived requirements and 
constraints assure that their composition will 
satisfy the upstream (source) requirements (from 
which these were decomposed or derived) and not 
introduce unspecified behavior. 

4 Software produces an output of infeasible 
value. 

 
4G1 

Appropriate conditions infeasible in the real world 
are identified and used to establish criteria to 
monitor for anomalous80 behavior of software. 
(Adapted from [21] CP 2.3.3.1.5) , but not 
introducing adverse conditions as identified in H-
SR-{19, 20}. 

                                                 
80 Intent: Defend against weakness in requirements. 
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3.5.2.2 Contributory hazards from software requirements engineering 
The contributions to hazards identified in Table 10 (and conditions to reduce the associated 
hazard space) also apply to software requirements engineering. Table 12 provides examples of 
additional contribution to hazards through inadequacies in engineering of software 
requirements. 

Table 12: Inadequate software requirements engineering - contribution to hazards: Examples 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SwRE- 

Description (e.g., Scenario) ID 
H-
SwRE- 

Description  

1 Loss of information across disciplines, 
processes, and organizational units (e.g., 
system engineering, software engineering, 
hardware engineering, safety, quality) due to 
discipline-wise division of organizations, 
people, and work [H-culture-9↑] 

1G H-SRE-{7G1; 7G1.1}↑ 
Also see H-culture-{9G1, 9G2, 12G2, 
12G3} and Appendix F. 

2 Loss of information across disciplines due to 
incompatible paradigms, methods, and tools 
across disciplines. 
[Example contributor: H-HwP-5↓] 

2G Methods and languages to describe or 
specify requirements allocated to software 
support unambiguous mapping and 
integration across dissimilar elements (e.g., 
interactions across hardware, software and 
human elements). 
[H-SAE-{2G1, 3G1}↑] 
[H-HwP-5G1↓] 
See Appendix F.4. 

3.6 Evaluation of hazard analysis - Architecture 
System failures traceable to architecture rank high in the experiences of various safety-critical, 
mission-critical, high-quality digital systems across a diverse range of application domains. For 
example, unwanted and unnecessary interactions, hidden couplings, feedback paths, and side 
effects have led to unexpected failures; verification based on traditional testing or simulation did 
not detect such flaws [19]. 

3.6.1 Contributory hazards in System Architecture  
While the overall scope of system architecture includes the safety system under evaluation and 
its relationship with its environment, this section focuses on system-internal elements (e.g., 
hardware and software) and their inter-relationships (i.e., interfaces, interconnections, and 
interactions) whether these are direct or indirect, intended or unintended, explicit or implicit, 
static or dynamic, “normal” or “abnormal.” 

The scope of system architecture activities includes the allocation of requirements and 
constraints to elements identified in the system architecture.  

Note: Architecture-specific evaluation of HA is predicated on the correct and complete 
performance of the overall HA, as illustrated in Table 1, including considerations of 
combinations of multiple contributory hazards, exemplified in   
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Table 2 through Table 7. 

Table 8 and Table 13 include examples of contributors to hazards through system architecture 
and corresponding conditions that reduce the respective hazard spaces. These considerations 
are applicable to architecture-related contributory hazards in every phase in the development 
lifecycle (from conception to implementation), to every level in the integration hierarchy, and to 
transformations from one level to another. Thus, the information in these tables should be 
applied to the context of the level of integration being analyzed. 

Table 13: Interference: Example scenarios and conditions that reduce the hazard space 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SA- 

Description (e.g., 
Scenario) 

ID 
H-
SA- 

Description  

3 Scenario: A system, device, or 
other element (external or 
internal to a safety system) 
may affect a safety function 
adversely through unintended  
interactions, caused by some 
combination of defects, 
deficiencies, disorders, 
malfunctions, or oversights. 
[H-SR-17↑] 

3G1 [H-SR-17G1↑] 

3G2 Interactions and interconnections that preclude complete81 
V&V are avoided, eliminated, or prevented. (CP 2.2.3.11 in 
[21]) 

3G3 Freedom from interference is assured provably82 across: 
1. Lines of defense [34] 
2. Redundant divisions of system (CP 2.2.3.6 in [21] 
3. Degrees of safety qualification83 (CP 2.2.3.3 in [21]) 
4. Monitoring & monitored elements of 
system.  

3G4 Analysis of the system demonstrates that unintended  behavior 
is not possible84. 
1. Interaction across different sources of 
uncertainty is avoided. 
2. The architecture precludes unwanted 
interactions and unwanted, unknown hidden coupling or 
dependencies (in [19] Appendix A.4 item 6).  
3. Specified information exchanges or 
communications occur in safe ways (in [19] Appendix A.4 
item 6). 

3G5 Only well-behaved interactions are allowed [H-S-1.2G{1,2,3}, 
H-S-1.3G{1,2}↑] 

3G6 Constraints are identified for such contributing hazards from 
the environment as electromagnetic interference – see 
examples in Appendix E.4. 

3G7 The impact of dependency-affecting change is analyzed to 
demonstrate no adverse effect. [Table 1] 

4 Scenario [H-S-3G4↑]: A 
function, whose execution is 

4G1 Analysis of the execution-behavior of the system proves that 
such interference will not occur. For example, worst-case 

                                                 
81 “Completeness” includes confirmation that all specified requirements have been satisfied and 
confirmation that the requirements are correct, complete, consistent, and unambiguous. 
82 Example: There is no pathway. 
83 In other application domains, the corresponding concept is known as “mixed criticality.” 
84 Example: There is no pathway. 
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required at a particular time, 
cannot perform as required, 
due to interference through 
sharing of some resource it 
needs. 

execution time is guaranteed. 

5 Timing constraints are not 
correctly specified and not 
correctly allocated. 

5G1 Timing requirements for monitoring a continuously-varying 
phenomenon are derived, specified, and allocated correctly to 
the services and elements upon which their satisfaction 
depends. Example: Sampling interval that characterizes the 
monitored variable with fidelity. 

5G1.
1 

Commensurate required sampling interval is determined 
through mathematical analysis. 

5G1.
2 

Discretization and digitization do not affect the fidelity 
required, as determined through mathematical analysis.  

5G1.
3 

Aliasing is avoided. 

5G1.
 

Sampling periods to monitor discrete events are established 
correctly, as determined through mathematical analysis. 

6 Sampling and update intervals 
are not commensurate to the 
timing constraints of the 
associated control actions. [H-
SR-15] 

6G1 Update intervals support the timing constraints of the required 
control actions, as determined through mathematical analysis. 
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3.6.2 Contributory hazards from system architectural engineering  
Applying the reference model depicted in Figure 4 to the activities of architectural engineering, 
Table 14 identifies hazards contributed through some of the resources and elements employed 
in these activities and commensurate constraints on these process activities. Additionally, as 
stated in Section 3.7, considerations therein “are applicable to architecture-related contributions 
to hazards in every phase in the development lifecycle (from conception to implementation), to 
every level in the (system, subsystem, component, sub-component …) integration hierarchy, 
and to transformations from one level to another.” 
Table 14: Inadequate system architectural engineering: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SAE- 

Description (e.g., Scenario) ID 
H-
SAE- 

Description  

1 The architecture85 description (including 
requirements allocated to its elements) is 
ambiguous, rendering it vulnerable to 
interpretations other than intended. For 
example, textual descriptions use words and 
expressions and graphic representations use 
symbols, for which commonly understood 
meanings have not been agreed upon by the 
community of its users.  
[H-S-2G-6↑] 
[H-SAE-2↓; H-SAE-3↓] 

1G1 Description method supports distinct, 
unambiguous description of the following: 
1. Assumptions about the environment. 
2. Input from the environment (e.g.: command 

(some signal requiring state-changing effect + 
required behavior); query; data. 

3. Output (e.g., some signal having state-
changing effect), state-notification, including 
exception-notification. 

4. Functions assigned to a human 
4.1. Procedure for the execution of each 

function assigned to a human (required 
behavior) 

5. Other elements of the system 
5.1. Functions assigned to each element; 

required behavior. 
6. Inter-relationships of elements. 
7. Interactions required across elements. 
8. Constraints on the behavior and interactions 

of each element, e.g. timing constraints – 
Appendix I; QoS constraints. 

9. Criteria to monitor and detect violation of a 
constraint. 

1G2 The language (graphic or text-based) used in the 
description or specification is unambiguous; for 
example: 
1. Closed set of language elements. 
2. Unambiguous semantics of each language 

element. 
3. Unambiguous semantics of the compositions 

(e.g., rules of composition) of language 
elements and their compositions. 

1G3 The method and language are applied correctly. 

                                                 
85 The term is used in its comprehensive sense, e.g., it includes conceptual architecture (or requirements 
architecture), system design architecture, software design architecture, hardware design architecture, 
software implementation architecture, function/procedure-architecture. 
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2 Transformation, refinement or elaboration 
of architecture from one lifecycle phase to 
another does not preserve semantics and 
leads to unintended behavior. 

2G1 Methods and languages to describe, represent, or 
specify architectures (including requirements 
allocated to various elements) support 
unambiguous transformations or mappings across 
architectural artifacts (e.g., transformation  
from system conceptual or requirements level  
to system design level  
to software design level  
to software implementation level  
to procedure or subroutine or function level). 

2G2 Information is used with semantic consistency 
across different elements of the system. 

3 When dissimilar elements are integrated 
(have to work together), their interaction 
leads to unintended behavior, due to 
semantic mismatch (e.g., a signal from a 
sender does not have the same meaning for 
the receiver). 

3G1 Methods and languages to describe, represent, or 
specify architectures (including requirements 
allocated to various elements) support 
unambiguous mapping and integration (including 
composability and compositionality for essential 
properties) across dissimilar elements (e.g., 
interactions across hardware and software 
elements). 

3G2 Information is used with semantic consistency 
across different elements of the system. 

4 When elements from different sources or 
suppliers are integrated (have to work 
together), their interaction leads to 
unintended behavior, due to semantic 
mismatch (e.g., a signal from a sender does 
not have the same meaning for the receiver). 

4G1 Methods and languages to describe, represent, or 
specify architectures support unambiguous 
transformations or mappings and integration 
(including composability and compositionality 
for essential properties) across elements from 
different sources or suppliers. 

5 A tool used in architectural engineering is 
not qualified to produce, manipulate or 
handle a safety grade architectural artifact 
(e.g., system, element, and data). 

5G1 Each tool is qualified for safety grade use. 
5G2 Restrictions necessary for safe use of a tool are 

identified and the set of restrictions, tracked as a 
configuration controlled item. 

6 Tools used in engineering a system, 
engineering software, or engineering 
hardware do not integrate correctly, that is, 
semantics may not be preserved in 
information exchanged across the tools. 

6G1 Tools intended to be used collectively or in an 
integrated process are configured and qualified 
for safety grade use as a set, tracked as a 
configuration controlled item. 

6G2 Restrictions on individual tools, their information 
exchange functions, and their interactions, which 
are needed for safe use of the tools as a set, are 
identified and the set of restrictions, tracked as a 
configuration controlled item. 

6G3 Semantics of the information accepted and 
provided by the tools are explicitly represented. 

7 A reused element (e.g., from some previous 
project or system; previously verified to 
satisfy its specifications), when integrated in 
this system, does not provide the intended 
system behavior (e.g., semantics may not be 
preserved in the flowdown of specifications 
or their realization). 

7G1 Pre-existing element is qualified for the 
environment86 in which it is to be reused. 

7G1.1 Allocation of requirement specifications from 
system to the element is validated to be correct. 

7G1.2 Pre-existing specification of the element satisfies 
the requirement specification allocated from this 
system. 

7G1.3 The element satisfies the allocated requirements 
specification 

                                                 
86 including assumptions about the environment – also see H-culture-12 
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7G2 Restrictions on the use of a pre-existing element 
in the target environment are identified and the 
set of restrictions, tracked as a configuration 
controlled item. 

7.1 Some assumption about the reused element 
or its usage environment is violated. Also 
see H-SR-13. 
[H-culture-12] 

7.1G1 H-ProcState-4G1.2; H-culture-12G1;  
H-SR-13G3 

8 Individuals performing architectural 
engineering functions may not be cognizant 
of the usage-limitations of the tools, 
elements, and artifacts accessible to them. 

8G1 Human resources employed in architectural 
engineering are qualified to perform their roles, 
especially usage-limitations of the tools, 
elements, and artifacts available to them, 
commensurate to the overall complexity of the 
cognitive activities to be performed. 

3.6.3 Contributory hazards in Software Architecture  
The information in Section 3.6.1 and Table 8 and Table 13 also applies87 to software 
architecture, esp. relationships of software with its  environment (e.g., hardware elements and 
human elements). This section focuses on software elements that are internal to the safety 
system and their inter-relationships, i.e., interfaces, interconnections, and interactions, whether 
these are direct or indirect, intended or unintended, explicit or implicit, static or dynamic, 
“normal” or “abnormal88.” 

The scope of software architecture activities includes the allocation of requirements and 
constraints to elements identified in the software architecture.  

Note: The contents of this section are predicated on correct performance of HA, as 
discussed in preceding sections and complete satisfaction of the criteria to prevent, avoid, 
eliminate, contain, or mitigate the categories of hazards identified in those sections. 

These considerations are applicable to architecture-related contributory hazards in every phase 
in the software development lifecycle (from conception to implementation), to every level in the 
software integration hierarchy89, and to transformations from one development phase or level to 
another. 

Table 15: Contribution to hazards through software architecture: Examples 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
SwA- 

Description (e.g., 
Scenario) 

ID 
H-
SwA- 

Description  

1 Scenario: Software contributes 
to or exacerbates complexity of 
the system, making it difficult 
to verify [H-S-1.1↑] and 
understand [H-S-2↑]. 

1G1 The behavior of a non-atomic element is a composition of the 
behaviors of its constituent elements, with well-defined 
unambiguous rules of composition90. (In [19] Appendix A.4 
item 5) 
1. Interfaces of elements are unambiguously specified, 

including behavior (adapted from [19] CP 2.3.3.2.2 last 
sentence). 

                                                 
87 Replace “system” with “software” or consider the scope of the system to be narrowed down to software. 
88 Examples: Invalid input; hardware malfunction; human mistake. 
89 Examples: Subsystem; module; subroutine. 
90 Including conditions for composability and compositionality for required properties. 
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2. Interactions across elements occur only through their 
specified interfaces, that is, adhering to principles of 
encapsulation (adapted from [21] CP 2.3.3.2.2).  

1G2 The system is modularized using principles of information 
hiding and separation of concerns, avoiding unnecessary 
interdependence (in [19] Appendix A.4 item 7). 

1G2.
1 

Corresponding specifications are modularized. 

1G2.
2 

Corresponding specifications, plans, and procedures for 
verification are modularized. 

1G3 Each element (e.g., a software unit) is internally well-
architected (that is, satisfying conditions stated earlier), such 
that its properties [Table 4] can be assured. For example:  
1. A software unit implementing some NPP 
safety function(s) is composed from semantically 
unambiguous atomic functions and data using well-defined 
unambiguous rules of composition. [H-SwA-1G1↑] 
2. Paths from inputs to outputs avoid 
unnecessary coupling. [H-SAE-1G2↑] 
3. Unnecessary remembering of state 
information across execution cycles is avoided. (Adapted from 
CP 2.3.3.2.8 in [19]) 

2 Order of execution or timing 
behavior are not analyzable 
correctly, because of system 
complexity 
 

2G1 Complexity-increasing   behaviors are avoided  [H-S-
1.1.1G1↑]; simplicity-increasing features are preferred; for 
example: 
1. Static configuration of tasks91 to be executed (adapted from 

[21] CP 2.4.3.8.1 2nd and 3rd bullets). 
2. Tasks in execution are run to completion92 (adapted from 

[21] CP 2.4.3.8.1 1st bullet). 
3. Static allocation of resources93 [H-S-4G1↑] (Generalized 

from [21] CP 2.4.3.8.1 4th bullet). 
3 Behavior is not analyzable 

mathematically or analysis is 
not mechanize-able for lack of 
a semantically adequate 
paradigm or model underlying 
the behavior specification or 
description. [H-SAE-{1,2,3}] 

3G1 Behavior specification or description method is based on a 
semantically adequate, unambiguous paradigm [H-SAE-1G1↑; 
H-SAE-1G2↑], supporting association of timing constraints 
[H-SR-13G4↑], other properties (Table 8↑), hierarchical 
nesting, and abstraction [H-S-1.1G1↑]. Example paradigm: 
Extended finite state machine (adapted from [26] and 2.3.4.1.1 
in [21]). 

3.6.4 Contributory hazards in Software architectural engineering 
Table 14 is also applicable to the architectural engineering of software, with software-related 
refinements added in Table 16. 

Table 16: Hazards through inadequacy in software architectural engineering: Examples 
Contributory hazard Conditions that 

reduce the hazard 
space 

                                                 
91 Task: Schedulable unit of work (execution). Dynamic creation and destruction of tasks is avoided 
92 Example: Interruption and pre-emption are avoided or mathematical analysis (Appendix I) proves 
satisfaction of constraints on timing and order of execution. 
93 Examples: Memory (information storage); Processor (execution time) 
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ID 
H-
SwAE- 

Description (e.g., Scenario) ID 
H-
SwAE- 

Description  

1 Loss of information across disciplines (e.g., system engineering, 
software engineering, and hardware engineering) due to discipline-wise 
division of organizations, people, and work [H-culture-9↑]. 

1G H-SRE-tG1↑ 

2 Loss of information across disciplines due to incompatible paradigms, 
methods, and tools across disciplines. 

2G H-SAE-{2G1, 
3G1}↑ 

3.7 Evaluation of Hardware-Related Hazard Analysis  
As in the preceding sections, hardware-related HA is treated in two parts – the product (Table 
17: Hardware: Examples of contribution to hazards) and the process (Table 18: Inadequate hardware 
engineering: Examples of contributory hazards). 

Table 17: Hardware: Examples of contribution to hazards 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-
Hw- 

Description (e.g., Scenario) ID 
H-
Hw- 

Description  

1 Failure of hardware leads to 
unanalyzed conditions [H-S-1.1.1↑] 
(e.g., unknown state).  

1G1 Only hardware with predictable, well-understood, well-
known degradation behavior is used. 

1G2 Degradation is detectable before failure that could lead to 
unanalyzed conditions (e.g., unknown state) [H-S-
1.2G3↑].  (Adapted from CP 2.2.3.7 1st clause in [21]) 

1G3 Safety requirements are specified to maintain system in a 
safe, known state at all times, in all modes of usage, 
including degraded states and including maintenance. 
Safety functions may be online or offline; for example: 
1. Monitor hardware condition [H-SR-4G1↑]; for 

example: 
1.1. Online monitoring (e.g., cyclic; periodic) 
1.2. Offline surveillance 

2. Detect hardware fault [H-SR-4G2↑] – see H-Hw-1G4 
3. Notify (other automation or human) [H-SR-4G5↑] 
4. Intervene (to maintain system in safe state) [H-SR-

4G3↑] 
5. Perform preventative maintenance (e.g., scheduled 

replacement) 
6. Provide redundancy 

6.1. Provision of diverse redundancy 
(Items 1-4 adapted from CP 2.2.3.7 in [21]); 
(Item 4 is generalized from CP 2.2.3.7 in [21]) 
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1G4 Requirements are identified for independent, timely 
detection of a contributory hazard in an instrument or other 
element upon which a safety function depends; for 
example: 

1. In the case of a bi-stable device, the 
device can be feasibly in one stable state or the other only; 
then, an indication of both states at the same time is an 
anomaly. 

2. In the case of a continuously controlled 
electric motor for a motor-operated valve, if the trajectory 
{electric current; displacement; time} for the transition 
from actuation command to completion is outside the 
envelope of feasibility, it indicates an anomaly. 

3. The trajectory of feasible process state 
variables (set of values over time) is identified, such that 
indication of an instrument anomaly can be derived from 
sensed values in the infeasible region. 

2 Anomaly in the state of the process is 
not recognized or identified or 
correctly understood due to 
inadequacy in instrumentation [H-SR-
23↑] 

2G1 Progressive degradation, drift, and such other changes in 
the behavior of instrumentation are properly accounted for; 
examples: 
1. Monitoring and tracking such 
phenomena 
2. Compensation 
3. Calibration; recalibration;  
4. Allowances (margins) for unaccounted, 
uncompensated, or unknown changes 
5. Detection of unacceptable deviation  
6. Appropriate intervention – see H-Hw-
1G3 items 2,4. 

3 Anomaly in the state of the 
instrumentation for the safety 
functions or other element in the 
environment, upon which a safety 
function depends, is not correctly 
understood or recognized. 

3G1 Instrument or element has behavior (including behavior in 
fault states), which satisfies requisite properties such as 
those identified in Table 8. 
 

4 Loss or interruption of power.  
 

4G1 Safety functions are specified to maintain system in a safe, 
known state (adapted from CP 2.2.3.7 last sentence in 
[21]). 5 Disturbance in power supply. 

 
6 Inadvertent alteration of invariant 

information (e.g., program code; fixed 
data). 

6G1 Invariant information is stored in read only memory 
(ROM). 
(Adapted from CP 2.7.3.3.2 in [21]).  

7 Change in hardware that is nominally 
“equivalent” to replaced hardware 
(e.g., functionally, electrically, 
mechanically “interchangeable”) leads 
to some subtle change that degrades a 
safety function. 

7G1 Criteria for equivalence are correct and complete; 
examples:  
1. Analysis of differences in timing behavior.  
2. Analysis of differences in signal-noise discrimination. 

Also see Table 1. 
3. If the item includes programmable logic, analysis for its 

contribution to hazards. 
  



 DRAFT  September 2014 
Rev. 4 

DRAFT RIL-1101 Page 53 
 

Table 18: Inadequate hardware engineering: Examples of contributory hazards 
Contributory hazard Examples of conditions that reduce the 

hazard space 
ID 
HwP-

H
w
E
- 

Description (e.g., Scenario) ID 
H-
HwP- 

Description  

1 Loss of information across disciplines (e.g., 
system engineering, software engineering, 
and hardware engineering) due to discipline-
wise division of organizations, people, and 
work [H-culture-9↑]. 

1G1 H-SRE-tG1↑ 
See H-culture-{4G1, 4G2, 4G3, 4G4} and 

Appendix F. 

2 Loss of information across disciplines due to 
incompatible paradigms, methods, and tools 
across disciplines. 

2G1 H-SAE-{2G1, 3G1}↑ 

3 Preventative maintenance activities on which 
a safety function is dependent are not 
performed [27] when needed or scheduled [H-
Hw-1G3]. 

3 G1 Maintenance schedules specify the 
preventative actions explicitly [H-Hw-1G3↑]. 

3G2 These maintenance schedules are treated as 
safety related activities (e.g., including, 
performance; verification; audit) [Table 1].  

4 Preventative protection against age-related 
degradation is not provided in maintenance 
plans (generalization from [28]).  

4G [see H-Hw-{1G1; 1G2}] 

5 Computation is incorrect due to incorrect 
mapping of algorithm onto arithmetic 
hardware; for example, due to incompatibility 
in one or more of the following: 
1. Hardware  
2. Hardware interfacing software 
3. Algorithm 
4. Mapping algorithm software onto hardware 
5. Associated library software 
[H-SwRE-2↑] 

5G1 The hardware (e.g., floating point processor), 
algorithm (e.g., formula and data types in the 
application software), and the transformation 
(e.g., compiler and its configuration) are 
specified correctly. 
(Generalized from CP 2.4.3.5.8 in [21]). 

5G2 The hardware, software, and transformation 
are qualified and configured correctly for 
conformance to the specs (H-HwP-5G1). 

6 Selection of output destination (e.g., actuator) 
or input source (e.g., sensor) is incorrect, for 
example, due to incorrect mapping from 
software to hardware. 

6G1 I/O-identifying mappings from requirements 
to architecture to detailed design to 
implementation are verified to be correct. 
(Generalized from CP 2.3.3.1.7 1st sentence in 
[21]). 

3.8 Evaluation of Hazard Analysis related to Software Detailed Design 
Review of HA under 10 CFR Part 52 is limited to review of work products from the pre-
certification phases of the lifecycle (e.g., plan; concept; requirements; architecture). However, 
these work products could also include other constraints remaining after design certification for 
preventing contribution to hazards from activities in the later phases. Then, these constraints 
could be identified as part of the licensing basis, and could become part of ITAAC commitments.  

Many defects found during software detailed design are traceable to (rooted in) deficiencies 
from earlier phases in the development lifecycle. Earlier sections of this RIL have identified 
examples of those deficiencies as contributory hazards. Those conditions to reduce the 
respective hazard spaces also apply to software detailed design. 
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Table 19: inadequate detailed design of software: Examples of contribution to hazards 
Contributory hazard Examples of conditions that 

reduce the hazard space 
ID 
H-
SwD- 

Description (e.g.,: Scenario) ID 
H-
SwD- 

Description  

1 Loss of information across disciplines (e.g., software 
architecture engineering and detailed software design). 
[H-SwAE-1↑] 

G1 H-SAE-{2G1, 3G1}↑ 

2 Scenario: Software contributes to or exacerbates 
complexity of the system, making it difficult to verify 
[H-S-1.1↑] and understand [H-S-2↑]. [H-SwA-1↑] 

G2  

3 Names of functions, data items, inputs, outputs, and 
variables in software are such that it becomes difficult to 
trace back to system requirements and further back to the 
application domain. (Adapted from [21] 2.3.4.1.2). 

G3.1 Naming conventions and data 
dictionaries are established for ease 
of comprehension and bidirectional 
traceability. 

G3.2 Naming conventions and data 
dictionaries are used consistently. 

3.9 Evaluation of Hazard Analysis related to Software Implementation  
Many defects found during software implementation (coding) are traceable to (rooted in) 
deficiencies from earlier phases in the development lifecycle. Earlier sections of this RIL have 
identified examples of those deficiencies as contributory hazards. The conditions to reduce the 
respective hazard spaces affect software implementation also. 

Common Vulnerabilities and Exposures (CVE) [31] and Common Weakness Enumeration 
(CWE) [32] are forms of contributory hazards in computer programs. Safe programming 
languages or safe subsets of appropriately selected programming languages reduce these 
hazard spaces effectively. 

Table 20: Hazards contributed in software implementation: Examples 
Contributory hazard Conditions that reduce the hazard space 
ID 
H-SwI- 

Description (e.g., Scenario) ID 
H-
SwI- 

Description  

1 Behavior is not analyzable 
mathematically or analysis is not 
mechanize-able, due to the complexity 
introduced through the improper use of 
interrupts or other mechanisms affecting 
order of execution. 

1G1 Unnecessary use of interrupts is avoided, for 
example, not using interrupts to cover for 
inadequately  understanding timing behavior of the 
physical phenomena (Table 1; H-SR-3G7) or the 
design and implementation (H-SR-13G4, H-SR-
15G1) 

1G2 Schedulability analysis or proof is provided to 
verify that timing behavior of the implementation 
satisfies the specifications (H-SR-15G1). 

2 Timing problems prevent deterministic 
behavior. 
Timing problems are difficult to 
diagnose and resolve. 

2G1 The results produced by the programmed logic is 
not dependent on either: 
– the time taken to execute the program, or 
– the time (referenced to an independent 
"clock") at which execution of the program is 
initiated. 
(Adapted from [33]) 

2G2 Execution speed does not affect correct order of 
execution. 
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4 Discussion of regulatory significance  

Hazard analysis of a digital safety system94 could address clause 4.8 (quoted below) in [3], 
where a “condition having the potential for functional degradation of safety system performance” 
is a hazard and a “provision … incorporated to retain the capability for performing the safety 
functions” is a requirement or constraint to eliminate, prevent or otherwise control the hazard. 

Clause 4 and sub-clause 4.8 in [3]  A specific basis shall be established for the design of each 
safety system of the nuclear power generating station. The design basis shall also be available as 
needed to facilitate the determination of the adequacy of the safety system, including design 
changes. The design basis shall document as a minimum …: 

4.8. The conditions having the potential for functional degradation of safety system performance 
and for which provisions shall be incorporated to retain the capability for performing the safety 
functions … 

Hazard analysis of a digital safety system could support the “analysis…of the major structures, 
systems, and components…” required per 10 CFR 50.34(a)(3) as follows: HA could support the 
development of principal design criteria and derivation of design bases from these criteria [35] 
and corresponding clause 10 CFR 52.47(a)(2)  of [36] “… analysis of the structures, systems, 
and components (SSCs) of the facility, with emphasis upon performance requirements, the 
bases, with technical justification therefor, upon which these requirements have been 
established, and the evaluations required to show that safety functions will be accomplished…. 
The description shall be sufficient to permit understanding of the system designs and their 
relationship to the safety evaluations.” Hazard analysis of a digital safety system coul;d be part 
of the “analysis…of the major structures, systems, and components…”  Hazard analysis of a 
digital safety system identifies design characteristics and unusual or novel design features, and 
associated principal safety considerations. In this way the hazard analysis of a digital safety 
system could support requirements of clause 5.6 in [3], which is dependent upon clause 4.8, by 
yielding principal design criteria, design bases, and derived requirements and constraints 
relating to independence with the specificity needed for consistent verification and validation. 

Recognizing from recent licensing review experiences, trends in design characteristics and 
unusual or novel design features, generally accepted engineering standards95 are not 
sufficiently specific to ensure consistent application and require significant judgment relying on 
high level of subject matter competence. In consideration of these trends and similar trends in 
other application domains and issues encountered in respective safety reviews, this RIL 
identifies the associated contributory hazards and corresponding system characteristics and 
conditions that reduce the respective hazard spaces. In turn, this could reduce the judgment 
space in regulatory evaluation and thus, regulatory uncertainty perceived by the applicant. 

In support of requirements in 10 CFR 50.34(a)(3)(i) and 10 CFR 52.47(a)(3)(i), hazard analysis 
of a digital safety system could lead to principal design criteria, additional96 to or overlapping the 

                                                 
94 A system to which a safety function has been allocated as a result of a plant level safety analysis, 
which includes a plant level hazard analysis. 
95 It refers to their mention in 10 CFR 50.34(a)(ii)(B), and include standards referenced in NRC’s 
regulatory guides 
96 These additional requirements or constraints may be specific to a facility, system, component or 
structure. 
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general design criteria (GDCs) in 10 CFR 50 Appendix A, which provide only minimum 
requirements. 

In support of requirements in 10 CFR 50.34(a)(3)(ii) and 10 CFR 52.47(a)(3)(ii), hazard analysis 
of a digital safety system could lead from principal design criteria to design bases, that is, 
functions to be performed (functional requirements) and restraints (e.g., constraints on the 
architecture, and constraints on design and implementation), such that their satisfaction is 
verifiable later in the system development lifecycle. These derived requirements and constraints 
lead to the level of design information to which the following requirement in10 CFR 52.47 refers: 

“The application must contain a level of design information sufficient to enable the 
Commission to judge the applicant's proposed means of assuring that construction 
conforms to the design and to reach a final conclusion on all safety questions 
associated with the design before the certification is granted. The information 
submitted for a design certification must include performance requirements and 
design information sufficiently detailed to permit the preparation of acceptance and 
inspection requirements by the NRC…” 

In support of requirements in 10 CFR 50.34(a)(4), hazard analysis of a digital safety system 
could be part of the preliminary analysis which yields principal design criteria, design bases, and 
derived requirements and constraints with the degree of specificity needed for consistent 
verification and validation. Hazard analysis naturally organizes this information along flow-down 
(or dependency) paths from a safety function, since it follows a cause-effect course of enquiry 
and reasoning, originating from potential for degradation of the safety function. This cause-effect 
course of enquiry and reasoning could also support developing specific information required per 
10 CFR 50.34(a)(5-8) and 10 CFR 52.47(a)(7, 19), where critical to safety analysis.   

The technical basis and safety goal-focused organizing framework established in RIL-1101 
contributes limited support for risk-informed treatment as follows. It contributes to the 
determination of safety significance through systematic identification of a hazard, i.e., potential 
for adverse effect on a safety function allocated to the system under evaluation. This approach 
also supports identification of contributors to a hazard; for example, potential for adverse effect 
on diversity or defense-in-depth. 

5 Conclusions 
This RIL provides the US Nuclear Regulatory Commission (NRC)’s licensing staff the technical 
basis to support their review of hazard analysis (HA) performed on a digital safety system by an 
applicant seeking a design certification or a license amendment.  

The RIL has been focused on certain kinds of issues encountered in NRO’s recent licensing 
reviews, which are rooted in systemic causes, and are contributed through engineering 
deficiencies during the development of a digital safety system – characterized as contributory 
hazards; for  example: Unintended or unwanted interactions; Inadequate definition of the 
boundary of the digital safety system being analyzed; incorrect decomposition and allocation of 
constraints to control hazards from the top-level of a digital safety system flowing down the 
integration hierarchy; inadequate flow-down to identify requirements and constraints on 
technical processes, supporting processes, and organizational processes. 

Although the targeted scope was limited, the result supports a broader purpose. Hazard 
analysis organizes information along cause-effect dependency paths (Table 1; items H-0-8, H-0-
9; Appendix K) from a safety function to a contributing item, and provides a framework for 
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reasoning about the (perceived) deficits (Appendix C3.3). In this manner, it contributes to risk-
informed evaluation of the system. 

The cause-effect dependency network resulting from hazard analysis provides a safety-goal 
focused organizing framework, which an applicant could use to streamline its safety analysis 
report, justifying elimination of those provisions in NRC-referenced standards which do not 
contribute to the safety goal. The applicant could also use this framework to justify alternative 
ways of satisfying NRC’s regulation, where the applicant’s approach is not aligned with the 
NRC’s current guidance or standard review plan, but meets the safety goal. The applicant could 
also use this methodology to analyze modification to an existing I&C safety system (e.g., 
replacement of an older-technology module with a newer digital technology module), and use 
the resulting requirements and constraints to drive the modification. 

Currently, different sets of regulatory guidance exist for power reactors, nonpower reactors, 
research and test reactors, and nuclear material processing facilities. The organizing framework 
introduced in this RIL opens opportunities to harmonize and streamline97 the different sets of 
regulation, without increasing the burden of preparing an application or a safety analysis report 
for any particular type of system. 

This organizing framework leads the way to an improved safety-focused future regulatory 
framework, as discussed in the next section. 

This study found very little published information organized specifically to support HA reviews 
applicable to the targeted scope. Therefore, information assimilated in the RIL includes 
knowledge acquired through consultation with external experts. Through this process, RIL-1101 
presents a unique assimilation of the state of the art. This technical basis supersedes that given 
in [39]. 

6 Future research, development and transition 
The development of this RIL has opened many opportunities to improve the effectiveness and 
efficiency of the regulatory review process for digital safety systems, as identified below for 
future consideration in accordance with the priorities of the licensing offices and the availability 
of resources. 

6.1 Transition, knowledge transfer and knowledge management 
The trend towards systems with increasing interactions, fostered through networks and 
software, has rendered traditional hazard analysis techniques, such as FMEA and FTA, 
inadequate. Whereas other techniques (Appendix C.6), more suitable for this trend, have been 
known for some time, these are less familiar to the NPP industry, including NRC’s licensing 
reviewers. Plans are underway to make this knowledge more easily deployable in practice, 
including illustrative examples. Consistent with recommendations in [40] about domain-specific 
software engineering, future R&D activities will investigate techniques to represent the 
knowledge of the domain in a form that is easy to find and reuse correctly. 

NRC will coordinate its plans with EPRI, in order to share the knowledge base that is common 
across various stakeholders’ activities: System development by the applicant or its supplier; 
safety analysis by the applicant; safety evaluation by the regulatory reviewer. 

                                                 
97 For example, in the concept of “item relied on for safety (IROFS)” used in nuclear material processing 
equipment, the “relied on” relation maps into a dependency relation, explained in Appendix K of RIL-1101. 
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Transition plans will include learning cycles through pilot applications (a suggestion that came 
from the ACRC I&C Sub-committee). RES support for pilots will be defined in conjunction with 
the licensing offices. 

6.2 Integration of safety significant information from NPP level analysis  
The trend towards systems with increasing interactions, fostered through networks and 
software, increases the difficulties of analyzing dependencies of a safety system on conditions 
in its environment. For example, the traditional individual FMEA of other I&C SSCs does not 
suffice. With the commensurate growth in the volume of information, traditional manual methods 
will not be scalable. Information-sharing and consistency-maintenance will require mechanized 
support. Future R&D and transition plans will include investigation of more effective methods. 

6.3 Harmonization and disambiguation of vocabulary 
Differences in vocabulary hamper NRC’s learning from NPP experiences elsewhere in the world 
and from other application sectors. The same terms have different meanings. The same 
concepts have different terms. Different concepts are mixed in different ways and enwrapped in 
different terms. These conditions lead to ambiguities and unnecessarily encumber the tasks of 
safety analysis and evaluation. 

Future R&D will explore ways and means to bridge these communication gaps (e.g., modeling 
knowledge of the domain, as mentioned in Section 6.1). NRC will coordinate its plans with 
EPRI. 

6.4 International harmonization 
Different regions of the world pursue the same or similar safety goals under different regulatory 
and guidance frameworks, referencing different standards. These differences obstruct reaching 
a common understanding of the issues and establishing common or harmonized evaluation 
criteria. The NRC’s current guidance is closely tied to legacy standards, which are not able to 
keep up with the changing technological environment. The safety-goal focused organizing 
framework introduced in this RIL opens an opportunity to remove this obstacle. Building on the 
vocabulary harmonization effort mentioned in Section 6.3, future R&D will explore international 
harmonization of the technical basis for evaluating hazard analysis. 

6.5 Learning from other application domains and agencies 
Other regulated application domains, such as life-critical medical devices and mission-critical 
flight control systems are experiencing the same trend towards systems with increasing 
interactions, fostered through networks and software. Larger markets than nuclear power are 
driving regulatory practices in those domains. In accordance with executive guidance, future 
R&D will include coordination with such other regulators and with other federal agencies, 
exploring the leveraging of a common R&D infrastructure [37], and approaches to address 
safety and security assurance earlier in the system development lifecycle [38]. 

6.6 Analysis earlier in the system development lifecycle 
In the case of new reactors, applications for design certification have been based on process 
conformance rather than evidence about the design of the system such as architectural 
specifications and constraints on subsequent detailed design and implementation. Appropriate 
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architectural design and analysis requires abstractions that have not been a part of common 
practice in the NPP industry. However, architectural design and analysis is being used in other 
critical application domains. Future R&D and transition plans include making it easier to 
introduce that knowledge in the NPP application domain, building on the R&D mentioned in 
Sections 6.1 and 6.3. 

6.7 Risk-informed evaluation 
Future R&D will investigate hazard analysis methods applicable to risk-informed evaluation of 
systems in which safety significant conditions can arise from unintended interactions, 
engineering deficiencies, or other such systemic causes. For example, investigation will include 
methods to model and analyze dependencies. 

6.8 Integrated hazard analysis for safety, security and other concerns 
The organizing framework introduced in this RIL opens an opportunity to extend the design 
review for safety to include hazards from breach in security in the digital realm and to include 
hazards contributed through considerations of non-safety objectives driving a safety system 
configuration. 

6.9 Integrated assurance framework 
The organizing framework established through hazard analysis, as treated in this RIL, provides 
a logical framework to integrate the results of verification activities, as explained in Section 2.7.8 
through Figure 1 and Appendix C.3 through Figure 10. This basis feeds into a related ongoing 
research activity to understand how a better “safety demonstration framework” (e.g., an 
assurance case framework) could address issues experienced in regulatory reviews in different 
regions of the world. Through the OECD/NEA Halden Reactor Project, NRC is collaborating with 
other regulatory experts to identify common needs and a common technical basis to meet these 
needs. The intent is to shift the paradigm from clause-by-clause compliance with regulatory 
guidance to meeting the safety goal. It is envisioned that the same framework could be applied 
to any level of integration within a digital safety system (e.g., embedded digital devices). It is 
expected that this framework would also provide efficient support for sustenance after a new 
reactor becomes operational, e.g. modification98. Review comments from external experts 
include recommendations to adopt an assurance case framework. 

6.10 Ideas received through review comments 
Suggestions and remaining issues identified in review comments are treated as inputs to NRC’s 
next I&C research plan. For example, external expert review suggestions include 

1. Additions for hazards contributed through tools.  
2. Extension of the content concerning detailed design and implementation.  
3. Additions for hazards contributes through FPGA and CPLD implementations. 

 

 

                                                 
98 Intent of §10 CFR 50.59 
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7 Abbreviations and Acronyms  
ACRS Advisory Committee on Reactor Safeguards 

CFR Code of Federal Regulations 

CP common position99 

CPLD complex programmable logic devices 

DI design and implementation 

DI&C  digital instrumentation and control 

FPGA field programmable gate array  

FMEA fault modes effects and analysis 

FTA fault tree analysis 

GDC general design criteria 

HA                  hazard analysis 

HAZOP(S) hazard and operability studies 

I&C                 instrumentation and control 

IT                    information technology 

ITAAC inspections, tests, analyses, and acceptance criteria 

NPP nuclear power plant 

NRC U.S. Nuclear Regulatory Commission 

NRR Office of Nuclear Reactor Regulation 

NRO Office of New Reactors 

PHA preliminary hazard analysis 

QoS quality-of-service 

R&D               research and development 

RAI request for additional information 

RIL research information letter  

SAR safety analysis report 

SER safety evaluation report 

SRP               standard review plan 

TFSCS Task Force100 for Safety Critical Software 

TMI Three Mile Island 

V&V verification and validation 

                                                 
99 A term used in [21] for a requirement on which the TFSCS has total consensus 
100 It consists of regulatory experts from the UK, Germany, Sweden, Belgium, Finland, and Spain 
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Appendix A: Glossary 
The scope of this glossary is limited to this document. 

Where a word is not defined explicitly in the glossary, it is understood in terms of common 
usage as defined in published dictionaries of the English language (e.g., [1]).  

The glossary focuses on terms that are not commonly understood in the same way, removing or 
reducing ambiguity by selecting and using more specific definitions. Where needed, notes 
elaborate the definition. 

Where possible, the definition of a technical term is traceable to an authoritative reference 
source. In cases where the authorities have different, inconsistent definitions, the glossary 
adapts the definition and includes explanatory notes to reduce ambiguity. 

The meanings of compound words, terms, and expressions are derived from the meanings of 
their constituent words, as defined in this glossary.  

Aliasing 
In signal processing and related disciplines, aliasing [1] refers to an effect that causes different 
signals to become indistinguishable (or aliases of one another) when sampled. It also refers to 
the distortion or artifact that results when the signal reconstructed from samples is different from 
the original continuous signal. (Also see anti-aliasing in [3]). 

Assumption 
A premise that is taken for granted (often implicitly), i.e., not validated. 

Notes: 
1. This definition is used in the context of reasoning as a part of safety analysis.  

2. Other forms: Assume. Assumed. Assuming. 

Analysis 
A process of reasoning showing that a proposition can be deduced from premises (adapted from 
[2]). 

Notes: 
3. The process may entail decomposition. http://plato.stanford.edu/entries/analysis/s1.html#KD  

4. See Kant’s discussion at http://plato.stanford.edu/entries/analysis/s1.html#Kant    

5. Analysis may take various forms: 

5.1. Quantitative 
5.1.1. Numerical (e.g., analysis of a continuous control algorithm) 
5.1.2. Logical  
5.1.3. Other forms of mathematical analysis. i.e.. where: 

5.1.3.1. The reasoning is composed with clear mathematical rules. 
5.1.3.2. The reasoning is backed by science (e.g., cause-effect laws of engineering). 

5.2. Qualitative101, but consistently102 repeatable across comparably qualified performers. 

                                                 
101 See Quality 

http://en.wikipedia.org/wiki/Signal_processing
http://en.wikipedia.org/wiki/Sampling_(signal_processing)
http://en.wikipedia.org/wiki/Distortion
http://en.wikipedia.org/wiki/Artifact_(error)
http://plato.stanford.edu/entries/analysis/s1.html#KD
http://plato.stanford.edu/entries/analysis/s1.html#Kant
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6. Performance of the analysis may entail various degrees of machine-assistance: 

6.1. Complete mechanization 

6.2. Mechanization, requiring manual interventional activities, e.g., human-guided machine-processing. 

6.3. Completely manual, but consistently repeatable across comparably qualified performers. 

7. The term “formal” (along with its variations) is used to mean “mathematical” as in note 5.1.3 

8. Derived forms: 

8.1. Analyzability 
8.2. Analyzable 
8.3. Un-analyzable 
8.4. Unanalyzed 

Architecture 

The structure or structures of the system, which comprise elements (e.g., software), the 
externally visible properties of those elements, and the relationships among them and with the 
environment (adapted from [5]) 

Where: 

1. Externally visible properties of an element include behavior – normal, as well as 
abnormal – as seen from outside the boundary (interface) of an element. 

2. Relationships include interactions and interconnections (communication paths). 

3. Environment of the system includes the combination of systems and elements (e.g., 
hardware, software, and human) external to this system, human elements interacting 
directly with the system and the commensurate manual procedures. 

4. System means combination of interacting elements organized to achieve one or 
more stated purposes. Systems can comprise of systems. A system with only 
software elements is also a system. For example, if a program comprises of 
subroutines, then the subroutines are elements and the program is a system. 

5. In general, “ELEMENT” is a discrete part of a system that can be implemented to 
fulfill specified requirements. A system element can be hardware, software, data 
(structure), human, process (e.g., process for providing service to users), procedure 
(e.g., operator instructions), facility, materials, and naturally occurring entity (e.g., 
water, organism, mineral), or any combination. 

5.1. For a system (object of analysis) in the context of RIL-1101, “ELEMENT” can be 
hardware, software, or data (structure). 

Assure 
Confirm the certainty of correctness of the claim, based on evidence and reasoning. 

Notes: 
1. For example, by proof. For example, see note 5.1.3 in Analysis. 

2. Examples of claims: (1) The system is safe (Property: Safety. Value: “Is safe.). (2) Property X of the system 
holds. 

                                                                                                                                                          
102 If the analysis is not consistently repeatable or the analysis method/tool itself is not qualified for 
safe use, the purpose of this RIL treats the system as un-analyzable. 
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3. Derived forms: 
3.1. Assurance 
3.2. Assurable 
3.3. Assurability 

Attribute (of quality) 
Inherent property or characteristic of a system or its element that can be distinguished quantitatively or 
qualitatively. (Adapted from 2.2 in [33]) 

Notes: 
1. The means of distinction may be manual or automated. 
2. Also see “Quality measure” and “Scale.” 

Byzantine Behavior 
In a distributed system, arbitrary behavior in response to a failure is called Byzantine behavior 
[6].  

Note:  
1. Arbitrary behavior of an element that results in disruption of the intended system behavior.  
2. Different observers see different states. 

Claim 
A true-false statement about the value of a defined property of a system. (Adapted from [13]) 

Notes: 
1. A property is a quality attribute of the system. (Adapted from 4.3.9 and 4.4.1 in [14]) 

1.1. Example of property: Safety. 

2. A property may have supporting sub-characteristics [14]. 
2.1. Example: Verifiability ← Analyzability ← “Freedom from interference” 

3. Unlike physical quantities, a property sub-characteristic may not be measurable on an absolute scale [14] . 

3.1. Indicators may be associated with a sub-characteristic for its estimation or indirect measurement. 

4. A sub-characteristic may be specified in terms of conditions or constraints on its behavior [14] . 

4.1. Example sub-characteristic of safety property: Restriction on allowed system states. 

4.2. Example sub-characteristic of “Freedom from interference”: Constraints on flows or interactions. 

5. “Value” may be a single value, a set of single values, a range of values, a set of ranges of values, and limits on 
values. Value can be multi-dimensional [14].  

6. “Value” may be invariant, dependent on time, or dependent on some other conditions [14]. 

7. Associated with a property may be the duration of its applicability (i.e., not limited to the present). For example, 
the property may concern the future behavior of the system [13].  

8. Uncertainty (lack of certainty) may be associated with the property  [13].  

8.1. The value of uncertainty may not necessarily depend upon probability.. 

8.2. Uncertainty may be associated with a sub-characteristic. 

8.3. Uncertainty may be associated with the duration of applicability 

8.4. Uncertainty may be associated with other conditions of applicability 

8.5. For example, evaluation of a claim may be based upon certain conditions, formulated in terms of 
assumptions that the identified uncertainties do not exist. 
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Complexity 
The degree to which a system or component has a design or implementation that is difficult to 
understand and verify. (Definition (1)(A) in [3]) 

Notes: 
1. The selection103 of this definition was favored by Dr. Gerard Holzmann [7].  

2. The term, Simplicity, the converse of Complexity, is often used to discuss the same issues. 

3. A “complexity measure or indicator” is often confused with the concept of “complexity”, but should be 
distinguished as follows:  

3.1. A complexity measure pertains to any of a set of structure-based metrics that measure the 
attribute in Definition (1)(A) in [3]. (Definition (1)(B) in [3]) 

3.2. Example of an indicator: The number of linearly independent paths (one plus the number of 
conditions) through the source code of a computer program is an indicator of control flow 
complexity, known as McCabe’s cyclomatic complexity [3]. 

3.3. Sometimes, the term “size-complexity” is used to refer to the effect of the number of states and 
number of inputs and their values and combinations. 

4. Complexity theory is concerned with the study of the intrinsic complexity of computational tasks, that is, 
a typical Complexity theoretic study considers the computational resources required to solve a 
computational task (or a class of such tasks); it studies what can be achieved within limited time (and/or 
other limited natural computational resources) [8]. For example, the time required to solve a problem – 
calculated as function f(…) of the size of the instance, usually the size of the input, n – is studied for its 
scalability (e.g., bounded by “order of“ O(…) with respect to the input size n). Similarly, instead of time, 
one could study the scalability with respect to some other resource constraint (e.g., space or memory). 
An example of a useful result from this theory is a premise that only those problems that can be solved 
in polynomial time, denoted as O (nk) for some constant k, can be feasibly computed on some 
computational device [9]. Applying this thesis to evaluation of system architecture, one could conclude 
that, if the input space of a system is not bounded, the system is not verifiable. One could further 
conclude that, if the interactions across elements of the system are not bounded, the system is not 
verifiable. 

Complex Logic 
An item of logic for which it is not practicable to ensure the correctness of all behaviors104 
through verification alone. 
Notes: 
1. This definition is derived from a combination of the definition of complexity given above and the 

following definition in DO-254/ED-80 in Appendix C [11], for “simple hardware item”: “A hardware item is 
considered simple if a comprehensive combination of deterministic tests and analyses can ensure 
correct functional performance under all foreseeable operating conditions with no anomalous behavior.” 
The conditional clause “if a comprehensive combination of deterministic tests and analyses…” is 
summarized as “verification.” 

2. Therefore, in addition to verification, the demonstration of correctness of Complex Logic requires a 
combination of evidence from various phases of the development life cycle, integrated with reasoning to 
justify the completeness of coverage provided (summarized as development assurance). Examples 
include the following: 

1.1. Evaluation of the system concept (and conceptual architecture)  
1.2. Evaluation of the verification and validation plan  
1.3. Criticality analysis  

                                                 
103  Various standards provide different definitions; there is no broadly accepted definition. 
104  This refers to behaviour under all foreseeable operating conditions with no anomalous 
behaviour. 
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1.4. Evaluation of the architecture including requirements allocation  
1.5. Evaluation of the system-internal hazard analysis  
1.6. Validation of requirements and constraints on the design and implementation  
1.7. Assessment and audit of all processes, including supporting and management processes.  
1.8. Certifying105 organizations developing software  
1.9. Evaluation of the independence106 of the assurance activities 
1.10. See [11] for more detail. 

3. Complex Logic is typically produced by techniques such as software or hardware description languages 
and their related tools. Thus, the assurance of correctness also requires commensurate assurance of 
the languages and tools. 

Constraint 
An externally imposed limitation on system requirements, design, or implementation or 
on the process used to develop or modify a system (Definition 6 in [31]). 

Examples: 
1. Pre and post conditions 
2. Limits on memory size, cost, deadlines to be met. 

Contribute 
To play a significant part in bringing about an end or result (Definition 1b for contribute in [4]) 

Notes: 
3. Derived forms: 

3.1. Contribution: The thing contributed 
3.2. Contributory: Of, relating to, or forming a contribution  

4. Some experts use the term, “cause.” Others sometimes interpret “cause” to mean “direct cause” or “primary 
cause” or “closely-coupled cause.” However, many factors that influence the result may be distantly-coupled 
through long chains of dependency relationships; the term, “contribute” provides for their inclusion. 

Defect  
An imperfection or deficiency in a project component where that component does not meet its 
requirements or specifications and needs to be either repaired or replaced. A Guide to the 
Project Management Body of Knowledge (PMBOK® Guide) — Fourth Edition. [31] 
 

Notes: 
1. The condition “that component does not meet its requirements or specifications” would exclude cases where the 

requirement or specification itself is deficient.  

2. Another definition in [31] “a problem which, if not corrected, could cause an application to either fail or to produce 
incorrect results. ISO/IEC 20926:2003, Software engineering — IFPUG 4.1 Unadjusted functional size 
measurement method — Counting practices manual” depends upon the definition of “failure” and “correctness” 
both of which, in turn, are evaluated with respect to requirements. Thus, this definition would also exclude cases 
where the requirement or specification itself is deficient. 

                                                 
105  Certification of the development organization should be a continual process of certification and 

recertification much in the same manner as reactor operators are certified periodically. For example, 
the capability maturity model integrated certification process developed by the Software Engineering 
Institute focuses on assessing the capabilities of development. 

106  For example, independence can be evaluated through certification of the assurance process for the 
Complex Logic (e.g., software). 
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3. From notes 1 and 2, it can be seen that a system may not be defective; yet it may lead to a hazard. 

4. In RIL-1101, the term is used primarily in the context of the engineering phases of the product lifecycle. 

Demonstrate 
Prove (the assertion in context) through reasoning, connecting evidence. 

Dependent 
Determined or conditioned by another. 

Notes: 
1. Other forms: 

1.1. Dependence; Dependency: The quality or state of being dependent upon or unduly subject to the influence 
of another. 

1.2. Independent 
2. . 

 
2.1. The quality or state of being dependent upon or unduly subject to the influence of another.  

 
 

Diverse team 
A team composed of individuals with complementary attributes needed to perform the assigned 
task (e.g., thought processes, communication styles, and competence, including education 
training, and experience in different domains and disciplines). 

(System) Element 
A discrete constituent of a system (adapted from [16]). 

Notes: 
3. The term “discrete constituent” is substituted for the word “component” used in the definition from [16]. Reason: 

Avoid confusion with other meanings of “component” in the context of software. The word “discrete” implies that 
the constituent has a distinct boundary, that is, interface with its environment (per definition in [17]), and an 
intrinsic, immutable, unique identity (adapted from [16]). 

4. Examples: 
4.1. Hardware element 
4.2. Software element 
4.3. Human element 
4.4. Data element 
4.5. Process 
4.6. Procedure (e.g., operating instructions) 

5. An element may have other elements in it (e.g.,  a subsystem). 

6. A system may itself be an element of a larger system. 

Environment 
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A general term relating to everything (including every condition) that supports or affects the 
performance of a system or a function of the system. (Combination of 9A and 9B in [3] which 
refer to (C) 610.12-1990) 

Notes: 
1. The environment of a software component consists of all the elements (in their respective states or 

conditions), with which it interacts, by which it is affected, and on which it depends. Examples of 
elements: 
1.1. Other software components 
1.2. Operating system (common services and resources shared by software components) 
1.3. Execution hardware 

2. The environment of an electronic hardware component consists of physical environmental conditions 
and other hardware components (in their respective states or conditions) with which it interacts, by 
which it is affected, and on which it depends. Examples of physical environmental conditions: 
2.1. Temperature 
2.2. Humidity 
2.3. Electromagnetic radiation 

Error 
The difference between a computed, observed, or measured value or condition and the true, 
specified, or theoretically correct value or condition (Definition (8)(A) in [3]) 

Evidence 
Data supporting the existence or verity of something. (Adapted from 3.1936 in [31]) 

Note: 
1. Examples of means of obtaining “raw” evidence: Test; measurement; observation. 

2. Examples of evidence incorporating reasoning: 
2.1. Confirmation by static analysis that an implementation satisfies its design specification. 
2.2. A claim at one level of integration used as evidence in claim for next higher level of integration of a system. 

Failure 
The termination of the ability of an item to perform a required function. [18] 

Notes: 
1. After failure, the item has a fault. [18] 

2.  “Failure” is an event, as distinguished from “fault” which is a state. [18] 

3. This concept as defined does not apply to items consisting of software only.[18] 

4. The following definitions represent the perspectives of different disciplines to reinforce the definition given above: 

4.1. The termination of the ability of an item to perform a required function (Definition (1)(A) in [3]). 

4.2. The termination of the ability of a functional unit to perform its required function (Definition (1)(N) in [3]). 

4.3. An event in which a system or system component does not perform a required function within specified 
limits; a failure may be produced when a fault is encountered (Definition (1)(O) in [3]). 

4.4. The termination of the ability of an item to perform its required function (Definition 9 in [3] from “nuclear 
power generating station”). 

4.5. The loss of ability of a component, equipment, or system to perform a required function (Definition 13 in [3] 
Safety systems equipment in “nuclear power generating stations”). 

4.6. An event that may limit the capability of equipment or a system to perform its function(s) (Definition 14 in [3] 
“Supervisory control, data acquisition, and automatic control”). 



 DRAFT  September 2014 
Rev. 4 

DRAFT RIL-1101 Page 71 
 

4.7. The termination of the ability of an item to perform a required function (Definition 15 in [3] “nuclear power 
generating systems”) 

Failure Analysis 
The logical, systematic examination of a failed item to identify and analyze the failure 
mechanism, the failure cause, and the consequences of failure. (191-16-12 in [18]) 

Fault 
The state of an item characterized by inability to perform a required function, excluding the 
inability during preventive maintenance or other planned actions, or due to lack of external 
resources. (191-05-01 in [18]) 

Notes 

1. A fault is often the result of a failure of the item itself but may exist without prior failure. 
2. Also see “defect.”  
3. Distinguish from failure, mistake, and error. 
4. (Derived form) Faulty: Pertaining to an item that has a fault. 

Fault Analysis 
The logical, systematic examination of an item to identify and analyze the probability, causes, 
and consequences of potential faults. (191-16-11 in [18]) 

Fault Mode 
One of the possible states of a faulty item, for a given required function. 

Note:  
RIL-1101 does not use the term “failure mode” in this sense. 

Fault Modes and Effects Analysis (FMEA) 
A qualitative method of reliability analysis, which involves the study of the fault modes, which 
can exist in every sub-item of the item, and the determination of the effects of each fault mode 
on other sub-items of the item and on the required functions of the item. (191-16-03 in [18]) 

Note:  
RIL-1101 does not use the term “failure mode and effects analysis” in this sense.  

Fault tolerance 
The ability of a system or component to continue normal operation despite the presence of 
hardware or software faults (Definition 1 in 3.1127 in [31]). 

Notes: 
1. “Fault tolerance” is also defined as a discipline pertaining to the study of errors, faults, and failures, and 

of methods for enabling systems to continue normal operation in the presence of faults  (Definition 3 in 
3.1127 in [31]). 

2. Derived forms “Fault tolerant”, “Fault-tolerant”: pertaining to a system or component that is able to 
continue normal operation despite the presence of faults (3.1128 in [31]). 

3. For example: Conditions that may degrade the performance of a function of the system are identified; in 
anticipation, a constraint is formulated to prevent such degradation; and the resulting system is able to 
continue performance of the required function when the anticipated conditions arise. 

Fault Tree Analysis (FTA) 
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An analysis to determine which fault modes of the sub items or external events, or combinations 
thereof, may result in a stated fault mode of the item, presented in the form of a fault tree. 
(191-16-05 in [18]). 

Feasible 
Capable of being done with the means at hand and circumstances as they are. [20]  

Notes: 
1. Other definitions also impose such constraints as  

1.1. Practicably 
1.2. Reasonable amount of effort, cost, or other hardship [21]  
1.3. Cost-effectiveness. [22]  

2. Such constraints distinguish “feasibility” from “possibility.” 

Freedom from interference 
Freedom from degradation of the performance of a function due to interaction across the system 
and its environment or across elements of the system. 

Note: 
1. Interference: Interaction across a system and its environment or across elements of a system that can 

degrade the performance of a function. It is not limited to propagation of a failure. 

Hardwired 
Pertaining to a circuit or device whose characteristics and functionality are permanently 
determined by the interconnections107 between components108 (Adapted from Definition 3 in [3]).  

Note: 
The referred-to connections are at the printed circuit board level (or cabinet level), not internal to integrated circuits. 

Hazard 
Potential for harm109 

Examples:  
1. A condition;  
2. A circumstance;  
3. A scenario. 

Notes: 
1. RIL-1101 bounds the scope to the entity (system; element) in the context of a defined environment. 

2. At the initial stage of hazard logging (before any analysis of the initial finding), the log may include an 
item, which, after some analysis, is re-characterized (differently from the originally characterized 
hazard; possibly, an event). 

3. Definition A in [15] (same as definition 3.1283-1 in [31]) elaborate on the “potential for harm” as 
follows, “An intrinsic property or condition that has the potential to cause harm or damage.” 

Contributory hazard 

                                                 
107  Examples: Wiring in cabinets; Printed paths in circuit boards 
108  Examples: Relays; AND-gates; OR-gates 
109 In general, “loss” of any kind that is of concern. Focus of RIL-1101: Harm. 
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Factor contributing to potential for harm. 

Notes: 
1. (Excerpt from [23]) …. An unsafe act and / or unsafe condition which contributes to the accident110,  ....  
2. Figures 7-1 - 7-4 in [24] illustrate contribution paths.   

Examples:  
1. The potential for adverse energy flow  [23] 

2. Inappropriate functions  (from Figure 7-5 in [24]) 

3. Normal functions that are out of sequence (from Figure 7-5 in [24]) 

4. Functional damage and system degradation (from Section 7.1.1 in [24]) 

5. Machine-environment interactions resulting from change or deviation stresses as they occur in time and space 
(from Section 7.1.1 in [24]) 

Hazard Analysis 

Hazard analysis (HA) is the process of examining a system throughout its lifecycle to identify 
inherent hazards (see) and contributory hazards, and requirements and constraints to eliminate, 
prevent, or otherwise control them. 

Notes: 
1. “Hazard identification” part of HA includes the identification of losses (harm) of concern. 

2. This definition is narrower than many definitions of HA, some of which correspond to the NRC’s 
usage of the term “safety analysis” (as in a safety analysis report). 

a. The scope of the definition excludes the verification that the requirements and 
constraints have been satisfied. 

b. Various HA definitions and descriptions identify artifacts (results, including intermediate 
results) of HA by different names. The expression “requirements and constraints” used 
in this definition (to align and integrate them in well-established systems engineering 
terms) subsumes them. 

c. The scope of the definition does not include quantification explicitly. Where appropriate 
(e.g., for a hardware component, quantification of its reliability would be implicit in the 
activity of formulating requirements and constraints). 

Hazard Identification 
The process of recognizing that a hazard exists and defining its characteristics [31]. 

Indicate 
To be a sign, symptom, or index of [1]. 

Note: 
1. Derived form: Indicator – A device or variable that can be set to a prescribed state based on the 

results of a process or the occurrence of a specified condition. [3] 

2. Often an indicator is an estimate or a result of evaluation, possibly incorporating judgment, and not 
measured on a standardized scale (or norm). 

3. An indicator is created for its potential utility by facilitating comparison of current state with goal 
state, rather than for absolute accuracy. 

4. Contrast with quality measure. 
                                                 
110 in our case, degradation of a safety function 
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Intended 
Intentional (Meaning 2 in [4]) 

Notes 
1. Derived form: Unintended; meaning “not intentional,” i.e., not required directly or indirectly. 

2. Also see 

Information hiding 
The principle of segregation of design decisions in a computer program that is most likely to 
change, thus protecting other parts of the program from extensive modification if the design 
decision is changed. The protection involves providing a stable interface which protects the 
remainder of the program from the implementation (the details that are most likely to change). 

Item (Entity) 
Any part, component, device, subsystem, functional unit, equipment, or system that can be 
individually considered. (191-01-01 in [18]) 
Notes: 

1. In [15], The term, element, is used to mean item. 

2. An item may consist of hardware, software, or both, and may, in particular cases, include people. 

3. A number of items (e.g.,, a population of items) or a sample may itself be considered an item. 

Mechanize 
to produce by or as if by machine [4]. 

Mistake 
A human action that produces an unintended result (Definition 1 in [3] “electronic computation”)  

Editorial note (contrary to the note attached to Definition 1 in [3]): In the context of software engineering, 
this definition should be applied to mistakes concerning requirements development (including elicitation, 
transformation of intent into requirement or constraint specification, and explicit statement of 
assumptions (e.g., about the environment) and respective validation. 

A human action that produces an incorrect result (Definition 3 in [3] “software”)  

Note: The fault tolerance discipline distinguishes between the human action (a mistake), its 
manifestation (a hardware or software fault), the result of the fault (a failure), and the amount by which 
the result is incorrect (the error). [3] 

Editorial note (complementing the note in the previous definition of “mistake”): In the context of software 
engineering, this definition should be applied to mistakes concerning transformation of requirements 
specifications and constraints into successive work products and their respective verification. 

Mode confusion 
A situation in which an engineered system can behave differently from its user’s expectation, 
because of a misunderstanding or inadequate understanding of the system state. 

Process 
A set of interrelated activities, which transforms inputs into outputs. (Definition 12(A) in [3]. 
Definition 3.2217-1 in [31]) 

 Notes 

http://en.wikipedia.org/w/index.php?title=Design_decisions&action=edit&redlink=1
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1. Definition 4 in [3] makes “including the transition criteria for progressing from one (activity) to the 
next” explicit. 

2. In definition 4 in [3], the expression “that bring about a result” corresponds to “which transforms 
inputs into outputs.” The latter is used in the definition above, because it identifies a set of starting 
conditions (inputs), a set of end conditions (outputs) and the transformational purpose of the 
process. 

3. Examples of transformational processes in an engineering lifecycle of a product: Requirements; 
Architecture; Detailed design; Implementation. If the overall engineering is considered a lifecycle 
process, then these may be identified as phases in that lifecycle process. 

Product 
Result of a process. (3.2257-4 in  [31]) 

Notes: 
1. Referring to Note 3 for process, the term “product” may be used for the final product or for a result of a 

particular phase of a lifecycle process; for example: System requirements specification; System architecture 
specification; Detailed design specification; (Software) source code; (Software) executable code. 

Quality 
Capability of product to satisfy stated and implied needs when used under specified conditions. 
(Adapted from 4.51 in [32]) 

Notes  
1. This definition differs from the ISO 9000:2000 quality definition; it refers to the satisfaction of stated and 

implied needs, while the ISO 9000 quality definition refers to the satisfaction of requirements. 

2. The term “implied needs” means “needs that may not have been stated explicitly (e.g., a need that is 
considered to be evident or obvious; a need implied by another stated need).” 

3. Quality model: Defined set of characteristics, and of relationships between them, which provides a 
framework for specifying quality requirements and evaluating quality. (Adapted from 4.44 in [32])  

4.  Quality measure: An attribute of quality to which a value is assigned. Also see scale. 

5. Quality in use: Capability of the product to enable specific users to achieve specific goals in specific 
contexts of use. The expression “in use” refers to the expectations of the end user. 

5.1. Actual quality in use may be different from quality in use measured in a test environment earlier in the 
product lifecycle, because the actual needs of users may not be the same as those reflected in the test 
cases or in the requirements specifications.  

5.2. Quality in use requirements contribute to identification and definition of external software quality 
requirements. 

5.3. Example of quality in use: Safety (freedom from harm). 

6. Measurement of external quality refers to measurement from an external view of the product, where targets 
are derived from the expected “quality in use” and are used for technical verification and validation. For 
example, external software quality would be measured in terms of its capability to enable the behavior of the 
system to satisfy its quality in use requirements, such as safety. 

7. Measurement of internal quality refers to measurements during the developmental phases of the product 
lifecycle. Targets are derived from targets for measurement of external quality.  

Reason 
Argument: A logical sequence or series of statements from a premise to a conclusion. (Adapted 
from http://www.merriam-webster.com/dictionary/argument. Also see  

Notes: 

http://www.merriam-webster.com/dictionary/argument
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1. Argument: Also see http://www-rohan.sdsu.edu/~digger/305/toulmin_model.htm  

2. Derived forms: 

2.1. Reasoning: The use of reason 

2.2. Reasonable: Being in accordance with reason. (http://www.merriam-
webster.com/dictionary/reasonable ) 

Reliability (symbol : R(t1, t2)) 

The probability that an item can perform a required function under given conditions for a given 
time interval (t1, t2). (191-12-01 in [18]) 

Notes:  
1. It is generally assumed that the item is in a state to perform this required function at the beginning 

of the time interval.111 

2. The term “reliability” is also used to denote the reliability performance quantified by this probability 
(see 191-02-06 in [18]). 

3. This definition does not apply to items for which development mistakes can cause failures, 
because there is no recognized way to assign a probability to development mistakes. 

Requirement 
Expression of a perceived need that something be accomplished or realized. (Adapted from 4.47 in [32]) 

Notes:  

1. Functional requirement: Requirement that specifies a function that a system or its element must be able to 
perform, (Adapted from 4.22 in [32])  

2. Quality requirement: Requirement that specifies a quality of a system or its element, where quality may be one of 
the following: 

2.1. Quality in use (e.g., safety). Quality in use requirements specify the required level of quality from the end 
user’s point of view. Also see note 5 in definition of quality. 

2.2. External quality. Also see note 6 in definition of quality. 

2.3. Internal quality. Also see note 7 in definition of quality. 

Resilience 
The property of a system or its element to recover from fault. 
Notes:  

1. “Resilience” as used in this context is not defined in any of the standards used as references for safety, systems, 
or software engineering. This usage is metaphoric. derived from the common usage meanings given in notes 2-
3. Use the term “Fault tolerance” usage of which is well supported in the fault tolerance discipline. 

2. “Resilience” is most commonly used and defined in the context of people. For example: Resilience is the 
capacity to withstand stress and catastrophe. (http://www.pbs.org/thisemotionallife/topic/resilience/what-
resilience )  

3.  “Resilience” is also used and defined as a mechanical property of an object or material. For example: The 
physical property of a material that can return to its original shape or position after deformation that 
does not exceed its elastic limit. (http://www.webster-dictionary.org/definition/resilience ) 

                                                 
111  For a software component that is faulty to begin with, use of the term reliability is neither meaningful 

nor helpful; instead, it leads to the misapplication of analysis techniques that served well for traditional 
hardware. 

http://www-rohan.sdsu.edu/~digger/305/toulmin_model.htm
http://www.merriam-webster.com/dictionary/reasonable
http://www.merriam-webster.com/dictionary/reasonable
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.pbs.org/thisemotionallife/topic/resilience/what-resilience
http://www.webster-dictionary.org/definition/physical
http://www.webster-dictionary.org/definition/property
http://www.webster-dictionary.org/definition/material
http://www.webster-dictionary.org/definition/return
http://www.webster-dictionary.org/definition/original
http://www.webster-dictionary.org/definition/shape
http://www.webster-dictionary.org/definition/position
http://www.webster-dictionary.org/definition/deformation
http://www.webster-dictionary.org/definition/exceed
http://www.webster-dictionary.org/definition/elastic
http://www.webster-dictionary.org/definition/limit
http://www.webster-dictionary.org/definition/resilience
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Robustness 
The degree to which a system or component can function correctly in the presence of invalid inputs or stressful 
environmental conditions. (3.2601 in [31]) 

Scale (for a quality measure) 
Ordered set of values, continuous or discrete, or a set of categories to which an attribute is 
mapped. (Adapted from 2.35 in [33]) 

Notes 
1. The type of scale depends on the nature of the relationship between values on the scale [33]. 

2. Four types112 of scale are commonly defined  [33]: 

2.1. Nominal: The measurement values are categorical 
2.2. Ordinal: The measurement values are rankings 
2.3. Interval: The measurement values are equi-spaced  
2.4. Ratio: The measurement values are equi-spaced, where the value 0 (zero) is not mapped to any attribute. 

3. The valid value space is predetermined. 

4. The mapping of the magnitude of the measured attribute to a value on the scale is predetermined. 

Separation of concerns 
The process of separating a computer program into distinct features that overlap in functionality 
as little as possible. A concern is any piece of interest or focus in a program. Typically, concerns 
are synonymous with features or behaviors. [25] 
 
State 
The present condition of a (dynamic) system or entity. 
Note:  

A state is a complete set of observable properties (also known as state variables) that characterize the 
behavior of a system, that is, response to stimuli (set of inputs). 

State space 
The set of all possible states of a dynamic system [26]. 
Note:  

Each state of the system corresponds to a unique point in the state space. 

System 
Combination of interacting elements organized to achieve one or more stated purposes [27]. 

Notes 
1. A system may be considered as a product or as the services it provides (adapted from [27]). For 

example, at its conceptualization stage, a system may be described in terms of the services it 
provides and its interactions with its environment, without identifying its constituent elements. 

2. The expression “combination…organized…” (instead of collection) emphasizes that a system is 
an “integrated composite” as characterized from the definition in [28] of system. 

                                                 
112 See [34] for other types of scale. 
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3. The expression “to achieve its stated purposes” corresponds to the expression “a capability to 
satisfy a stated need or objective” used in the definition in [28] of system.  

4. In practice, the interpretation of its meaning is frequently clarified by the use of an associated 
noun (e.g., reactor protection system). (Adapted from [27]) 

5. System elements may include people, products and processes (adapted from [28]). In the 
boundary of NRC’s licensing review plan (DSRS) Chapter 7, the review of a digital safety system 
is focused on the safety automation. Operators, thermo-hydraulic processes, and related 
supporting, peripheral processes are part of the environment of the digital safety system. The 
scope of Chapter 7 review includes Interactions of the digital safety system with its environment. 

Systemic 
Embedded within and spread throughout and affecting a group, system, or body.  

Systematic Failure 
Failure, related in a deterministic way to a certain cause, that can be eliminated only by a 
modification of the design or of the manufacturing process, operational procedures, 
documentation, or other relevant factors. [18] 
Notes 

1. Corrective maintenance without modification will usually not eliminate the failure cause. 

2. A systematic failure can be induced by simulating the failure cause. 

3. In International Electrotechnical Commission 61508-4 CDV 3.6.6 [30]: Examples of causes of 
systematic failures include human mistakes in the following areas: 

a. The safety requirements specification 
b. The design, manufacture, installation, and operation of the hardware 
c. The design, implementation, etc. of the software 

4. Other examples include mistakes in modification and configuration. 

5. Also, see “systemic cause” in [29]. 

Traceability 
Discernible association among two or more logical entities, such as requirements, system 
elements, verifications, or tasks.  

Unwanted 
Not needed (Derived from Definition 3 for want in [4]) 
Notes 

1. The need is not intrinsic to the specified requirements. 

Validation 
Confirmation that a product satisfies the needs of the customer and other identified 
stakeholders. (Adapted from 3.3264-5 in [31]). 
Notes 
2. “Confirmation” is used instead of “Assurance,” the word used in  [31]. Rationale: 

2.1.  Avoid confusion with the use of the word “Assurance” in RIL_1101. 
2.2. Consistency with the use of “Confirmation” in the definition of “Verification.” 
2.3. “Confirmation” subsumes the term, “the process of evaluating” used within definition A in [15]. 
2.4. “Confirmation” subsumes the term, “the process of providing evidence” used within definition B in [15]. 

3. “Validation” includes confirmation that the requirements are correct, complete, consistent, and unambiguous. 
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4. The stakeholder requirements definition activity includes the transformation of various needs into requirements, 
including the requirements for validation [10].  

4.1. In [15], validation of stakeholder requirements definition includes HA. 

4.2. In the context of an NPP safety system, “stakeholder requirements” mean NPP safety requirements 
allocated to and intended for this safety system.  

4.3. “Requirements for validation” include Assurability. 

5. The activity of validation includes the confirmation that the specification for each lifecycle phase satisfies the 
needs of the customer and other identified stakeholders. 

6. A clarification of the expression, “the needs of the customer and other identified stakeholders” is provided within 
definition B in [15] as follows: Solve the right problem (e.g., correctly model physical laws, implement business 
rules, and use the proper system assumptions), and satisfy intended use and user needs. 

7. The concept of “validation,” as defined, subsumes the concept of “verification.”  However, there is a lack of clear 
agreement across various authorities on the subsumption of “verification” in “validation.” 

8.  “Product” subsumes the elaboration, “system, software, or hardware and its associated products” used within 
definition B in [15]. 

9. “Satisfies” is used instead of “meets,” the word used in  [31]. Rationale: Consistency with usage in the definition 
of “Verification.” 

10. The elaboration “….satisfy requirements allocated to it at the end of each life cycle activity” within definition B in 
[15] is subsumed in the expression, “satisfies the needs of the customer and other identified stakeholders”.  

Verification 
Confirmation that specified requirements have been satisfied. (Adapted from 3.3282-3 in [31]). 

Notes 
1. Various standards and authorities have different definitions, which are inconsistent with each other. The 

definition given above abstracts commonality to the extent possible. The following notes provide explanations, 
with attempts to reconcile some differences across certain definitions where possible.  

2. The term is also used to mean the process of confirmation that specified requirements have been satisfied. The 
usage context will distinguish the two meanings. 

2.1. Definition A in [15] characterizes the verification process  “… evaluating … to determine whether … product 
…. satisfy … “ If the result of the determination is TRUE, then it is “confirmation.” The act of evaluating 
includes reviewing, inspecting, testing, checking, auditing, or otherwise determining and documenting (also 
see note 9 below). 

2.2. The object of verification is implied in the definition (e.g., confirmation that a product satisfies its specified 
requirements).  

3. Definition 3 in [31] uses the term “fulfilled”; however, to reduce potential ambiguity, the term “satisfied” is used 
(which is also used in definition 1 within [31]) in the general sense of propositional satisfaction (╞) and constraint 
satisfaction.  

3.1. Definition 2 in [31] uses the term “formal proof” favoring this substitution.  

3.2. Definition 6 in [31] uses the term “comply with” which may be mapped conservatively into “satisfies.”  

3.3. Definition B in [15] uses the term “conforms to” which may be mapped conservatively into “satisfies.” 

4. Definitions 3 and 6 in [31] also include the phrase “through the provision of objective evidence.” This phrase is 
omitted, because the concept “satisfied,” as explained in Note 3 subsumes it, 

5. Definition A in [15] uses the expression “satisfy the conditions imposed at the start of that phase”; this expression 
is mapped into “specified requirements” in the definition above. 

6. Definition B in [15] elaborates “… for all life cycle activities during each life cycle process”; the definitions of 
product and process subsume this elaboration. 

7. Definition B in [15] elaborates “satisfy standards, practices, and conventions during life cycle processes; and 
successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle 
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activities”; the term “specified requirements” in conjunction with definitions of product and process subsumes this 
elaboration. 

8. Definition B in [15] includes the statement “Verification of interim work products is essential for proper 
understanding and assessment of the life cycle phase product(s).” This statement does not add to the definition 
of verification. 

9. Definition 3 in [3] elaborates “The act of reviewing, inspecting, testing, checking, auditing, or otherwise 
determining and documenting whether …”; the term “process” in the definition given in Note 2 abstracts this 
elaboration.  

10. Verification at each lifecycle phase does not imply verification of the end product, because its scope does not 
include the confirmation that the specification for each lifecycle phase satisfies the requirements at the initial 
phase (e.g.,, stakeholder requirements [15] for the end product). This confirmation is considered a part of 
validation activities; however, there is a lack of clear agreement across various standards and authorities on this 
separation of verification and validation. 
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Appendix B: Technical Review Process 
Technical reviews were performed iteratively reviews with the purpose of acquiring knowledge 
outside the nuclear power plant (NPP) domain relevant to evaluation of an applicant’s hazard 
analysis (HA) of a digital instrumentation and control (DI&C) system for safety functions in a 
NPP.  

The Office of Nuclear Regulatory Research (RES) employed the services of Safeware 
Engineering Corporation (SEC) [1] as a neutral agent to interface with external experts. SEC 
obtained nine experts spread across safety-critical software and systems research experience 
outside of the commercial NPP industry (e.g., space exploration, military defense, aviation 
industry). 

Unlike typical peer reviews, in this process, the expert provided the content needed to bring the 
report to the expert’s standard of technical soundness, along with an explanation and 
justification of the modification, addition or subtraction.  

Review process 
The technical reviews were performed iteratively at evolving stages of RIL-1101. Each iteration 
was treated as a knowledge-acquisition cycle from which results were integrated into the 
development of RIL-1101, before submitting it for the next review cycle. 

Each review cycle followed the procedure outlined below: 

1. NRC and SEC provided orientation to the expert as follows 

1.1. NRC sent to the expert three documents to prepare for a face-to-face discussion: 

1.1.1. A draft of RIL-1101 

1.1.2. A review template specific to the review cycle 

1.1.3. A set of slides introducing the NPP application domain, key issues addressed in 
RIL-1101, and scope and request-response sequence for the project. 

1.2. Then, in a face-to-face meeting, NRC and SEC walked the expert through the slide set, 
engaging the expert in clarifying discussion. Then, NRC and the expert discussed the 
review template for clarification of the task and match of expert’s interest. The review 
was scoped accordingly. 

2. The expert provided a written review response as follows:  

2.1. Responses to specific questions in the NRC-provided review template. Typically, the 
expert provided these responses in tabular form as suggested in the template. 

2.2. Rationale or explanation supporting the proposed changes;  

2.3. Supporting references, mostly incorporated by reference; 

2.4. Supporting examples or case studies in the expert's experience or research to support 
an assertion or guidance item applicable to the scope of RIL-1101 (e.g., through 
abduction or induction or other manner of generalization). 

3. NRC staff and the expert discussed the expert’s responses in a teleconference, moderated 
by SEC. Most of the responses concerned clarity of the intended messages. For “easy-to-
resolve” comments, the disposition was discussed in the teleconference. 
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4. In some cases, the expert provided modified or supplemental responses. 

5. NRC proposed disposition of expert’s suggestions, sometimes including follow-up questions 
for discussion with the expert.  

6. NRC discussed its proposed disposition with the expert. Depending on need and scheduling 
feasibility, sometimes NRC walked the expert through the disposition in a teleconference. In 
most cases, NRC met the expert face-to-face to clear remaining issues that could not be 
resolved efficiently through teleconferencing. 

Although the initial plan had included resolution of conflicting inputs from different experts 
through cross-expert discussion, there was no conflict across experts about technical 
soundness.  
 

References for Appendix B 
[1] U.S. Nuclear Regulatory Commission, “Digital Instrumentation and Control – Technical 

Engineering Services,” Statement of Work for Commercial - V6065, March 2012. 
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Appendix C: Evaluating Hazard Analysis - State of the Art 
The scope113 of this appendix is limited to the scope of RIL-1101, especially analysis of 
contributory114 hazards in digital safety systems for NPPs, which are rooted in systemic causes. 
For example, it does not discuss techniques or aspects for analysis of systems with a mix of 
safety and non-safety functions (mixed-criticality systems) or analysis of hazards from random 
hardware failure. Whereas almost all the surveyed publications cover mixed-criticality systems, 
this appendix maps the extracted information into its narrower scope. For example:  

1. Only a relevant subset of the wide range of HA activities is extracted.  

2. The starting point of hazard analysis is “loss/degradation of an allocated safety function, 
rather than the unwanted release of radioactivity.  

C.1 Reference model for hazard analysis: Vocabulary 

The vocabulary in this appendix is defined in Appendix A. Following is an explanation of the 
usage context. A hazard is potential for harm, as defined in Appendix A. Bounding its context to 
the object of analysis and its environment, this definition is elaborated in its notes as follows, 
“an intrinsic property or condition that has the potential to cause harm or damage.”  In the 
scope of RIL-1101, the context of “the intrinsic condition” is a safety related system (or its 
element) being analyzed and its dependency on its environment. In other words, a hazard is a 
state115 of the object of analysis together with its environment, which has the potential to cause 
harm. Hazard analysis (HA) of an object is the process of examining the object throughout its 
lifecycle to identify hazards (including contributory hazards), and requirements and constraints 
to eliminate, prevent, or otherwise control these hazards.  

C.1.2 Object of analysis 
Referring to the reference model for system integration levels depicted in Figure 4 of [1], the 
object of analysis may be any of the following: 

1. A work product such as the following: 
1.1. A complete safety system such as a reactor protection system (RPS).  
1.2. One of its four identical divisions; (information source: system architecture). 
1.3. An element responsible for the voting logic; (information source: system architecture). 
1.4. A system at a lower level of integration; (information source: system architecture).  
1.5. The finest-grained component in the integration hierarchy; (information source: software 

architecture; hardware architecture). 
1.6. An object in the environment of the object being analyzed, on which the latter depends; 

(information source: NPP-wide I&C architecture). 

                                                 
113 Thus, the definitions and descriptions are much more narrowly focused than in more broadly 
applicable publications on hazard analysis. 
114 IEEE1012-2012 [1] introduces the notion of contributory hazards, e.g. software and hardware 
contributions to system hazards. 
115 Annex J.1 in [1] “…determine whether the contributing conditions to a hazardous state are possible.” 
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1.7. Result of an intermediate phase to produce any of the above; (information source: 
development lifecycle model). 

2. A process activity producing a work product mentioned above; (information source: process 
activity model). 

3. A resource used in a process activity mentioned above; (information source: process activity 
model). See in RIL-1101 Figure 4. 

4. Any other object in a path of contributory hazards. 

C.1.3 Analysis at different levels in the dependency network 
The dependency network of the top-level system provides an organizing framework for these 
objects. For each object, the starting point of its HA would correspond to the derived 
requirements assigned to it, its boundary with respect to its environment, its relationship to its 
environment, and associated assumptions. If HA of different objects is occurring concurrently 
(e.g., impact of changes), based on assumptions about their place and relationships in the 
dependency network, then, for implications of these assumptions, see the following in RIL-
1101: Table 2, H-culture-12; Table 4, H-ProcState-4; Table 8, H-SR-12-14; Table 9, H-SRE-2G2; 
Table 14, H-SAE-1G1 item 1, H-SAE-7.1.   

C.2 Reference model for hazard analysis in development lifecycle  
Hazard analysis of a digital safety system is part of its safety analysis activities, which are 
independent from the mainstream development activities, within which also some form of HA 
and V&V occurs. Nevertheless, the independent HA is interrelated with associated systems 
engineering activities, as depicted in Figure 9 and charted in Table 21. The independent team 
may engage the initial HA-team in review and walks through its work products. 

In the context of hazards contributed through engineering deficiencies, a contributor may be 
detected and controlled in (a) the mainstream system development, which includes some form 
of HA [4] and V&V; (b) independent V&V processes; or (c) independent HA. In general, the 
higher the quality of the upstream processes, the smaller will be the hazard space downstream, 
and the lower will be the amount of hazards within downstream work products. On the other 
hand, ill-controlled upstream processes could render downstream V&V and HA infeasible. 
Recognizing the wide variation in the practice of upstream system engineering, for the purpose 
of consistent comprehensible concise treatment of the inter-relationship of HA with the other 
processes, the state-of-the-art in system and safety engineering is used as a baseline and 
reflected in the lifecycle reference model, depicted in Figure 9. The reference model is derived 
from [1] for integrity level 4. Thus, the independent HA activities are characterized under the 
following premises: 

1. Mainstream system development activities are performed in accordance with the 
specifications of their respective processes.  

2. Resources used in these development activities are qualified to meet their respective 
specified requirements or criteria.  

3. V&V processes fulfill the objectives stated in Section 1.4 of [1]. 

4. Verification activities (on the object of verification) confirm that the requirements specified for 
that object are satisfied.  

4.1. Anomalies are detected as early in the lifecycle as possible, in accordance with [1]. 
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4.2. Detected anomalies are resolved in accordance with [1] 

5. Supporting audits of the process activities in execution examine whether these activities are 
being performed in accordance with their specifications, using resources that conform to 
their respective requirements. Deficiencies are corrected promptly. 

6. Mainstream validation activities confirm that the various specifications collectively satisfy the 
requirements intended from the NPP level safety analysis.  

7. The “object” of analysis has passed its V&V criteria. 

Under premises 1-7 stated above, independent HA activities provide an independent search for 
the remaining “conditions having the potential for functional degradation of safety system 
performance” (known as hazard identification) and seek their control (e.g., avoidance or 
elimination) through corresponding requirements and constraints. This search starts from the 
safety function of concern, first identifying the direct hazards and, then, for each hazard, 
progressing “upstream” through the dependency paths to identify the contributory hazards. The 
independent HA perspective is broader than the mainstream activities; for example, it may re-
examine: 

• Interpretations of a requirement specification; 
• Flow-down of derived requirements and constraints; 
• Flow-down of quality requirements116; 
• Premised validity of the process specifications and resource qualification criteria; 
• Other assumptions. 

To the extent that premises 1-7 stated above are not satisfied, the difference results in 
additional burden on the independent HA activities, requiring commensurate additional skills 
and effort. Also see Section 2.3.8. 

A regulatory review of HA may be viewed as yet another round of independent HA. Thus, the 
review activities follow the same pattern. 

 

  

                                                 
116 These are also known as “non-functional” requirements. 
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Figure 9: Hazard analysis in relation to development lifecycle and verification activities 
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C.3 HA tasks – an example set 
Referring to Table 21, tasks T1-T3 start in the planning phase of the system engineering 
lifecycle; however, at every change, the plans are reviewed to identify corresponding changes 
needed.  

Task T4 is started in the concept phase of the system engineering lifecycle. In a “green-field” 
concept, the information available may only be a functional concept. Yet, it is sufficient to 
develop the questions to be addressed from the HA perspective, accomplished through the 
“hazard logging” process. In this case, task T4 may be iterated many times, as the concept 
evolves. Systematized management of change and configuration (e.g., through minor or internal 
version identifiers) enables recorded, track-able rationale underlying the evolution path. In a 
modification of an existing NPP, the concept may be much more developed (e.g., a proposed 
NPP-level I&C re-architecture), enabling more detailed investigation for the identification of 
(contributory) hazards. 

When the system concept and requirements specification become stable, task T4 transitions 
into T5, at the start of which, the term “object” refers to the system requirements specification 
(corresponds to task 203 in [5]). Tasks T5 and T7 are iterated as the system architecture 
evolves. The iterations include task T6, when a lower level of integration is identified in the 
system architecture.  

Table 21: HA activities and tasks - a reference model 
HA activity / task Input 

 
Output 
 

Remarks. 
References. 

T1. Generate baseline HA plan for 
all lifecycle phases. 

1. Concept [1], 
incl. interactions with and 
dependencies on its environment. 
2. Requirements 
from NPP level safety analysis. 
3. Premises & 
assumptions upon which the 
expected outcome depends, incl. 
conditions & modes of operation 
and maintenance. 
4. Plan to validate 
assumptions. 
5. Consequences 
of behavior shortfalls, incl. invalid 
assumptions/premises. 
6. Overall V&V 
plan, incl. HA. 
7. Mainstream 
development plan. 
8. Corresponding 
information about or from entities 
in the dependency paths (e.g., up 
the supply chain). 

Baseline117 HA plan. 
 
 

Adapted from 
[1] Table 1a 
Tasks 7.1:1-4 
and Task 
101.2.2 in [5]. 

T2. Identify dependencies of HA 
plan (e .g. other information; 
resources; dependencies on supply 
chain) 

Dependencies of plan. Adapted from: 
[1] Table 1a 
Tasks 7.1:1-4; 
[5]. 

T3. Evaluate other plans, 
following the dependencies 
identified above. 
T3.1. Coordinate information 
exchanges with HA activities (e.g., 
timing; semantic compatibility; 
format). 

1. Evaluation 
report. 
1.1. Deficiencies. 
1.2. Changes 
needed. 
1.3. Request for 
additional information (RAI). 

Adapted from 
[1] Table 1a 
Tasks 7.1:1-4. 
7.4, 7.5. 

2. Rejection or 
Acceptance (incl. phase-advance 
clearance) 

Adapted from 
[1] Table 1a 
Tasks 1-4. 

3. Revision to 
HA plan as needed. 

Adapted from 
[1] Table 1a 
Tasks 7.1:1-4. 

T4. Understand HA-relevant 
characteristics of the object to be 
analyzed; examples: 
1. Differences 
from previously licensed systems. 
2. Exposure to 
unwanted interactions. 

Items above + 
9. Other 
requirements allocated to the 
object. 
10. Non-safety 
related constraints on the object.  
11. Relationship 

1. Revision to 
HA plan. 
2. Addition to 
hazard log. [15]  
3. Change 
needed; examples:  
3.1. Making 

Adapted from 
[1] Table 1a 
Tasks 7.2:(1)a, 
f, g), (2)b,d), 
(3)a,b) and 
Tasks 201-202 
in [5],   

                                                 
117 While mainstream HA produces the baseline, independent HA identifies changes needed. 
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3. Presence of 
functions not needed for the 
primary safety function. 
4. Division of 
work and communication 
challenges across organizational 
units/interfaces. 
5. Compatibility 
of lifecycle models, processes, 
information-exchange interfaces, 
etc. 
6. Qualification 
and compatibility of tools across 
these interfaces. 
7. Compatibility 
of conditions of use for reused 
objects. 
8. Correct, 
complete flow-down or 
decomposition or derivation of 
requirements. 
9. Identification 
of dependencies (e.g., feedback 
paths; hidden or obscure 
couplings). 
10. Premises and 
assumptions – explicit and 
implicit. 
11. Other 
challenges to analyzability. 

with NPP-wide I&C architecture. 
12. Distribution of 
responsibilities across 
organizational units/interfaces. 
13. Provisions for 
information exchange across 
organizational units/interfaces. 
14. Lifecycle 
models; processes; resources (e.g., 
tools; competencies); information 
exchange interfaces. 
15. Identification 
of reused objects and conditions of 
use. 
16. Explicit record 
of dependencies. 
17. Prior HA 
results, if any. 

assumptions explicit;  
3.2. Improvement 
in knowledge of dependencies. 
3.3. Making 
lifecycles, processes compatible;  
3.4. Making 
information-exchange interfaces 
compatible;  
3.5. Consistency 
across automation and human 
roles/ procedures. [7] 
3.6. Qualification 
of reused objects (e.g., tools); 
3.7. Change in 
allocation of a requirement; 
3.8. Other 
constraints; 
3.9. Other derived 
requirements. [13]; 
4. RAI 
 

T5. Analyze object118 for 
(contributory) hazards. See 
corresponding section and table in 
RIL-1101. For a safety system or 
its element, it includes, for 
example, search for: 
1. Single point 
failure; 
2. Common 
mode dependency; 
3. Common 
cause dependency. 
 

Items above + 
Information specific to object of 
analysis (see Section C.1.2). 

1. Addition to 
hazard log. 

Adapted from 
[1] Table 1a 
Tasks 7.1:5-6; 
Tables 1b and 
[1]. 
[14] 

2. Change 
needed. Examples:  
2.1. See in T4; 
2.2. Derived 
requirement (on process) to prove 
that a contributing hazard cannot 
occur.  
2.3. Derived 
requirement or constraint on 
object. 
3. Rejection | 
Acceptance (incl. phase-advance 
clearance) 
4. Revision to 
HA plan as needed 
5. RAI  

T6. Integrate analyses from lower 
levels in the integration hierarchy 
and contribution paths up to the 
top-level analysis. 

Items above + information needed 
about inter-object dependencies for 
overall system HA 

As in T5.  Adapted from 
[1] Table 1a 
Task 7.1:7; [1]. 

                                                 
118 Examples of objects: Work product from any phase in the development lifecycle; Work product for the 
top-level digital safety system; some element in a lower level of integration; associated processes; 
associated resources; any other entity in the dependency paths (e.g., in the supply chain). 
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T7. Analyze change proposal (e.g., 
hazard control proposal). 

Change proposal, including 
information on which it depends 
(e.g., items listed above). 

As in T5. Abstracted 
from [1] 
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C.3.1 Evaluating the quality of HA output 
The quality of the HA output depends upon three major factors: 

1. Competence – see Section C.4. 
2. Quality of the input(s) – see Section C.5. 
3. Technique – see Section C.6. 

Evaluation of the HA plan is based on the degree to which the planned HA fulfills the following 
objectives: 

1. Identify all hazards. 
1.1. Identity the constraints on the system and its environment, which would enable item 1. 

2. Identify all contributory hazards. 
2.1. Identity the constraints on the system and its environment, which would enable item 2. 

3. Identity the constraints needed to control the identified (contributory) hazards. 

Consequently, evaluation of a selected HA technique is based on its ability to fulfill the 
objectives stated above and identifying the associated critical conditions, namely: 

1. A specification of the competence required to apply the technique, such that the 
competence can be evaluated with consistency. 

2. A specification of the information required to apply the technique, such that the object of 
analysis can be evaluated with consistency. 

Criteria to evaluate HA ouput119 

1. Completeness 

1.1. Analysis for all known hazards and contributors, including lessons learned from prior 
experience. 

1.2. Demonstration of a systematic approach to HA, supported by evidence and reasoning. 

2. Demonstrated consistency in the analysis of identified hazards and contributors. 

3. Consistency with assumptions used. 

4. Reference to inputs used. 

C.3.2 Hazard identification and logging  
Hazard identification, especially in the concept phase, requires extra-ordinary individual 
capabilities, teamwork, and a conducive organizational culture (see Appendix F). If any analyst 
or contributor to HA perceives a safety concern, a hazard, or a contributory hazard, the 
individual is encouraged to express it. The expressed item is recorded in a “hazard log” without 
immediate evaluation. Sometimes, a team engages in brainstorming to stimulate thought and 
encourage expression. The “hazard log” [15] is a means of tracking an item from initial 
expression to final disposition and closure. An “entry” is never deleted. All the related 
information may be in a single document or it may be distributed across a set of linked 
databases; in any case, an analyst is able to make an entry readily.  

Examples of related information include the following:  

                                                 
119 Criteria may be applied to the output in any iteration of any stage of the development lifecycle. 
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1. Information to identify the logged item: 
1.1. Item identifier;  
1.2. Descriptive title;  
1.3. Originator;  
1.4. Origination date;  
1.5. Description;  
1.6. Perceived consequence/effect of inaction;  

2. Information to track progress: 
2.1. Action plan (from origination to closure);  
2.2. Action assignee(s);  
2.3. Status of progress in the action plan (e.g.,  

2.3.1. Identified change needed to eliminate hazard);  
2.4. Basis to allow closure (e.g.  

2.4.1. Evaluation revealed that hazard control is already in place. 
2.4.2. Evaluation resulted in restatement of the hazard (another entry in the hazard 

log);  
2.4.3. Addition of a constraint or derived requirement in the system engineering 

activities;  
2.5. Date of closure;  
2.6. Name and Signature authorizing closure. 

Every addition or modification of a constraint or (derived) requirement is a configuration 
controlled item with associated change controls. 

When the object is the overall system, the corresponding HA task is the exercise of the selected 
HA technique (see Section C.6) on the information available about the object (see Section C.5). 
Execution of this process may assist in the evaluation of some other item in the hazard log; or 
may raise a new concern, which is then entered in the hazard log. 

C.3.3 Evaluation of a logged hazard 
Whereas published standards and handbooks (whose scope includes mixed-criticality systems) 
suggest evaluation in terms of levels of severity and likelihood of occurrence, in the RIL-1101 
context, the severity of the loss of a safety function is of the highest level and, for systemic 
causes, the analysis first seeks their correct identification and then, pursues their elimination or 
avoidance, as explained next.  

In practice, a “quick” filtering or screening evaluation (e.g., see 2.4.1-2.4.2 above) is performed 
on each logged item, before delving deeper. If an accurate dependency model is available, the 
evaluation seeks to fit the logged item in the dependency model. The search may reveal that the 
dependency model is inaccurate (requiring change) or that the logged item is not a 
(contributory) hazard (leading to its closure). When the logged item is matched to an object in 
the dependency network (i.e., its sequence in the contributory path is found), a corresponding 
HA task is formulated and sequenced in accordance with its place in the contributory path.  

As the evaluation of a logged item progresses, it may expose inadequacies or uncertainties in 
the information about the object being analyzed. Figure 10 depicts a structure for reasoning 



 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 93 
 

(adapted from [16]) about these uncertainties120. Suppose that the HA team is considering an 
assertion that the result of their work (e.g., constraint on the object being analyzed) will control 
the logged (contributory) hazard. Then, the team clarifies its reasoning through discussion, 
evoking challenges to the assertion and rebuttals to the challenges. The discussion may also 
reveal inconsistencies in the reasoning. In this manner, the team identifies factors affecting the 
validity of their assertion. Qualifiers are associated with the assertion; for example: 

1. Condition(s) under which the assertion is supported.  
1.1. Uncertainties may be stated as assumptions, for which the truth has to be validated. 
1.2. Changes needed may be stated as constraints to be satisfied. 

2. Degree or strength of the assertion: {Strong …. Weak} 

The results are recorded, showing how the assertion is supported by the evidence121, identifying 
the inference rule to assert the evidence-assertion link, and the technical basis for the rule such 
as a causal model122.  

  

                                                 
120 Appendix F explains how the process is applied to cross-cultural (e.g., inter-disciplinary; inter-
organizational) communication. 
121 It is labeled “grounds” in [16]. 
122 It is labeled “backing” in [16]. 
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If the evaluation results in a conclusion that the logged item is not a hazard, it is recorded, 
including the information depicted in Figure 10 (e.g., the reasoning, along with unresolved 
dissenting positions, if any, in the form of conditions). A resolution process ensures that the 
analysis, evaluation, resolution and disposition of the issue are performed in a timely and 
effective manner. 

C.4 Effect of competence on quality of HA work products 
When HA is performed on an early-stage concept, with little explicit information in the concept, 
the “competence” factor (see Section C.3.1) is most dominant. For example, the analyst has to 
elicit information about assumptions and dependencies through systematic enquiry, devised for 
the circumstances. Based on this information, the analyst would have to construct an analyzable 
model of the dependencies (e.g., control structures, showing feedback paths, interactions, and 
nested levels). These activities require extremely high competence. For an approach to 
competence management, see [17], in which reference 7 is a technical competence framework 
developed through wide consultation in the UK. 

Competence is a critical factor - see in RIL-1101 Table 1 items H-0-2G{0, 1, 2}, H-0-3G1;   

Theoretical or causal model 

Inference rule 

Evidence Assertion 

Factors influencing validity of evidence link 

basis for 

Qualifiers 
(Strength; 
Condition) 

Challenges; rebuttals; inconsistencies 

Reasoning 

used in 

Figure 10: Structure to reason about the contribution to a hazard 
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Table 2 H-culture-6G3, Table 10 H-SRE-1G{1,2,3}. Competence to perform HA of an NPP digital 
safety system includes a complement of the following (not necessarily in one person): 

1. Proven self-learning123 ability, assimilating needed new knowledge in a scientifically sound 
framework.  

1.1. Education equivalent to a master’s degree level knowledge of safety critical industrial 
automation systems engineering;  

1.2. Ability to recognize the knowledge needed and limitations of one’s knowledge. 

1.3. Ability to fill one’s knowledge gaps through self-study, supplemental training, and 
consultation with experts. 

2. Reasoning capability (see Figure 10); 
2.1. Objectivity. (Also see item 9). 
2.2. Ability to abstract and generalize from one context and apply to another. 
2.3. Ability to recognize fallacies in some chain of reasoning. 

3. Continuing update of professional knowledge through training; examples: 
3.1. Application domain: How an NPP works (energy conversion from fuel to power on the 

grid); heat exchange; critical functional elements, processes and process state 
variables in an NPP and their inter-dependencies; associated (contributory) hazards; 
study of operating experience (event reports; root cause analysis reports). 

3.2. Industrial automation domain: Elements for sensing, actuation, computation; control 
logic; communication; software/firmware; power; associated (contributory) hazards; 
study of operating experience (event reports; root cause analysis reports). 

3.3. Science and engineering of distributed systems, including computation, communication. 
3.4. Hazard and safety analysis and assurance methods and techniques for such systems.  

4. Experience in analysis of systems similar in criticality, functionality, and configuration: 
4.1. Good performance under the guidance of an expert in hazard analysis. 
4.2. Good performance independently.  

5. Strongly safety conscious. See Appendix F.1 and F.3. 

6. Communication skills in group activities (see Appendix F.4) – examples: 
6.1. Ability to communicate effectively, objectively with stakeholders. 

6.1.1.  Succinctness. 
6.2. Ability to listen actively for understanding and learning from others. 
6.3. Ability to elicit information needed. 
6.4. Ability to explain one’s reasoning (see Figure 10) to others.  
6.5. Ability to express and explain to others insights from deep knowledge. 

                                                 
123 When the object being analyzed entails some characteristic, which the analyst has not encountered in 
past experience, as is often the case in digital safety systems, corresponding learning is needed. 
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6.6. Ability to develop collective communicative competence. See Appendix F.4.3. 

7. Other interpersonal skills and characteristics, supportive of teamwork (see Appendix F.4) – 
examples: 
7.1. Willingness to recognize and accept weakness in own reasoning. 
7.2. Willingness to explain own reasoning (clearly; succinctly) in the face of opposition. 
7.3. Assistive rather than competitive behavior. 
7.4. Ability to evoke minority viewpoints (concerns or reservations). 
7.5. Ability to understand other team members’ reference-frames. 
7.6. Ability to assimilate differences, neutralizing biases.  
7.7. Ability to converge124 towards objectivity (see Figure 10). See “collective mindfulness” in 

Appendix F. 
7.8. Other constructive group interaction skills. 

8. The complement of competence in the HA team includes breadth and depth. 
8.1. Depth: Individuals having mastery over the respective engineering disciplines, 

technologies, products or components, and processes, involved in each phase of the 
system development lifecycle (possibly involving phase-wise changes in team-
membership) and respective dependencies. 

8.1.1. Knowledge of respective operating experience (what can go wrong). 
8.1.2. Track record of learning from it (how to prevent what went wrong). 

8.2. Breadth125: Individuals are able to understand how their respective roles fit into the 
overall HA, including the associated inter-dependencies. 

8.2.1. Knowledge of the environment126 of the safety system and its development.  
8.2.2. Experience in analysis of hazard groups such as those identified in RIL-1101. 
8.2.3. Experience in deriving requirements and constraints to avoid or eliminate 

contributory hazards. 
8.2.4. Experience commensurate to the functionality and configuration of the system. 

9. The HA-team has cultural diversity127 - supportive of safety.  
  

                                                 
124 Through ability to articulate premises and qualifications of claims and how those derive from particular contexts. 
125 Provide continuity to the HA-team across lifecycle phases. 
126 Also see Section 3.4.1. 
127 See reference-frames in item 7.5; examples: belief systems, values, thought processes, paradigms, 
customs, conventions, language.. 

Inadequate replenishment of requisite competence: The DI&C engineering workforce is changing 
and so is the environment from which the workforce is being replenished. With the decline in the U.S. 
manufacturing industry, there has been corresponding decline in its industrial automation development 
base. Education and training concerning software are driven more by consumer products and 
information technology (IT) industries than by high-consequence automation. “Development of DI&C 
systems for the highest level of safety” is a very small, niche in the market.  
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C.5 Quality of information input to HA at each development phase 
Table 22 provides a broad-brush characterization of the quality of the work products (in terms of 
information richness) available for HA. For each major lifecycle phase work product, Table 22 
compares characteristics in common practice with state-of-the-practice (best in class), and 
state-of-the-art (leading-edge implementations, not yet scaled up). 

Table 22: Characterization of information richness in phase work products 
 
 

Row ID 
Work product 

of lifecycle phase Common practice State of the practice 
(best in class); examples 

State of the art; 
examples 

1 Requirements from next 
higher level of 
integration, e.g. from 
NPP-level safety 
analysis. 

Textual narrative. No 
configuration-controlled 
vocabulary. 
“Flat list” organization (i.e., 
no explicit relationship 
across requirements is 
identified). 

Restricted natural language 
with defined vocabulary and 
structure across elements of 
a statement. [18] 
 

Use case 
scenarios [19]. 

SpecTRM-RL [20] Framework for 
specification 
& analysis 
[21]. 

Requirements engineering 
support  in Naval Research 
Labs [22]. 
Requirements tables as used 
for Darlington NPP 
[23][24]. 
Models to support 
mechanized reasoning. 
Examples: SysML [25]. 

 

2 Plans {Safety plan; 
V&V plan; HA plan} 

Low level of detail; 
relatively late in the 
lifecycle. 

V&V plan [1] 
Safety plan [26]-[28] 

Integrated 
safety and 
security plan. 

3 Concept Combination of (a) block 
diagram without semantics 
on the symbols and (b) 
textual narrative 

Models to support 
mechanized reasoning [29]. 
(See note 1) 
SysML [25]; 
AADL [30] 
Extended EAST-ADL [31] 

META [32] 

4 Requirements of digital 
safety system 

See row 1 See row 1 See row 1 

5 Architecture of digital 
safety system 

See row 3 See row 3 META [32] 

6 Requirements for 
software in digital safety 
system 

See row 1 [29][33][34] See row 1 

7 Architecture for 
software in digital safety 
system 

See row 3 See row 3. 
MASCOT [34]  
AADL [30] 

META [32] 

8 Detailed design of 
software 

For application logic: 
Function block diagram 
[35]. 
For platform software: 
Combination of (a) block 
diagram without semantics 
on the symbols and (b) 
textual narrative. 

SPARK [36][37] META [32] 
Refinement 
from 
architectural 
specifications 

9 Implementation of 
software (code) 

For platform software, 
including communication 
protocols: C programming 
language + processor-

Concept of using safe subset 
of an implementation 
language: MISRA C 
[38][39] 

Auto-
generation 
from detailed 
design. 
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specific assembler language Language for programming 
FPGAs [40] 

Notes: 
1. The models should contain enough information to understand dependencies and propagation paths for contributory hazards. 

C.6 Hazard Analysis Techniques – useful extractions from survey 
The selection and role of HA techniques (the third factor influencing the quality of an HA product 
mentioned in Section C.3.1) will depend upon the nature of the system to be analyzed and the 
quality of the information contained in the various intermediate work products, characterized in 
Section C.5.  

Table 23 summarizes some applicable techniques surveyed. As difficulties and limitations were 
encountered in the earlier techniques (such as those in the first three rows of Table 23), these 
techniques were extended, adapted and transformed into newer techniques (such as the ones 
in the last three rows of Table 23); the references for the latter describe some of the difficulties 
and limitations encountered in using the earlier techniques. The “salient feature(s)” column 
identifies concepts found useful. However, the adaptations devised to evolve newer techniques 
require extraordinary ingenuity; utility of the adaptations is very dependent upon the skills of the 
analysts.  

When HA is applied to an early concept phase, it is called preliminary hazard analysis (PHA) 
[41][42]. 

For a broad survey of HA techniques, see [7][43][44], and for additional guidance, see [45]-[49]. 
For a tutorial overview of HA in relation to safety critical system development, see [51]. These 
references are not included in Table 23, if technique-specific references are listed. 

Table 23: Salient features of techniques relevant to NPP digital safety systems  

HA technique Reference(s) Salient feature(s) 

Acronym Expanded name 

HAZOP(S) Hazard and operability 
studies 

[8] Concept of using teamwork, aided by HAZOP process expert. 
Systematizing enquiry through key words. 
Systematizing understanding effects through understanding the 
associated deviations. 

FTA Fault Tree Analysis [52][53][54]  Representation and understanding of fault propagation paths, 
when the paths are branches of a tree. 

DFMEA Design Failure Mode 
and Effects Analysis 

[55][56][57] 
[58]  

Representation of faulted behavior of a hardware component for 
understanding its effect, without requiring knowledge of its 
internals. 

FFMEA Functional Failure Mode 
and Effects Analysis 

[57][69]  Understanding effect of unwanted behavior of a function of the 
system, without requiring knowledge of its internals. Useful in 
concept phase. 

FuHA Functional Hazard 
Analysis 

[7]  

FHA Fault Hazard Analysis [43][46] [49]   
CCA Cause Consequence 

Analysis 
[43][49]  Concept of using causality model to understand fault propagation 

paths. 
W/IA What if analysis [47][49]   
CCFA Common Cause Failure 

Analysis 
[43][46] [49]  

HACCP Hazard Analysis & 
Critical Control Points 

[50] Concept of focusing on critical process variables that affect the 
outcome. 

SHARD Software hazard analysis 
and resolution 

[10] Adaptation of HAZOP to software, through customization of the 
key words. 
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FPTN/FPTC Fault propagation and 
transformation 
network/calculus 

[59]  Representation and analysis of fault propagation, when the faults 
are transformed during propagation, and when there are feedback 
paths, supporting mechanized traversal and reasoning. 

DFM Dynamic Flowgraph 
Method 

[64]-[66] Behavior modeling of the system in the finite state machine 
paradigm facilitates or enables: 
• Mathematical underpinning. 
• Analysis of its interactions with environment. 
• Analysis of dynamic behavior across its 
elements. 
• Mechanized traversal. 
• Mechanized reasoning, esp. if directed cyclic 
graph. 

STPA System-Theoretic 
Process Approach 

[74]-[76] • Applicable at concept phase (without a 
finished design). 
• Applicable to understanding of organization-
culture systems. 

HAZOP has been adapted to analyze software [8], and this adaptation has been extended to 
data flow oriented software architecture [10], and, later, extended to systems with feedback and 
systems in which the initial fault is transformed into other faults as it propagates [59][59]. These 
concepts and principles have influenced the AADL [30] error annex, supporting analysis of fault 
propagation. For an indication of promising research to extend AADL for hazard analysis, see 
[71]. 

Recently, a technique similar to the adaptations of HAZOP mentioned above, namely STPA, 
has been demonstrated in NPP applications [74][75][76]. 

For a comparative experimental study of six techniques, see [74]. 

If HA is performed on a state-of-the-practice or state-of-the-art work product, such as the ones 
shown in Table 22, and if all behavior-influencing assumptions and dependencies were already 
explicit in a system architecture model, the search for (contributory) hazards could be 
automated [61]-[65], reducing  the dependence on extremely high competence. However, 
model-based approaches introduce their own contributory hazards [63], to analyze which highly 
specialized competence is needed.  

For adaptation of the concepts in [11], [59] and [59] for HA of device interfaces and, then, HA of 
operating systems, see [66]-[69]. 

For an adaptation of the concepts in [59]-[60] to address the fault propagation problem for 
FPGAs, see early experimental work reported in [70]. 

For an example of showing freedom from exceptions in software implementations (which are 
contributing hazards), in addition to showing conformance to specifications, see [37]. 

For an example of analysis for hazards contributed through timing aspects of multi-core 
computing processor resources, see [72]. 

Static analysis tools, such as [37] identify data, information and control flow dependencies in 
software. 

For emerging guidance on HA of complex hardware, such as FPGAs, see [71]. For ongoing 
developments in this field, track [72].  



 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 100 
 

C.7. References 
[1] IEEE Standard 1012-2012, “IEEE standard for system and software verification and 

validation,” March 29, 2012. 

[2] NUREG/CR-7007, “Diversity strategies for nuclear power plant instrumentation and 
control systems” 2010. 

[3] IEEE Standard 603-2009, “IEEE standard criteria for safety systems for nuclear power 
generating stations” 2009. 

[4] Joint Software System Safety Committee, “Software System Safety Handbook – A 
Technical & Management Team Approach,” December 1999. URL: http://www.system-
safety.org/Documents/Software_System_Safety_Handbook.pdf 

[5] MIL-STD-882E, “Standard Practice for System Safety,” U.S. Department of Defense, May 
11, 2012.  

[6] European Committee for Electrotechnical Standardisation (CENELEC), EN 50126, Part 1: 
1999, Railway applications - The Specification and Demonstration of Reliability, 
Availability, Maintainability and Safety (RAMS). (A new version is soon to be released; I 
assume that it will not have changed much in concept.) 

[7] Society of Automotive Engineers (SAE), ARP-4761 – Guidelines and Methods for 
Conducting the Safety Assessment Process on Civil Airborne Systems and Equipment, 
1996. (This standard contains a description of Functional Hazard Analysis (FHA) and of 
Preliminary System Safety Assessment (PSSA).) 

[8] CISHEC (The Chemical Industry Safety and Health Council of the Chemical Industries 
Association Ltd.), A Guide to Hazard and Operability Studies, 1977.  

[9] McDermid, J.A., Nicholson, M., Pumfrey, D.J. & Fenelon, P., (1995), Experience with the 
application of HAZOP to computer-based systems, COMPASS '95: Proceedings of the 
Tenth Annual Conference on Computer Assurance, Gaithersburg, MD, pp. 37-48, IEEE, 
ISBN 0-7803-2680-2. 

[10] Redmill F., Chudleigh, M., Catmur J., System Safety: HAZOP and Software HAZOP. 
John Wiley and Sons Ltd., Chichester, U.K., 1999. 

[11] McDermid, J.A. & Pumfrey, D.J., (1998), Safety Analysis of Hardware / Software 
Interactions in Complex Systems, Proceedings of the 16th International System Safety 
Conference, Seattle, WA, pp. 232-241, System Safety Society. 

[12] IEC Standard 61882, “Hazard and Operability Studies (HAZOP Studies) – Application 
Guide,” International Electrotechnical Commission, First Edition, 2001.  

[13] McDermid J.A., Safety critical software, in: Encyclopedia of Aerospace Engineering, 
Online, Wiley 2012 (accessible via DOI: 10.1002/9780470686652.eae506). 

[14] Hawkins R.D., Habli I., Kelly T.P., The Principles of Software Safety Assurance, in 
Proceedings of the 31st International System Safety Conference, Boston, MA, 
International System Safety Society.  

[15] SMP 11, MoD Hazard Log Requirements, see: 
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SM
P11v22final.pdf (last accessed 31st July 2013)  

[16] Toulmin, Stephen. The Uses of Argument. Cambridge: University Press, 1958 

http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.system-safety.org/Documents/Software_System_Safety_Handbook.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-compass95.pdf
http://www.cs.york.ac.uk/~djp/publications/mcd-pumf.pdf
http://www.cs.york.ac.uk/~djp/publications/mcd-pumf.pdf
http://www.system-safety.org/
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/27584/SMP11v22final.pdf


 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 101 
 

[17] HSE statement on competency management, see: 
http://www.hse.gov.uk/consult/condocs/competence.pdf (last accessed 4th August 2013) 

[18] Hinchey, A,G, et al, “Towards an automated development methodology for dependable 
systems with application to sensor networks” Performance, Computing, and 
Communications Conference, 2005. IPCCC 2005. 24th IEEE International, 2005 

[19] Allenby, K., Kelly, T., “Deriving Safety Requirements Using Scenarios,” Proceedings of 
the Fifth International Symposium on Requirements Engineering, p.p.. 228-235, Toronto, 
Ont, Canada, August 7, 2002.  

[20] SpecTRM-RL http://www.safeware-
eng.com/software%20safety%20products/features.htm 

[21] Day, N.A., Joyce, J.A., “A framework for multi-notation requirements specification and 
analysis” Proceedings, ICRE 2000. URL 
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnum
ber=18574 

[22] Heitmeyer, et al, “The SCR method for formally specifying, verifying, and validating 
requirements: tool support” ICSE 1997. URL: 
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnum
ber=13372 

[23] Parnas D., Madey J., Functional Documents for Computer Programs. Science of 
Computer Programming, Vol. 25, No. 1, 1995. 

[24] Galloway, A., Iwu, F., McDermid, J. A., Toyn, I., On the Formal Development of Safety 
Critical Software, In: Verified Software: Theories, Tools, Experiments, First IFIP TC 2/WG 
2.3 Conference, VSTTE 2005, Zurich, Switzerland, October 10-13, 2005, Meyer, B., 
Woodcock, J. C. P. (eds.) pp 362-373.  

[25] SysML, see: http://www.omgsysml.org/ (last accessed August 1st 2013). 

[26] ISO - International Organization for Standardization, BS ISO 26262-2: 2011, Road 
Vehicles – functional safety, Part 2: Management of functional safety. 

[27] ISO - International Organization for Standardization, BS ISO 26262-3: 2011, Road 
Vehicles – functional safety, Part 3: Concept phase.  

[28] ISO - International Organization for Standardization, BS ISO 26262-4: 2011, Road 
Vehicles – functional safety, Part 4: Product development at the system level. 

[29] Despotou G., Alexander R., Kelly T.P., Addressing Challenges of Hazard Analysis in 
Systems of Systems, 2009, In proceedings of the 3rd Annual IEEE International Systems 
Conference (SysConf '09), Vancouver Canada, 23-26 March 2009.  

[30] AADL, see; http://www.aadl.info/aadl/currentsite/ (last accessed August 1st 2013) 

[31] Mader, R., Grieβnig, G., Leitner, A., Kreiner, C., Bourrouilh, Q., Armengaud, E., Steger, 
C., Weiβ, R., “ A Computer-Aided Approach to Preliminary Hazard Analysis for 
Embedded Systems,” 18th IEEE International Conference and Workshops on 
Engineering of Computer-Based Systems, 2011.  

[32] OpenMETA tool suite. URL: http://www.army-technology.com/news/newsvanderbilt-
university-support-meta-tools-maturation-darpa-avm-programme  

http://www.hse.gov.uk/consult/condocs/competence.pdf
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=9884
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://www.safeware-eng.com/software%20safety%20products/features.htm
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx5/6907/18574/00855551.pdf?tp=&arnumber=855551&isnumber=18574
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://ieeexplore.ieee.org/ielx3/4837/13372/00610430.pdf?tp=&arnumber=610430&isnumber=13372
http://www.omgsysml.org/
http://www.aadl.info/aadl/currentsite/
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme
http://www.army-technology.com/news/newsvanderbilt-university-support-meta-tools-maturation-darpa-avm-programme


 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 102 
 

[33] Miller, S.P., Tribble, A.,C., Extending the Four Variable Model to Bridge the System-
Software Gap, in Proc. 20th Digital Avionics System Conference, DSAC01, Daytona 
Beach Florida, October 2001.  

[34] Simpson H.R., The MASCOT method. Software Engineering Journal, 1(3):103–120, 
March 1986. 

[35] International Electrotechnical Commission, “Programmable controllers – Part 3: 
Programming languages” IEC 61131-3, ed3.0, 2013. 

[36] Barnes J.G.P., High Integrity Software: The SPARK Approach to Safety and Security, 
Addison Wesley, 2003.  

[37] SPARK Pro toolset, see: https://www.adacore.com/sparkpro/ (last accessed August 2nd 
2013) 

[38] MISRA C, see: 
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx (last 
accessed August 1st 2013) 

[39] LDRA MISRA C toolset, see: http://www.ldra.com/en/solutions/by-standard-
adherence/misra (last accessed August 2nd 2013) 

[40] Conmy P.M., Pygott C., Bate I.J., VHDL Guidance for Safe and Certifiable FPGA Design, 
IET System Safety Conference, October 2010. 

[41] Gowen, L.D., Collofello, J.S., Calliss, F.W., “Preliminary Hazard Analysis for Safety-
Critical Software Sysems,” Proceedings from  IPCCC’92, 1992.  

[42] Safeware Engineering Corporation, “Preliminary Hazard Analysis,” < 
http://www.safeware-
eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm>, 
December 6, 2011.  

[43] Ericson II., C.A., “Hazard Analysis Techniques for System Safety,” John Wiley and Sons, 
August 24, 2005.  

[44] U.S. Nuclear Regulatory Commission, “Software Safety Hazard Analysis,” 
NUREG/CR-6430, Washington, DC, February 1996 (Agencywide Documents Access and 
Management System (ADAMS) Public Legacy Library Accession No. 9602290270). 

[45] National Aeronautics and Space Administration, “NASA Software Safety Guidebook”, 
NASA-GB-8719.13, Washington, DC, March 31, 2004. 

[46] U.S. Air Force, “The Air Force System Safety Handbook”, Kirtland AFB, NM, July 2000. 

[47] European Strategic Safety Initiative, “Guidance on Hazard Identification,” European 
Strategic Safety Initiative – Safety Management System and Safety Culture Working 
Group, March 2009.  

[48] Ippolito, L., Wallace, D., “A Study on Hazard Analysis in High Integrity Software 
Standards and Guidelines,” National Institute of Standards and Technology, NISTIR 
5589, Gaithersburg, MD, January 1995. 

[49] System Safety Society, “System Safety Society Handbook: A source Book for Safety 
Practitioners,” The System Safety Society, 1993.    

[50] Hazard analysis and critical control points HACCP principles and application guidelines, 
URL: http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm 

https://www.adacore.com/sparkpro/
http://www.misra.org.uk/MISRAHome/MISRAC2012/tabid/196/Default.aspx
http://www.ldra.com/en/solutions/by-standard-adherence/misra
http://www.ldra.com/en/solutions/by-standard-adherence/misra
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm
http://www.safeware-eng.com/Safety%20White%20Papers/Preliminary%20Hazard%20Analysis.htm
http://www.fda.gov/Food/GuidanceRegulation/HACCP/ucm2006801.htm


 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 103 
 

[51] Johnson, Chris, “Safety Critical System Development”, University of Glasgow – 
Department of Computing Science, Part II of Notes, October 2006. 

[52] U.S. Nuclear Regulatory Commission, Fault tree handbook (NUREG 492). URL: 
http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf 

[53] NASA, “Fault tree handbook with aerospace applications.” URL: 
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf 

[54] Park, G.Y., Koh, K.Y., Jee, E., Seong, P.H., Kwon, K.C., and Lee, D.H., “Fault Tree 
Analysis of KNICS RPS Software,” Nuclear Engineering Technology, Vol. 41, No. 4, 
May 2009. 

[55] SAE J1739, “Potential Failure Mode and Effects Analysis in Design (Design FMEA), 
Potential Failure Mode and Effects Analysis in Manufacturing and Assembly Processes 
(Process FMEA), 2009” URL: http://standards.sae.org/j1739_200901/  

[56] NASA, “Standard for Performing a Failure Mode and Effects Analysis (FMEA) and 
Establishing a Critical Items List (CIL) (DRAFT):  Flight Assurance Procedure (FAP)- 322-
209,” Nov. 2011, Available: rsdo.gsfc.nasa.gov/documents/Rapid-III-Documents/MAR-
Reference/GSFC-FAP-322-208-FMEA-Draft.pdf  

[57] P.L. Goddard, “Software FMEA Techniques,” Proceedings of the Annual Reliability and 
Maintainability Symposium, IEEE, 2000, pp. 118–123 Available: 
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294. 

[58] G.-Y. Park, “Software FMEA Analysis for Safety Software,” International Conference on 
Nuclear Engineering, Brussels, Belgium: ASME 

[59] Fenelon P., McDermid J.A., Nicholson M., Pumfrey D.J., Towards Integrated Safety 
Analysis and Design, ACM Applied Computing Review, Aug. 1994. 

[60] Wallace M., Modular Architectural Representation and Analysis of Fault Propagation and 
Transformation, Electronic Notes in Theoretical Computer Science 141 (2005) 53–71. 

[61] Hecht, H. and Menes, R., “Software FMEA automated and as a design tool” SAE 
08WATC-0023, 2008. 

[62] Hecht, H., An, X., Hecht, M., “Computer aided software FMEA for unified modeling 
language based software.” 

[63] UML Safety Analysis, see: 
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_anal
ysis_with_the_uml8?lang=en (last accessed August 2nd 2013) 

[64] Garrett, C. and Apostolakis, G., “Context in the risk assessment of digital systems” Risk 
Analysis Vol. 19 No. 1 1999. 

[65] Garrett, C. and Apostolakis, G., “Automated hazard analysis of digital control systems” 
Reliability Engineering and Safety Society 77 (2002) 1-17 

[66] Aldemir, Guarro, et al, “A Benchmark Implementation of Two Dynamic Methodologies for 
the Reliability Modeling of Digital Instrumentation and Control Systems,” NUREG/CR-
6985, U.S. Nuclear Regulatory Commission, Washington, D.C. (2009). 

[67] McDermid, J.A. & Pumfrey, D.J., (2000), Assessing the Safety of Integrity Level 
Partitioning in Software, Lessons in System Safety: Proceedings of the Eighth Safety-
critical Systems Symposium, Southampton, UK, Ed. Redmill, F. & Anderson, T., pp. 134-
152, Springer, ISBN 1-85233-249-2. 

http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr0492/sr0492.pdf
http://www.hq.nasa.gov/office/codeq/doctree/fthb.pdf
http://standards.sae.org/j1739_200901/
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=816294
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_analysis_with_the_uml8?lang=en
https://www.ibm.com/developerworks/community/blogs/BruceDouglass/entry/safety_analysis_with_the_uml8?lang=en
http://www.cs.york.ac.uk/~djp/publications/djp-sss00.pdf
http://www.cs.york.ac.uk/~djp/publications/djp-sss00.pdf


 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 104 
 

[68] Conmy P.M., Crook-Dawkins S.K., A Systematic Framework for the Assessment of 
Operating Systems, Safety-Critical Systems Symposium, Warwick, UK, February 2004.  

[69] Conmy P.M., Safety Analysis of Computer Resource Management Software, PhD Thesis, 
University of York, 2005.  

[70] Conmy P.M., Bate I.J., Component-Based Safety Analysis of FPGAs, IEEE Transactions 
on Industrial Informatics, Vol 6, No 2, May 2010. pp 195-205 

[71] Bozzano M., Cimatti A., Katoen J-P., Nguyen V.Y., Noll T., Roveri M., Safety, 
Dependability and Performance Analysis of Extended AADL Models, The Computer 
Journal, Vol. 54 No. 5, 2011 

[72] ParMERASA, see: http://www.parmerasa.eu/ (last accessed August 2nd 2013) 

[73] iScade, see: http://iscade.co.uk/ (last accessed 31st July 2013) 

[74] Torok, R. and Geddes, B. “Systems Theoretic Process Analysis (STPA) Applied to a 
Nuclear Power Plant,” MIT STAMP Workshop, March 26-28, 2013. 
<http://psas.scripts.mit.edu/home/wp-
content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf>   

[75] Song, Yao, “Applying system-theoretic accident model and processes (STAMP) to hazard 
analysis” McMaster University dissertation. URL: 
http://digitalcommons.mcmaster.ca/opendissertations/6801/  

[76] Thomas, J. et al, “Evaluating the safety of digital instrumentation and control systems in 
nuclear power plants” November, 2012. URL: http://sunnyday.mit.edu/papers/MIT-
Research-Report-NRC-7-28.pdf  

C.8. Bibliography128 

[77] 129Atchison B., The Integration of Safety Analysis and Functional Verification Techniques 
for Software Safety Arguments, 2004, PhD Thesis, University of Queensland. 

[78] Chambers, L., “A Hazard Analysis of Human Factors in Safety-Critical Systems 
Engineering,” 10th Annual Workshop on Safety-Related Programmable Systems (SCS-
05), Conference in Research and Practice in Information, Vol. 55, Sydney, Australia, 
2005.  

[79] Alexander, R., Kelly, T., “Can We Remove the Human from Hazard Analysis,” University 
of York.  

[80] ISO/IEC 15026-2:2011, “System and Software Engineering - System and Software 
Assurance - Part 2: Assurance Case. 

  

                                                 
128 References Reviewed but not Yet Cited in Appendix C 
129 c 

http://www.parmerasa.eu/
http://iscade.co.uk/
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://psas.scripts.mit.edu/home/wp-content/uploads/2013/04/02_EPRI_MIT_STAMP_Mar2013.pdf
http://digitalcommons.mcmaster.ca/opendissertations/6801/
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf
http://sunnyday.mit.edu/papers/MIT-Research-Report-NRC-7-28.pdf


 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 105 
 

 

Appendix D: REFINEMENT 
Enabling verifiability earlier in the lifecycle through stepwise refinement 

Author: Professor Dr. Manfred Broy, Technische Universität München 
http://www4.in.tum.de/~broy/ 

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission 

D.1 Purpose and Scope 
This appendix explains refinement (see section 2) as an enabler for the verifiability and thus, 
assurability of a system; this is the usage context in RIL-1101 (see Table 7 item # H-S-1.1G1.4). 

The scope of this appendix is limited to the introduction of the kind of refinement needed to 
support the purpose stated above (rather than covering refinement of all kinds found in 
literature). For example, excluded from the scope is the case where a specification is expressed 
through an informal language and informal diagrams. Such a specification may be ambiguous 
and its meaning may differ, depending on individual subjective judgment, as illustrated in the 
following situation: 

When a system130 is conceived, typically its specification is expressed in a language natural to the 
conceiver (i.e., informal language). The specification may be incomplete (i.e., not all the 
properties of the system are expressed, basing the economy of expression on an implicit context), 
inconsistent, and ambiguous. Different individuals with different mental models (e.g., of the 
conceiver’s implicit context and assumptions) might have different interpretations, using their 
different mental models and judgment to fill in the implicit or missing information in different 
ways. Transforming the informal description into a complete, consistent, unambiguous131, correct 
set of requirements specification may require engineering activities (e.g., elicitation; system-level 
hazard analysis; validation) other than refinement [8].  

This restricted usage of refinement reduces sources of uncertainty in the verification process. 
This benefit is further discussed in Section 3 and the commensurate required restrictions are 
introduced in Section 4. 

D.2 Abstraction and refinement 
Abstraction is a view of an object that focuses on the information relevant to a particular 
purpose and ignores the remainder of the information [2].  

Conversely, refinement is a detailed description that conforms to another (its abstraction) …. 
perhaps in a somewhat different form … [3].  

Two specifications S0 and S1 are in a refinement relation if everything described by S0 can also 
be concluded by specification S1. This relation also ensures that S1 does not add any behavior 
not included in S0 (i.e., no additional behavior is visible at the external interface). 

Stepwise refinement decomposes the development process into a sequence of transformation 
steps, as depicted in Figure 11, where each successive step refines its input specification [4], 
                                                 
130 “System” refers to the final product (i.e., the implementation installed in a plant). 
131 Typically, a formal language is used to eliminate ambiguity and facilitate mechanized reasoning. 

http://www4.in.tum.de/~broy/
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[5]. Each transformation step entails some design decisions [6]. In other words, it reduces the 
design space available for the remaining steps.  

 
Figure 11: Stepwise refinement: design decisions are made in small steps 

The concept of Refinement, in its broadest sense, is applied to the specification of many 
aspects of a system and many kinds of its elements, such as: 

• Data element (see [7]) 
• Data structure  
• Function 
• Requirement 
• System interface and interface behavior 
• System architecture 
• Hardware element 
• Software element 
• Human element 
• System implementation 
• Process 
• Procedure (e.g., operating instructions) 

Some simple examples of refinement are given in Table 24. 
Table 24: Simple examples of refinement 
Type of 
information 

Example of abstract level Example of refined level 

Data Length. Length in SI units; value has a specified precision 
level. 

Data structure Sequence of a given length Bounded one-dimensional array  
Structured data Sequence of last 10 measured values of 

distance (length) in SI units. 
One-dimensional array of length 10, where each 
element can be stored (written) or retrieved (read) 
as a value of length in SI units, but internally the 
data is stored in a compact form. 
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Structured data Location of a point, A, in space, with 
respect to a given origin and some 
reference frame. 

Location and orientation of point A with respect to 
a Cartesian reference coordinate frame, C0; all 
measurements are in SI units : location is 
designated AC0 

Function Calculate location of A with respect to 
another Cartesian coordinate frame C1, 
using IEEE 754 standard for floating point 
arithmetic: result designated ACI. 

Calculate location of ACI using matrix 
representation and matrix functions, conforming to 
IEEE 754: 
[ACI] = [AC0] - [C1CO] 

D.3 Motivation for refinement as a constraint on system development 
 Refinement has supported powerful reasoning in software development; success in its use for 
program construction leads to its usage in the development of safety-critical software-dependent 
systems [8].  Refinement (in the restricted sense stated in Section 4) enables “verification by 
construction” that the original specification and initial constraints are satisfied [1].  

This approach supports the concept that system properties can be verified analytically by 
abstracting the essential information and leaving out all details about the system that are not 
needed (because these details may render the analysis infeasible). The abstraction has to suit 
the analytical purpose. 

The enabling idea is that in the transformation step from the abstract to the refined specification, 
the verification performed on the abstract level remains valid also for the refined specification. 

This idea can be applied to a sequence of refinement steps: Verification of properties 
successfully applied to abstractions hold also for their refinements.  

In the ideal state (enabling verification by construction), the final product would not have to be 
tested against the initial specification. Key constraints required in developing a system to enable 
this ideal are introduced next. To the extent that the ideal is not achieved through the 
refinement-based analytical verification approach, residual uncertainties would require 
complementary means of verification. 

Stepwise refinement serves as a process to make a sequence of design decisions so as to rule 
out unsafe choices or choices for which safety cannot be assured (e.g.: the technological base 
does not exist; the organization does not have the capability). In other words, the design space 
is progressively reduced in a manner that progressively reduces the hazard space also. 

D.4 Mathematical underpinnings 
Refinement supports correctness notions in a rigorous way, when used with mathematical 
underpinnings through refinement calculi. Refinement calculi exist for practically all kinds of 
formalisms and programming notations in computer science and for a large number of system 
models. 

In a refinement calculus for refinement steps, a “chunk” of design activity is decomposed into 
elementary steps, such that the specification for the “chunk” is preserved [8].  

Refinement calculi introduce a formal refinement relation on the set of specifications as well as 
rules to deduce and prove refinement types forming a formal calculus. Moreover, refinement 
calculi often define a number of transformation rules for system specifications that are applied to 
produce refinements and that guarantee correct refinement steps. 

D.4.1 Refinement as logical implication 
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Logically, refinement corresponds to implication – the refined specification satisfies its original 
specification. 

If a refinement specification S0 is refined to specification S1, it connotes that specification S1 
expresses more detailed information than specification S0; the logical property formulated by 
specification S1 implies the logical property formulated by specification S0. 

Formal specifications are logical predicates on systems and thus we can use the concept of 
logical implication “⇐” to express a refinement relation: 

 S0 ⇐ S1 

Note that the arrow goes from S1 (the refinement) to S0 (the abstraction), expressing that each 
property expressed by S0 is implied by the property expressed by S1. 

The transformation from S0 to S1 is called a refinement step. Specification S1 is called a 
refinement of specification S0. Specification S0 and specification S1 are said be in the 
refinement relation. 

D.4.2 Useful properties of the refinement relation  
Refinement relation is a partial order on the semantics of specifications.  

The refinement relation is transitive, reflexive, and antisymmetric – it defines a partial ordering 
on the (semantics of) specifications of systems and their elements. 

The transitivity property is illustrated as follows:  

If specification S1 is a refinement of specification S0, i.e.:  

S0 ⇐ S1 

and S2 is a refinement of S1, i.e.: 

S1 ⇐ S2 

then we conclude that S2 is a refinement of S0. 

S0 ⇐ S2 

D.4.3 Sequence of Refinement Steps 
In developing a system through the stepwise refinement technique, simple steps of refinement 
are put together into larger steps. To explain and comprehend the correctness of refinement 
steps of the form 

S ⇐ S’ 

the differences between specifications in adjacent steps must not be too large and 
incomprehensible. For example, if  

S ⇐ S’ 

Is a large step, 

then it is better to decompose it into a sequence of smaller intermediate steps: 

S ⇐ S1 

S1 ⇐ S2 

… 



 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 109 
 

Sk-1 ⇐ Sk 

Sk ⇐ S’ 

These smaller steps guarantee that the larger step  

S ⇐ S’ 

is a correct refinement step based on the fact that the refinement relation is transitive. 

D.4.4 Refinement and Decomposition 
In a design step a “hard-to-analyze” system, represented with its model M, is decomposed into 
a number of “easier-to-analyze” (model) elements M1, M2, …, Mk.  

D.4.4.1 Composing and Decomposing Interfaces 

Composition is an operation on syntactically compatible system interfaces; let  [I  O] denote 
the set of interface behaviors; composition is defined by the operator 

⊗ : [I1  O1] × [I2  O2] → [I  O]  

The operator ⊗ induces a composition operation on specifications [10]. 

To express this step of decomposition formally we use the composition operator ⊗ for systems 
such that  

 M = M1 ⊗ M2 ⊗ … ⊗ Mk 

This equation expresses both that M is the result of composing M1, M2, Mk and that M may be 
correctly decomposed into the elements M1, M2, … Mk. 

Following this scheme a specification S is decomposed into a number of specifications S1, S2, 
Sk of its system elements. Generalizing the composition to specifications we write 

  S1 ⊗ S2 ⊗ … ⊗ Sk 

for the specification of all the systems M1 ⊗ M2 ⊗ … ⊗ Mk where the elements M1, M2, Mk fulfill 
the specifications S1, S2, Sk respectively. 

Such a step of decomposition of a specification into specification of system elements is called a 
refinement step if 

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk 

holds. 

D.4.4.2 Compositionality of Refinement 
Compositionality of refinement guarantees for systems composed of a set of elements that 
refinements of the specifications of system elements guarantee refined system specifications 
[1][11][12][13]. A refinement relation is called compositional for a given concept of 
composition, if specifications of systems given by a composition of specifications of their 
elements are in the refinement relation to systems that are given by a composition of 
refinements of the specifications of the elements [13]. In the literature compositionality of 
refinement is sometimes also called modularity of refinement. 

If we replace in a larger system an element that is required to fulfill specification A (and if for the 
correctness of the system this is all that is required) then replacing the element by one fulfilling 
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specification B is correct and maintains the correctness, if such an element fulfilling specification 
B also fulfills specification A. Formally, given a specification S, a decomposition S1 ⊗ S2 ⊗ … ⊗ 
Sk which is a refinement 

 S ⇐ S1 ⊗ S2 ⊗ … ⊗ Sk 

and refinements R1, R2 … Rk of the specification S1, S2 … Sk; if the refinement relation is 
compositional for composition we then can conclude: 

 S1 ⊗ S2 ⊗ … ⊗ Sk ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk 

and by transitivity of refinement  

 S ⇐ R1 ⊗ R2 ⊗ … ⊗ Rk 

Compositional refinement also captures the idea of compatibility (replaceability) of a system or 
its elements. Consider system designs given by a composition of elements where the design is 
correct as long as the elements are correct in terms of given specifications. Compositional 
refinement guarantees that the replacement of a specification of an element by its refinement 
yields a refined design. 

D.4.4.3 Example  
Figure 12 depicts an example of architectural refinement. The top-level system is represented 
through its model M and its behavior, through its specification S. The system model is 
decomposed into modeling elements M1, M2, and M3 and their respective behaviors, through 
S1, S2, and S3. Their combined behavior results in the behavior S, and does not produce any 
behavior not specified in S. 

S ⇐ S1 ⊗ S2 ⊗ S3 

Note that the refined system contains more information – in this case about the architectural 
design decomposing model M into three modeling elements M1, M2, and M3 specified by S1, 
S2, and S3. 
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Figure 12: Example of architectural refinement 
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Appendix E: Checklists to assist hazard recognition 
This Appendix is a collection of checklists assimilated from a variety of sources such as 
[82][83][84]. It is not an exhaustive coverage of hazard sources, categories or groupings, 
relevant to an NPP digital safety system.  The intent is to stimulate thought from different 
perspectives, leading to recognition of a hazard or a contributor to it. 

E.1 Categories of hazard origination 
Table 25 is adapted from NASA Reference Publication 1358 [82] Appendix D, organized by 
categories of hazard origination or source. For each category, Table 25 identifies a variety of 
effects which may lead to loss.  
 
Table 25: Some categories of hazard origination 

Category of hazard origination Effect which may lead to loss 
Acceleration/Deceleration/Gravity Inadvertent motion 

Loose object translation 
Impacts 
Failing objects  
Fragments/missiles 
Sloshing liquids 
Slip/trip 
Falls 

Chemical/Water Contamination System-cross connection 
Leaks/spills 
Vessel/pipe/conduit rupture 
Backflow/siphon effect 

Common Causes Utility outages 
Moisture/humidity 
Temperature extreme 
Seismic disturbance/impact 
Vibration 
Flooding 
Dust/dirt 
Faulty calibration 
Fire 
Single-operator coupling 
Location 
Radiation 
Wear-out 
Maintenance error  
Vermin/varmints/mud daubers 

Contingencies (Emergency Response by 
System/Operators  to “Unusual” Events) 

“Hard” shutdown/failures 
Freezing 
Fire 
Windstorm 
Hailstorm 
Utility outrages 
Flooding 
Earthquake 
Snow/ice load 

Control Systems Power outage 
Interfaces (EMI/RFI) 
Moisture 
Sneak circuit 
Sneak software 
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Category of hazard origination Effect which may lead to loss 
Lighting strike 
Grounding failure 
Inadvertent activation 

Electrical Shock 
Burns 
Overheating 
Ignition of combustibles 
Inadvertent activation 
Power outage 
Distribution back feed 
Unsafe failure to operate  
Explosion/electrical (electrostatic) 
Explosion/electrical (arc) 

Mechanical  Sharp edges/points 
Rotating equipment 
Reciprocating equipment 
Pinch points 
Lifting weights 
Stability/topping potential 
Ejected parts/fragments 
Crushing surfaces 

Pneumatic/Hydraulic Pressure Over-pressurization  
Pipe/vessel/duct rupture 
Implosion 
Mislocated relief valve  
Dynamic pressure loading 
Relief pressure improperly set 
Backflow 
Crossflow 
Hydraulic ram 
Inadvertent release 
Miscalibrated relief device 
Blown objects 
Pipe/hose whip 
Blast 

Temperature Extremes Heat source/sink 
Hot/cold surface burns 
Pressure evaluation 
Confined gas/liquid 
Elevated flammability 
Elevated volatility 
Elevated reactivity 
Freezing 
Humidity/moisture 
Reduced reliability 
Altered structural properties (e.g., embrittlement) 

Radiation (Ionizing) Alpha 
Beta 
Neutron  
Gamma 
X-Ray 

Radiation (Non-Ionizing) Laser  
Infrared 
Microwave 
Ultraviolet 

Fire/Flammability—Presence of  Fuel 
Ignition Source 
Oxidizer 
Propellant 

Explosive (Initiators) Heat 
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Category of hazard origination Effect which may lead to loss 
Friction 
Impact/shock 
Vibration 
Electrostatic discharge 
Chemical contamination 
Lightning 
Welding (stray current/sparks) 

Explosives (Effects) Mass fire 
Blast overpressure 
Thrown fragments 
Seismic ground wave 
Meteorological reinforcement 

Explosive (Sensitizes) Heat/cold 
Vibration 
Impact/shock 
Low humidity 
Chemical contamination 

Explosives (Conditions) Explosive propellant present 
Explosive gas present 
Explosive liquid present 
Explosive vapor present 
Explosive dust present 

Leaks/Spills (Material Conditions) Liquid/cryogens 
Gases/vapors 
Dusts—irritating 
Radiation sources 
Flammable 
Toxic 
Reactive  
Corrosive 
Slippery 
Odorous 
Pathogenic 
Asphyxiating  
Flooding 
Runoff 
Vapor propagation 

Physiological (See Ergonomic) Temperature extremes 
Nuisance dusts/odors 
Baropressure extremes 
Fatigue 
Lifted weights 
Noise 
Vibration (Raynaud’s syndrome) 
Mutagens 
Asphyxiants 
Allergens 
Pathogens 
Radiation (See Radiation) 
Cryogens 
Carcinogens 
Teratogens 
Toxins 
Irritants 

Human Factors (See Ergonomics) Operator error 
Inadvertent operation 
Failure to operate  
Operation early/late 
Operation out of sequence 
Right operation/wrong control 
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Category of hazard origination Effect which may lead to loss 
Operated too long 
Operate too briefly 

Ergonomic (See Human Factors) Fatigue 
Inaccessibility 
Nonexistent/inadequate “kill” switches 
Glare 
Inadequate control/readout differentiation 
Inappropriate control/readout labeling 
Faulty work station design 
Inadequate/improper illumination 

Unannunciated Utility Outages Electricity 
Steam 
Heating/cooling 
Ventilation 
Air conditioning 
Compressed air/gas 
Lubrication drains/slumps 
Fuel  
Exhaust 

Mission Phasing Transport 
Delivery 
Installation 
Calibration 
Checkout 
Shake down 
Activation 
Standard start 
Emergency start 
Normal operation 
Load change 
Coupling/uncoupling 
Stressed operation  
Standard shutdown  
Shutdown emergency 
Diagnosis/troubleshooting 
Maintenance  

E.2 Checklist for hazard sources 
Following is a checklist from [83] of some general categories of hazard origination or source. 
Note that some of the factors are similar to those in Table 25, but are organized differently. 

1. Acceleration 

2. Contamination  

3. Corrosion 

4. Chemical dissociation 

5. Electrical 
a. Shock 
b. Thermal (corresponds to electrical - overheating in Table 25) 
c. Inadvertent activation 
d. Power source failure (corresponds to electrical - power outage in Table 25) 
e. Electromagnetic radiation 

6. Explosion 

7. Fire 
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8. Heat and temperature 
a. High temperature 
b. Low temperature 
c. Temperature variations 

9. Leakage 

10. Moisture 
a. High humidity 
b. Low humidity 

11. Oxidation 

12. Pressure 
a. High 
b. Low 
c. Rapid change 

13. Radiation 
a. Thermal 
b. Electromagnetic 
c. Ionizing  
d. Ultraviolet 

14. Chemical replacement 

15. Shock (mechanical) 

16. Stress concentrations 

17. Stress reveals 

18. Structural damage or failure 

19. Toxicity 

20. Vibration and noise 

21. Weather and environment 

Following is a checklist of some categories of energy sources of hazards, assimilated from a 
variety of sources such as [83]:  

1. Fuels 
2. Propellants 
3. Initiators 
4. Explosive charges 
5. Charged electrical capacitors 
6. Storage batteries 
7. Static electrical charges 
8. Pressure containers 
9. Spring-loaded devices 
10. Suspension systems 
11. Gas generators 
12. Electrical generators 
13. Radio frequency sources 
14. Radioactive energy sources 
15. Failing objects 
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16. Catapulted objects 
17. Heating devices 
18. Pumps, blowers, fans 
19. Rotating machinery 
20. Actuating devices 
21. Nuclear 

E.3 Checklist of hazard sources in Semiconductor Manufacturing  
Table E.2 is a set of examples from the semiconductor manufacturing industry [84], organized 
by categories of sources of hazards and the corresponding potential loss or effect leading to 
potential loss.  
Table 26: Checklist of hazard sources in semiconductor manufacturing equipment 

Categories of hazard sources Potential loss or effect which may lead to loss 
Chemical Energy 
Chemical disassociation or replacement of fuels, oxidizers, 
explosives, organic materials or compounds 

Fire 
Explosion 
Non-explosive exothermic reaction 
Material degradation 
Toxic gas production 
Corrosion fraction production 

Contamination 
Producing or introducing contaminants to surfaces, orifices, 
filters, etc. 

Clogging or blocking components 
Deterioration of fluids 
Degradation of performance sensors or operating components 

Electrical Energy 
System or component potential energy release or failure. 

Includes shock, thermal, and static. 

Electrocution/involuntary personnel reaction 
Personnel burns 
Ignition of combustibles 
Equipment burnout 
Inadvertent activation of equipment 
Release of holding devices 
Interruption of communications (facility interface) 
Electrical short circuiting 

Human Hazards 
Human hazards including perception (inadequate 
control/display identification), dexterity (inaccessible control 
location), life support, and error probability (inadequate data 
for decision making). 
 
Conditions due to position (hazardous location/height), 
equipment (inadequate visual/audible warnings or heavy 
lifting), or other elements that could cause injury to personnel. 

Personnel injury due to: 
Skin abrasion, cuts, bruises, burns, falls etc. 
Muscle/bone damage 
Sensory degradation or loss 
Death 
 
Equipment damage by improper operation/handling may also 
occur 

Kinetic/Mechanical Energy (Acceleration) 
System/component linear or rotary motion. Change in 
velocity, impact energy of vehicles, components or fluids. 

Impact 
Disintegration of rotating components 
Displacement of parts or piping 
Seating or unseating valves or electrical contact 
Detonation of shock sensitive explosives 
Disruption of metering equipment 
Friction between moving surfaces 

Material Deformation 
Degradation of material due to an external catalyst (i.e., 
corrosion, aging, embrittlement, fatigue, etc.). 

Change in physical or chemical properties; corrosion, aging, 
embrittlement, oxidation, etc. Structural failure 
De-lamination of layered material 
Electrical insulation breakdown 

Natural Environment 
Conditions including lighting, wind, flood, temperature 

extremes, pressure, gravity, humidity, etc. 

Structural damage from wind 
Equipment damage 
Personnel injury 

Pressure 
System/component (e.g., fluid systems, air systems) 
potential energy including high, low, or changing pressure. 

Blast/fragmentation from container over-pressure rupture 
Line/hose whipping 
Container implosion 
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Categories of hazard sources Potential loss or effect which may lead to loss 
System leaks 
Aero-embolism, bends, choking, or shock 
Uncontrolled pressure changes in air/fluid systems 

Radiation 
Conditions including electromagnetic, ionizing, thermal, or 
ultraviolet radiation (including lasers/and optical fibers). 

Uncontrolled initiation of safety control systems & interlocks 
Electronic equipment interference 
Human tissue damage 
Charring of organic material 
Decomposition of chlorinated hydrocarbons into toxic gases 
Fuel ignition 

Thermal 
High, low, or changing temperature 

Ignition of combustibles 
Initiation of other reactions 
Expansion/contraction of solids or fluids 
Liquid compound stratification 

Toxicants 
Inhalation or ingestion of substances by personnel 

Respiratory system damage 
Blood system damage 
Body organ damage 
Skin irritation or damage 
Nervous system effects 

Vibration/Sound 
System/component produced energy 

Material failure 
Pressure/shock wave effects 
Loosing of parts 
Chattering of valves or contacts 
Verbal communications interference 
Degradation or failure of displays 

E.4 Hazard sources in physical environment of an NPP DI&C safety 
system 

Disruption in or emissions from the environment or physical conditions in the environment may 
degrade a safety function of the analyzed DI&C system in an NPP; e.g.: 

1. Water in unwanted space 

2. Transfer of unwanted energy in various forms; for example:  
2.1. Fire  
2.2. Lightening  
2.3. Heat 
2.4. Light 
2.5. Sound 
2.6. Vibration 
2.7. Radiation 
2.8. Shock 
2.9. Seismic event or effect 
2.10. Tsunami 
2.11. Flooding 
2.12. Electrostatic discharge 
2.13. Electromagnetic interference, causing spurious signal or signal change. 
2.14. Electromagnetic radiation, e.g.: 

2.14.1. Pulse 
2.14.2. Sunspot; solar flare 

3. Interruption of services (primary; secondary; other forms of back-up) ; for example:  
3.1. Electric power supply. 

4. Disturbance in services, propagating to a disturbance in a main signal; for example:  
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4.1. Electric power supply. 
4.2. Service water [24] 
4.3. Service air 

5. Intrusions through breaches of isolation barriers; for example  
5.1. Cable penetration 
5.2. Other duct penetration 

6. Adverse conditions in temperature, pressure, or humidity/moisture; for example  
6.1. Too high 
6.2. Too low 
6.3. Rapid changes 

7. Disturbance in incoming signals 

8. Misbehaving signals (data; commands) ; for example: 
8.1. Byzantine behavior. 
8.2. Behaving like a “babbling idiot” in a connected network. 

9. Deprivation of resources; for example: 
9.1. Overloaded communication bus 
9.2. Resource locked up by other “users” of those resources. 

Note: Items 8-9 are contributed through “logical” rather than physical sources in the 
environment. 

E.5 Digital safety system contribution to hazards affecting its 
environment 

Emissions or outputs from or behavior of the DI&C system having an effect on its environment 
may affect safety adversely; for example:  

1. Emission of energy in various forms; for example:  
1.1. Heat 
1.2. Light 
1.3. Sound 
1.4. Vibration 
1.5. Electromagnetic radiation 
1.6. Electrostatic discharge. 

2. Other unwanted, unplanned effluents, ; for example, those leading to 
2.1. Toxicity 
2.2. Inflammability 

3. Output of signals (data; commands) ; for example: 
3.1. Byzantine behavior. 
3.2. Behaving like a “babbling idiot” in a connected network. 

4. Excessive132, load or demand on resources; for example: 
4.1. Electric power overload, due to a short circuit 
4.2. Communication bus overload 
4.3. Locking up resources, to the exclusion of other “users” of those resources. 

                                                 
132 Excessive: Disruptive by exceeding limit declared or established in design. 
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Note: Items 3 and 4.2-4.3 are “logical” rather than physical contributory causes. 

E.6 References for Appendix E 
[82] NASA Reference Publication 1358, “System Engineering “Toolbox” for Design Oriented 

Engineers,” 1994.  

[83] Ericson II., C.A., “Hazard Analysis Techniques For System Safety,” John Wiley and 
Sons, August 24, 2005. 

[84] International SEMATECH, “Hazard Analysis Guide: A Reference Manual for Analyzing 
Safety Hazards on Semiconductor Manufacturing Equipment,” Technology Transfer # 
99113846A-ENG, November 30, 1999.  
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Appendix F: Organizational qualities to support safety 
Author: Dr. Dorothy Andreas, Pepperdine University 

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas 

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission 

This appendix draws upon knowledge from the social sciences for the purpose of informing the 
evaluation of hazard analysis of a digital safety system for a nuclear power plant (NPP). 
Literature search in the social sciences did not yield any results specific to the context of 
engineering critical systems such as a digital safety system for a nuclear power plant (NPP). In 
the absence of context-specific research, this appendix assimilates133 information from broader 
fields of applicable research, supporting the premise that collective mindfulness (Section F.5) 
within the organization is an essential factor for reducing the hazard space in engineering a 
digital safety system for an NPP, and for conducting the associated hazard analysis.  Most of 
the scholarship is concerned with operations of technologically and organizationally intricate  
systems (nuclear power plants, aircraft carriers, aviation, petroleum industry, occupational 
safety, and healthcare) rather than the engineering of a digital instrumentation and control 
system [5], [19], [39]-[41], [44], [57]. Swanson, et al [43], theorizing about the application of HRO 
principles (Section F.1) to design of IT systems, is the only research that comes close to the 
context of RIL-1101 or the engineering of digital safety systems. Similarly, in this appendix we 
map the knowledge from the social sciences to the RIL-1101 context as follows: 

In the engineering environment, a high quality organization (HQEO) develops and maintains 
technological systems without entailing associated hazards, just as, in the operational 
environment, a “high reliability134 organization” (HRO) operates hazardous technologies without 
leading to catastrophe” [46]-[47]. 

The subsequent sections describe specific behaviors and processes to develop collective 
mindfulness and discuss these in the context of accountability and standardization. 
Organizations can measure all of the factors described in the subsequent sections and use this 
information as one piece of evidence that a hazard analysis was performed, utilizing best 
communication practices and sound principles from the social sciences.  

HQEOs, just as HROs, work hard to address intricacies within technical systems using 
processes that cultivate “collective mindfulness.” Collective mindfulness is a set of stable 
cognitive processes that allow a group to develop sophisticated mental models that help to 
“improve hazard identification and evaluation” [46]-[47]135. These organizations resist patterns of 
habitual136 thinking and communicating that may lead them to miss safety-related information 
(e.g., contributors to hazards). They intentionally strengthen their collective ability to pay 
attention to new information to determine how the information provides insight into the 
intricacies of the system and help the organization avoid a hazardous condition137 and prevent 
the consequential loss (e.g., degradation of a safety function). Organizational culture  is a 

                                                 
133 Assimilation includes mapping certain terms to the context of RIL-1101. 
134 Reliability in this context does not have the same definition as used in fault-tolerant engineered 
systems. 
135 It is implicit in the expression, “risk detection, assessment and management” in the cited references. 
136 Interpreting new information through an old reference frame - the traditional belief system. 
137 The reference uses the terms, “error, failure” 

http://seaver.pepperdine.edu/academics/faculty/default.htm?faculty=dorothy_andreas
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contributing factor to individuals’ abilities to develop collective mindfulness. There are also 
specific communication behaviors that enable organizations to develop collective mindfulness.  

F.1 Five Principles 
Following are the five principles to organize for high quality138 processes [44], [46]-[47][72]: 

1. Preoccupation with hazard identification139 — treat every piece of information as a potential 
symptom that something could be wrong with the system. 

2. Reluctance to accept simplistic140 explanations and models — always hold current mental 
models in question with a persistent goal to create more complete and nuanced141 
explanations and models of the system. 

3. Sensitivity to operations — situational awareness of the (current state of the) system — be 
able to notice anomalies142, track them, and resolve them. 

4. Commitment to resilience — learning from mistakes, correcting143 their perceptions to 
represent reality well enough to identify (contributory) hazards their perceptions — detect, 
contain, and recover from mistakes144. 

4.1. Ability to respond to unanticipated conditions (outside the boundary of the 
organization’s deterministic processes) without compromising its end goal145. 

4.2. Ability to learn and grow from previous episodes of resilient action. 

5. Deference to expertise — cultivate diversity and delegate (empower) people, who are closer 
to the situation and can recognize more subtle contributors to a hazard in intricate 
environments  and assimilate information from their diverse perspectives. 

HROs generally practice these principles in their everyday activities. However, there are ways to 
measure an organization’s ability to follow their principles with surveys. A survey measure of the 
five principles is in [46]-[47].  

F.2 Accountability, Standardization, and Adaptation  
Many assumptions associated with safety management are based in traditional “scientific” 
management, inheriting the following characteristics:  

                                                 
138 The references use the term, “reliability” 
139 The references use the term “failure.”  
140 In the RIL-1101 context, it means “not adequately representative of reality, missing (contributory) 
hazards” 
141 In the RIL-1101 context, it means “reflecting subtle details that enable (contributory) hazard 
identification.” 
142 In the RIL-1101 context, it maps into “(contributory) hazards.” 
143 The references use the term “complicating.” 
144 The cited reference uses the terms, “failure” and “error” for which “unrecognized hazard” is the 
corresponding concept in RIL-1101. Its effect may be an “unwanted loss” for which, in the context of 
organizational processes, the cause is traced to some mistake by some human. 
145 The cited reference uses the expression, “absorb strain and preserve functioning despite presence of 
adversity” 
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1. A standardization146 of work process, output, skills, and organization norms (e.g. safety 
culture). 

2. A strict separation of planning147 and operations processes. 

3. The use of “scientific” measurement to develop the standardization and to detect flaw in the 
system [3].  

The basic assumption of “scientific” management is that standardized processes in normal 
operations control output and prevent mistakes [3], [50]. This fundamental assumption is related 
to master premises that efficiency and predictability are desirable performance characteristics148 
of organizational processes [37], [50]. In the context of safety management, it assumes that 
managers can control employee behavior and that mishaps result from performance shortfalls, 
which are the product of failing to control employee behavior (e.g. “mistakes”) [3], [37]. The core 
assumptions of “scientific” management do not make adequate provision149 for unanticipated 
conditions and limit their ability to recognize (contributory) hazards [3], [31], [37], [46]-[47].  

Likewise, the desire to establish a clear hierarchical “command and control” tree derives from 
these assumptions [50]-[51]. Decades of research about organizations, including the nuclear 
industry, clearly document that the very nature of bureaucracy in organizations diffuses150 
accountability [50]. In some ways this is a strong point of bureaucracy because their prescriptive 
“deterministic” processes enable accomplishment of organizational tasks and goals without full 
dependence on an individual thinking for adjusting to situation-specific unanticipated conditions 
[50]—thus, individuals often base decisions on the assumptions, underlying the “deterministic” 
processes, but not always made explicit [50]. However, as noted in Table 2, H-culture-9, an 
overly rigid “command and control” organization structure can increase the hazard space 
because the implicit assumptions and premises may not hold.  

Organizational research asserts that the nature of bureaucracy creates a powerful force to 
diffuse accountability throughout the organization [50]- [51]. In terms of ethics, some 
researchers lament this organizational force and call organizations, in general, to become 
mindful of this tendency and counteract it whenever possible [50]. But rather than tracing all 
decisions through individual accountability, they suggest that organizational members question 
assumptions and premises that pervade the organizational culture [50]. The Toulmin model 
introduced in Appendix C.3.3 is one technique by which organizational members can question 
premises and assumptions as they relate to evidence and claims about hazards or hazard 
control. Conversations that seek to make these elements of arguments transparent can help 
counteract the diffusion of accountability in bureaucracy. Of course, the intricacy of these 
conversations and the amount of information that must be considered in hazard analysis can 
make it difficult to keep a record of deliberations, decisions, and rationale. Knowledge 
management tools such as dialogue mapping can help organizations keep track of 
deliberations, decisions, and rationale and hyperlink the rationale with supporting information 
and documents [54]-[56]. 
                                                 
146 It includes top-down decomposition and allocation of responsibilities along the organization (command 
and control) structure, down to the individual. 
147 Rigid hierarchical (top-down) plans limit local autonomy during execution or operation. 
148 The references use the term, “outcomes.” 
149 Example: Organizational architecture for collective mindfulness. 
150 The top-down allocation of roles, responsibilities and performance metrics does not make adequate 
provision for bottom-up observation and feedback of real conditions and adaptation to cope with 
associated contributory hazards.. 
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Even though the use of Toulmin’s argumentation model can help counteract diffusion of 
authority in organizations, a caveat is in order in the context of complex, high-risk technology. 
One of the main goals of Perrow’s Theory of Normal Accidents [68] is to raise awareness of the 
faulty assumption that accidents results from a lapse of “scientific” management to control 
employees — often referred to as “human error” [68], [70]. In the context of complex, high-risk 
technologies, it is worth considering his argument that the nature of complex technical systems 
makes it extraordinarily complex for standardization of organizational procedures to anticipate 
all possible combinations of mistakes. HROs take this issue seriously by developing collective 
mindfulness in order to create requisite diversity and independence in the organizational system 
to recognize the complexity of the technical system [39], [46]-[47]. Requisite variety is the 
variation in frames of reference and knowledge that makes the organization capable of 
recognizing and addressing hazards [44]. In the case of many organizational mishaps, the 
paradox is that the standardization of process that was designed to control mistakes, in fact, 
minimized the organizations’ ability to develop collective mindfulness that would prevent the 
mishap [31]-[32], [69]-[70]. Alternately, HRO-relevant research in nuclear power plants, aircraft 
carriers, aviation, and the petroleum industry consistently demonstrates that these organizations 
centralize and standardize procedures while also building collective mindfulness about when to 
decentralize151 and adapt the procedures [46]-[47], [50]. It is also important to note that too 
much emphasis on the separation of planning and execution can lower the organization’s 
collective mindfulness because it lowers sensitivity to the context and the system [2]-[3], [50], 
[58].  

Thus, the desire to develop accountability and standardization within organizations must be 
accomplished without minimizing the organizations’ ability to develop collective mindfulness that 
allows them to recognize and prevent (contribution to) hazards. The subsequent sections 
discuss the relationship between organization culture and decisional premises (Section F.3), the 
role of communication for developing collective mindfulness and following Toulmin’s model of 
argumentation (Section F.4), and the relationship between professional identification and 
collective mindfulness and competence (Section F.5). Additionally, each section references 
tools and techniques of measuring the organizational and communication factors. 

F.3 Organizational culture and decisional premises 
The organization’s culture can create values and decision premises that guide individual 
members’ cognition, communication, and processes in a manner that increases safety [8], [58]-
[59], [71]. Organizational culture is a complex concept, and due to its complexity, it is difficult to 
define conceptually and difficult to measure [8], [17], [33], [37]. Following is the most commonly 
cited definition of organizational culture: “Organizational culture is understood to be deeply 
rooted assumptions about human nature, human activities, and social relationship shared by 
members of an organization and their expression in values, behavioral patterns, and artifacts 
found within the organization” [71].  

In the nuclear industry (and others), this concept is often called safety culture defined by IAEA 
as “that assembly of characteristics and attitudes in organizations and individuals, which 
establishes that, as an overriding priority, nuclear plant safety issues receive the attention 
warranted by their significance” [59]. Thus, one important way to think about the role of 
organizational culture in the process of hazard analysis is members of the organization would 
be motivated by their value of safety to pay close attention to hazard-related information. 

                                                 
151 Delegate and distribute control; provide the autonomy (empower) to adapt, learn, and feedback. 



 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 125 
 

In addition to establishing core values of an organization, the culture carries premises and 
assumptions that often become the basis for decisions and evaluation of information in the 
organization. It is the HRO’s established premises that allow it to have centralized and 
standardized processes while at the same time allowing members interpretive flexibility to 
recognize new information and adapt work processes accordingly [5], [58].  

The discipline of organizational culture derives from an anthropological tradition of studying 
culture and organizations. It examines patterns of meaning, values, and frames of references 
that are shared among members of a community. It considers culture to be a complex whole of 
knowledge, beliefs, ethics, and customs that is both created and lived within members of a 
community. These cultural frames of reference are the lenses through which community 
members interpret and evaluate information and behavior. Given the complexity and dynamic 
nature of organizational culture, it is a very complex phenomenon to measure. It is best 
evaluated with a combination of qualitative and quantitative measures. There are many 3-part 
frameworks to measure organizational culture. One framework suggests that it is a dynamic 
interrelationship between individual characteristics, behavior, and the environment [60]. A 
similar model suggests that individual behavior is influenced by the triad of organizational 
structure, organizational processes, and organizational culture [17]. Qualitative measures might 
include themes and patterns from a series of employee interviews, thematic analysis of focus 
groups, detailed observation of the work environment, and audits of organizational documents. 
Another approach uses rubrics to assess five levels of safety culture: (1) organization does not 
care about safety, (2) organization increases safety after an accident, (3) organization uses 
systems and procedures to prevent hazards, (4) organization tries to anticipate safety problems, 
and (5) normalization of safety values within the organization culture (akin to the principles of 
highly reliable organizations).  Even though these measures of safety provide a sense of the 
values and interpretive frames within a community, it is important to recognize that any measure 
only captures a moment in time and does not tell the entire story. 

There have been many efforts to develop quantitative measures of safety culture. These efforts 
are generally considered to be measuring safety climate. Safety climate is an aggregation of 
individual attitudes of safety. Thus, safety climate measured in surveys is a manifestation of 
some aspect of the organizational safety culture. Even given this qualification of a survey 
approach, many scholars question the validity of these surveys and suggest they are simply 
measuring employee satisfaction with the organization and their supervisors [17]. Thus, reports 
of survey-measures should be evaluated carefully. 

One approach to measuring safety culture suggests that the organization should carefully 
consider what it really wants to measure [10]. One question interrogates the organizational 
culture as an attribute of the organization--as something the organization has. Measurement 
methods appropriate to this question include observation and audits. A second question 
interrogates how the organizational culture impacts individual attitudes about safety. 
Measurement methods for the second question include surveys and observation. A third 
question interrogates the organizational climate as seen through the eyes of employees, 
contractors, and external audiences. Measurement methods for the third question include 
interviews and surveys. This approach suggests that technique of measuring organizational 
safety culture should be based on reason (purpose) for measuring it. 

See [2] for opinions about: incident reporting, manager, prioritization of worker safety, work 
procedures, work situation and stress, competence and training, communication and 
cooperation, upper management, lines of responsibility, and perceptions of vocation (in this 
case seamanship). 
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See [10] for attitudes toward management commitment to safety, priority of safety, 
communication, safety rules, supportive environment, involvement, personal priorities and need 
for safety, personal appreciation of risk, and nature of work. 

F.4 Communication for collective mindfulness 
Quality of hazard analysis is affected by the quality of interaction among the involved people. 
Good interaction quality depends upon individual communication competence (Section F.4.1), 
participatory communication climate  (Section F.4.2), cross-disciplinary or interdisciplinary 
competence  (Section F.4.3), and prevention of GroupThink  (Section F.4.4). 

F.4.1 About Becoming a Competent Communicator 
In general, the field of Communication Studies has given considerable thought to the qualities of 
a competent communicator. Even though there are many lively debates about this topic, most 
scholars accept the fundamental assumption that competent communicators effectively manage 
three goals: (1) to present a competent and credible image of self, (2) to escalate, maintain, or 
terminate relationships, and (3) to accomplish instrumental tasks [53]. The research about group 
communication and inter-disciplinary communication indicates that sole focus on the third goal, 
ignoring the other two goals, increases the hazard space and prevents organizations from 
developing collective mindfulness. Thus, the assumption about competence communicators 
managing these three goals pervades the subsequent discussions. 

One commonly referenced model of communication competence identifies six factors of 
communication competence, measurable with a survey [53]:  

1. Ability to adapt communication to the context.  

2. Ability to stay cognitively involved in the conversation and to demonstrate involvement with 
appropriate verbal and non-verbal cues.  

3. Ability to manage a conversation effectively through turn-taking, questioning, intonation, 
topic shifts, extensions etc.  

4. Ability to understand a person’s perspective and emotions.   

5. Ability to achieve the goal of the conversation.  

6. Ability to uphold social norms and expectations for what counts as appropriate for a given 
situation.  

F.4.2 Participatory Communication Climate  
A participatory communication climate at an organization contributes to the organization’s ability 
to follow the five HRO principles and develop collective mindfulness. There are four 
characteristics of participatory communication climate that contribute to collective mindfulness: 
(1) that individuals have voice to express ideas and concerns, (2) that the organization has an 
open communication climate, (3) that individuals have easy access to relevant information, and 
(4) individuals engage in continuous and ongoing learning. These characteristics of participatory 
communication climate are measured with a survey published in [30]. 

F.4.3 Collective Communication Competence and Diversity 
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Communication among individuals from various professional and disciplinary backgrounds has 
the potential to increase intellectual diversity and this is a factor that contributes to collective 
mindfulness [30], [46]-[47]. Unfortunately, interdisciplinary communication is also challenging.  

In particular, the following communication activities are a contributory hazard because they limit 
organizations’ ability to develop inter-disciplinary competence:  

1. Expressions of negative humor and sarcasm,  
2. Debating with team members about whose expertise is more important and jockeying for 

control and power,  
3. Expressing boredom through verbal and nonverbal messages [49].  

Some of the items may seem as though they are addressing organizational minutiae; however, 
it is worth examining these behaviors, because, if it is too frequent, these behaviors limit an 
organization’s ability to seek and use intellectual diversity for recognizing hazards.  

Teams can increase intellectual diversity by developing collective communication competence 
of interdisciplinary group communication. The following behaviors increase collective 
communication competence [49]:  

1. Building trusting relationships.  

2. Reflectively talking about the task when members spend time coordinating their 
understanding of what to do (this is related to Steps #1 and #2 of group conversational 
quality in Section F.4.4).  

3. Negotiating meaning by discussing different uses of language that arise from disciplinary 
and professional differences (this would be especially important as nuclear engineers 
collaborate with software engineers).  

4. Demonstrating presence through active listening behaviors.  

5. Informal communication, such as shared humor, that builds positive relationships and sense 
of shared meaning.  

Through these behaviors, individuals can meet all three goals that are related to communication 
competence (see Section F.4.1). 

F.4.4 Conversation Quality and Deference to Expertise 
Groupthink is an organizational phenomenon that leads to poor quality decisions and increases 
the hazard space [61]. Groupthink occurs when group members feel a strong sense of 
cohesiveness.  

F.4.4.1 Characteristics of GroupThink 
Six characteristics of groupthink have been identified as follows [48], [61]:  

1. Critical thinking is not encouraged or rewarded.  
2. Members of the group are so cohesive that they believe they can do no wrong.  
3. Members are too focused on justifying their own actions.  
4. Members often believe that they have reached a true consensus.  
5. Members are too concerned with reinforcing the leader’s beliefs and attitudes.   

Groupthink is a contributory hazard because it limits the organization’s ability to develop 
collective mindfulness. In the context of hazard analysis of digital safety systems, it can diminish 
the organization’s ability to be deferent to expertise across the many relevant contexts.  
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F.4.4.2 Countermeasures to prevent GroupThink 
In order to counter the possibility of groupthink, groups can develop quality conversations that 
lead to high quality decisions (or in the context of RIL-1101, high quality hazard analysis of 
digital instrumentation and controls).  

Five conversational acts152 that can improve conversational quality for hazard analysis have 
been identified [62]-[64]:  

1. Carefully gather information to identify a hazard; analyze the information in a way that 
results in a clearly defined hazard. 

2. Set criteria for the quality of the decision about this hazard; examples:  

2.1. Explicit articulation of premises and assumptions [67] 

2.2. Preventing diffusion of accountability in the organization (see Section F.2) 

2.3. Group conversational quality can be measured using the Competent Group 
Communicator Scale [48]. 

3. Identify factors to reduce the hazard space; seek a range of constraint alternatives. 

4. Critically evaluate the identified hazard (act 1), and the alternatives to reduce the hazard 
space (act 3). 

5. Select the best course of action to avoid, eliminate or otherwise control the hazard; remain 
open to new information; be willing to revise as needed.  

F.5 Collective mindfulness and competence 
A survey measure of collective mindfulness is in [4], [30]. 

F.6 Glossary for Appendix F 
Accountability 
The quality or state of being accountable (responsible). 

Cultivate 
Develop (improve) a pattern of behavior. 

Cognitive process 
The performance of some composite cognitive activity; an operation that affects mental 
contents. 

Collective mindfulness 
A characteristic of an organization of having cognition, the collective mindset, necessary to 
detect and understand unanticipated conditions153 and for recovery before they lead to harm. 

                                                 
152 These five conversational acts are modified to adjust to the context of hazard analysis. In the research, 
the five acts contribute to a high quality decision: (1) define the problem, (2) set criteria for a solution, (3) 
propose possible solutions, (4) critically evaluate proposals, (5) select the best proposal. 
153 In the context of RIL-1101, these are mapped into “(contributory) hazards.” 

http://www.merriam-webster.com/dictionary/accountable
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Note: Awareness is more than simply an issue of “the way in which scarce attention is allocated.” Mindfulness is as 
much about the quality of attention as it is about the conservation of attention. It is as much about what people do with 
what they notice as it is about the activity of noticing itself. Mindfulness involves interpretive work directed at weak 
signals, differentiation of received wisdom, and reframing, all of which can enlarge what is known about what was 
noticed. It is the enlarged set of possibilities that suggests unexpected deviation154 that needs to be corrected and new 
sources of ignorance that become new imperatives for noticing. 

Complex; complexity 
Note: See in Appendix A 

High Reliability Organization (HRO)  
Organization that operates (works with) hazardous (hazard-contributing) technologies without 
leading to catastrophe (loss of safety). 

Organizational culture 
Deeply rooted assumptions about human nature, human activities, and social relationship 
shared by members of an organization and their expression in values, behavioral patterns, and 
artifacts found within the organization. 
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Appendix G: Example case studies 
These cases studies illustrate how much can be learned from a single event to prevent or avoid 
a broader range of mishaps. When a specific mishap is examined for its causes (contributory 
hazards), pre-existing knowledge of cause-effect relationships can be used as the basis for 
generalizing from the specific contributory occurrences to more general contributory hazards. 

The concept of generalization has been used in a systems engineering process, where a set of 
scenarios are used (in addition to general requirements) to imply and represent many similar 
situations, conditions, and cases; these scenarios drive the engineering of the system. The 
resulting system not only satisfies the requirements explicit in the scenarios, but also many 
other implied scenarios. 

Experts [85] in such generalization have identified two types of reasoning processes, abduction 
and induction.  

G.1 Ft Calhoun Event 
Following is an excerpt from the “Ft Calhoun Oversight Increase Dec 13 announcement” [86] 
and the Fort Calhoun Station Inspection Report [87]. 

The plant was shut down on April 9 for a refueling outage. The outage was extended due to 
flooding along the Missouri River. Then an electrical fire on June 7 led to the declaration of an 
“Alert” and caused further restart complications.  

The fire had resulted in the loss of spent fuel pool cooling capability for a brief time and caused 
significant unexpected system interactions. 

The Alert caused by the (electrical circuit) breaker fire resulted from inadequate design or 
installation of electrical components. Deficiencies were noted with environmental qualification 
analyses for plant structures, systems and components. These analyses are relied on to 
demonstrate that key systems will be able to perform their safety functions under a variety of 
challenging accident conditions like earthquakes, loss of coolant accidents, high radiation fields, 
seismic events, etc. 

Figure 13 illustrates the causality relationships extracted from the textual information above. It 
illustrates a generalization from the specific occurrence in Ft Calhoun. In this example, the 
deficiency in the component design was not caught in the V&V activities. However, if we survey 
known causes of “deficient designs”, the leading cause is “deficient requirements.” Experience 
in software-reliant systems for many application domains has consistently shown this to be the 
leading cause. In the context of RIL-1101, “deficient requirements” implies inadequate HA (e.g., 
inadequate understanding of contributory hazards; inadequate formulation of requirements to 
avoid or prevent such contributory hazards, and inadequate validation of the HA and the 
resulting requirements). 
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Figure 13: Example from event on June 7, 2011 at Ft Calhoun NPP 
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“The power of generalizing ideas, of drawing comprehensive conclusions from individual 
observations, is the only acquirement, for an immortal being, that really deserves the name of 
knowledge. “Mary Wollstonecraft  (1759–1797), British feminist. A Vindication of the Rights of 
Woman, ch. 4 (1792).” [88] 
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Appendix H: Example checklist of NPP modes 
1. On Power 

1.1. Full allowable power 
1.2. Reduced power (including zero power) 
1.3. Raising power or starting up 
1.4. Reducing power 

2. Hot Shutdown (reactor sub-critical) 
2.1. Hot standby (coolant at normal operating temperature) 
2.2. Hot shutdown (coolant below normal operating temperature) 

3. Cold Shutdown (reactor subcritical and coolant temperature < 93 °C) 
3.1. Cold shutdown with closed reactor vessel 
3.2. Refueling or open vessel (for maintenance) 

3.2.1. Refueling or open vessel – all or some fuel inside the core 
3.2.2. Refueling or open vessel – all fuel outside the core 

3.3. Mid-loop operation (PWR) 
4. Construction 
5. Preoperational 
6. Startup test 
7. Commissioning 
8. Testing or maintenance being performed 

8.1. Setpoint adjustment 
8.2. Instrument calibration 
8.3. Change (switching) of calibration parameters (in [21] CP 2.1.3.2.5) 

9. Decommissioning  
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Appendix I: EVALUATION OF TIMING ANALYSIS 
Author: Professor Dr. John Stankovic, University of Virginia 

http://www.cs.virginia.edu/people/faculty/stankovic.html  
Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission 

This appendix summarizes the state of the art in timing analysis. Timing analysis is used in 
design to evaluate its suitability to support timing and related constraints. Timing is re-analyzed 
to confirm satisfaction of these constraints after implementation using actual execution times 
and delays. 

A design description should include the approach being taken to guarantee timing behavior with 
accompanying timing schedules and resource assignments that logically guarantee timing. An 
evaluator can expect to see different approaches. However, it is very unlikely that there exists 
an exact case study or exact match between the principles described below and the system 
under evaluation. It will be necessary for the evaluator to apply significant knowledge and 
expertise in real-time theory and practice. 

In performing timing analysis there are at least four overarching approaches that could be 
presented by the developer. First (Sections I.1 and I.2) is a complete and explicit layout of all 
tasks on time lines that represent a deterministic execution time for everything and in such a 
manner as to meet all timing, ordering, and resource constraints. This would include identifying 
the processing elements (CPUs, FPGAs, etc.), the assignment of tasks to each processing 
element, and message slots on busses and their purpose. Another proposed approach  might 
be the use of fixed priority scheduling. This means that the operating system on each 
processing element runs tasks according to fixed priorities as assigned by the developers to 
guarantee timing. This approach should be supported by fixed priority mathematical analysis 
(Section I.3.1). Another approach may be to use dynamic priorities and apply its associated 
analysis (Section I.3.2). This approach is less deterministic, but has advantages in many 
situations and can be used as an off-line analysis to guarantee timing. A fourth approach is use 
of FPGAs (Section I.4). In all the design approaches, realistic, but estimated times should be 
identified. Accounting for redundancy and fault tolerance techniques in the design must be 
included. Consider each of these in more detail. 

I.1 Timing analysis by hand 
The developer, using a by-hand approach, may present a set of time lines with all tasks 
assigned deterministically. How they created these time lines (possibly by hand) may not be 
known and is generally very complex. For the evaluator, once the deterministic time lines are 
given, it is much simpler to check (one by one) if the set of assignments and time lines meets all 
the timing, ordering, and resource constraints. This approach is sometimes used for small and 
simple subsystems. It is not recommended for complex designs since any change at all results 
in a complete re-creation of the timelines and allocations which is error-prone and costly. 

I.2 Timing analysis by a program 
In this approach a developer may create the deterministic time lines and assignments using 
some algorithm or heuristics implemented as a computer program. The evaluator would analyze 
the resultant schedules as in Section I.1. This approach is more desirable than in Section I.1, 
since changes can be more easily handled rather than having to recreate schedules and time 
lines by hand. Cyclic schedulers and time triggered approaches [1] are examples of this 
approach. 

http://www.cs.virginia.edu/people/faculty/stankovic.html
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I.3 Mathematical Analysis of timing 
Many analysis techniques might be applied to the design. Two of the most common are fixed 
and dynamic priorities. These both assume that there is an underlying operating system (OS) 
that executes tasks based on priority.  

I.3.1 Mathematical Analysis of timing with fixed priorities 

Rate Monotonic (RM) analysis [2] is a set of techniques to assign fixed priorities and perform an 
associated timing guarantee analysis. It focuses on periodic tasks, but can be extended to 
address both periodic and aperiodic  tasks. RM analysis can incorporate the complexities 
discussed below in section I.1. As an example, for a large number of periodic tasks if the sum of 
the cpu utilizations of these tasks is below 69% then it is guaranteed that all deadlines will be 
met. This is true even though there are preemptions. RM analysis assumes that deadlines equal 
periods. If deadlines are less than periods then a different set of analysis is required, called 
Deadline Monotonic (DM) [2]. RM has been used successfully in some avionics systems and 
control systems in automobiles. 

I.3.2 Mathematical Analysis of timing with dynamic priorities 

Dynamic priorities normally refer to the OS scheduler choosing the next task to execute based 
on current task priorities which can change at runtime. These solutions are usually based on the 
earliest deadline first (EDF) algorithm. However, if all tasks and their requirements are known at 
design and implementation time, then EDF and its analysis [3] can be applied off-line, and 
timing guarantees are possible. In this case the results are very similar to the fixed priority 
approach except the OS is running an EDF scheduler instead of a fixed priority scheduler. An 
evaluator may also see EDF as a basis for the By-a-Program approach mentioned above.   

I.4 FPGAs 
Various functions in the system may be implemented in hardware (today typically via an FPGA) 
[5]. Then execution speed of the function can be greater than on a CPU. Functions implemented 
on a FPGA can be considered tasks in the overall timing analysis and subject to the analysis 
techniques155 described in this appendix. Of course, issues such as I/O, ordering, 
synchronization etc. must all be considered.  

I.5 Practical considerations in applying mathematical analysis 
Basic scheduling theory is often presented with many simplifying assumptions. Fortunately, 
many practical issues can be addressed with extensions to the basic theory for analysis.  

I.5.1 Interrupts 
Sometimes interrupts may be necessary. By careful design it is possible to limit the maximum 
number of interrupts. The time it takes to handle each interrupt can be bounded. Consequently, 
the basic timing analysis can account for the worst case delays for task executions due to 
interrupts. See Ch. 5 in [2]. 

I.5.2 Resources 

                                                 
155 National Instruments (LabView development system together with the Real-Time Module and and 
FPGA module) is an example of a source of tools currently available for use in common practice. 
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Tasks often require resources beyond the cpu, e.g., access to a data structure or bus. Tasks 
can contend for these resources. In addition, to guaranteeing no deadlock it is necessary to 
determine the worst case blocking delay for any exclusively shared resource. In RM analysis 
this is handled by the priority ceiling version of RM - see pages 5-47 to 5-60 in [2]. For EDF see 
Ch 7 in [3]. 

I.5.3 Ordering 
In many systems a set of tasks must execute in a fixed order. For example, the sensor must first 
sample, AD conversion must execute, the result then sent to a processor, a task executes to 
process the data, this result is then converted to an actuator control, and possibly also sent to a 
display. Classical scheduling theory has many results for job shop scheduling in this area. 
Ordering constraints can also be imposed on task sets when using cyclic, time triggered, RM or 
EDF based approaches. See pages 3-10 to 3-11 in  [2] and Ch 7 in [3]. 

I.5.4 I/O  
Any inputs for tasks must be ready when an instance of a task is “released” for execution. This 
is normally analyzed as precedence constraints. If the task produces an output it must be made 
clear when that output happens, e.g., only at the end of execution of the tasks or possibly at any 
point within the execution of the task. Controlling jitter is often necessary for I/O. See Ch. 6 in 
[2]. 

I.5.5 Distributed Systems 
Communication between distributed parts of a system introduces delays. Such delays can be 
deterministic if bus slots are defined and allocated. Redundant slots can be allocated for fault 
tolerance. The time triggered approach is a well-known way to do this [1]. These 
communications delays can also be addressed by RM (Ch. 6 in [2]). 

I.6 Caveats and Things to Watch Out For 
Timing design and analysis is very difficult and fraught with hazards. A slight change in 
assumptions can make a major difference in the accuracy of the analysis. Following are some 
examples of common misunderstandings. 

I.6.1 Task semantics 
Most periodic task analysis assumes that the semantics of a task period means that a task 
executes once per period P. This does NOT guarantee a minimum or a fixed time between two 
instances of a periodic task. For example, with this semantics two executions of a task could run 
back-to-back without any time interval between them.  

I.6.2 Non-determinism introduced by hardware 
Worst case execution times must be determined for tasks. This is difficult to determine and often 
just measured which is not recommended. Measurements can be way off if non-deterministic 
features on hardware, such as caching, branch prediction, virtual memory, or multi-core 
contention, are involved. 

I.6.3 The overhead of the OS 
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Logical analysis may not account for the time it takes to select and switch between tasks.  This 
would be incorrect. See p. 392-395 in [4]. 

I.6.4 Richard’s Anomalies 
Scheduling can lead to hazardous conditions subtly. For example, if a set of time lines is 
analyzed as correct and then the developer decides to use faster processors (maybe with idea 
to give more slack time thereby increasing a safety margin), then the previous schedules which 
worked (i.e., all deadlines met) may now miss deadlines even though individual tasks are 
executing faster. There are 4 variations of these anomalies (pages 42-51 in  [4]).  

I.6.5 Overloads 
Many hard real-time systems assume that all timing is guaranteed so there is no such thing as 
an overload. Safety margins can be built into task execution times and resource requirements to 
make overload even less likely. However, understanding the consequences of an overload, 
even if not expected, is important. Will the system fail safe? Could there be a catastrophic 
cascade of deadline misses due to the overload? See Chapter 9 in [4]. 

I.7 Integrating timing analysis in engineering 
See [6] for an approach to integrate timing analysis in model-based engineering. 
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Appendix J: ASSUMPTIONS 
Author: Professor Dr. John Stankovic, University of Virginia 
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Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission 

In reasoning that is part of safety analysis, an assumption is a premise that is not yet validated. 
Explicit assumptions are documented.  Implicit assumptions are not documented, because they 
are not known or understood or were lost over time. Assumptions, especially implicit 
assumptions, that turn out to be invalid (not true) are the root cause of many system failures and 
a contributor to hazards in many other cases.  An initially valid assumption may become invalid 
over time. It is also common that combinations of assumptions may cause failure or contribute 
to hazards. For example, a component (hardware or software) may get reused without full 
awareness and consideration of assumptions that invalidate its fitness for reuse in a different 
context. Assumptions occur in every phase of the system development lifecycle (e.g.:  
requirements; design and analysis; implementation; testing). Overall, it is necessary to 
document, manage and assess the impact of assumptions throughout the life cycle, particularly 
if some critical property of the system, such as SAFETY, has to be assured. 

Assumptions often affect timing analysis - see Appendix I. Assumptions also affect 
dependencies - see Appendix K. 

J.1 Systematized consideration of assumptions – state of the art 
There is a lack of accepted approaches towards systematic assumption declaration, 
management, and assessment.  Statement of assumptions may be classified in three ways: 

1. Formal-like languages: For example, in AADL [1] an assumption can be stated with an 
assumes keyword and some written in predicate or temporal logic. Then automatic 
assumption matching checks can be run.    

2. Semi-Formal: For example, in XML, an assumption may be may be categorized by type 
(e.g., see Table 27) and incorporated into an assumption management system  [2], as 
shown in Figure 14. 

3. Informal: Used mostly in current practice, an assumption is stated in a natural language 
such as English. Because it is subject to misinterpretation, which can contribute to hazards, 
it is not adequate and not recommended for use in engineering a very critical system. 

Assumptions can also be categorized as static and dynamic assumptions and indicate a level of 
criticality. These notions should be part of the assumption descriptions.  

 

<assumption> 
 <type> 

       Control 
</type> 
 <description> 

Statement of control assumption in a previously declared language. 
 </description> 

   </assumption>  
 

Figure 14: Example of semi-formal statement of an assumption 

http://www.cs.virginia.edu/people/faculty/stankovic.html
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Table 27 includes the different types of assumptions which could be stated in XML, with brief 
associated examples. 

Table 27: Different types of assumptions which could be stated in XML 

Type of Assumption Example of an informal statement of an assumption 

Management Person X is responsible for a particular task. 
Environment (of system) Back-up power is available 24x7. 
Software Component 
Design (Decisions)  

Minimum amount of data required for a component to make a decision is <…>. 

System Software Background processing runs at infrequently scheduled times. 
Hardware Caches are not to be used. 
Timing Some declared minimum time must elapse between two consecutive executions of a 

task. 
Control Only one module must control a particular actuator. 
Data Data set X must be replicated at physically distinct memories. 
Semantics of Application Property X exists for a given component when executed, e.g., the accuracy of a signal 

processing module when assessing critical condition of the plant. 
Faults A particular fault will not occur more than x times in interval y. 
Security Communication X is encrypted. 

When an assumption is stated in this form, a management system can analyze it for potential 
problems (e.g., contributory hazards) and updates can occur over time. For example, the 
analysis may find that across the entire set of assumptions there are two or more assumptions 
that cannot simultaneously be true. It is also possible to match assumptions among composed 
components. Some software development kits, such as Eclipse [3], integrate environment, 
assumptions, architecture and source code in the same tool. 

A complex system may entail an enormous number of assumptions of all types (Table 27) and 
for various purposes (Table 28).  
Table 28: Examples of assumptions for different purposes 
Context of Assumption Example of assumption 
Timing All worst case execution times are known. 
Timing All tasks always meet their deadlines.  

(What is the impact of a task missing its deadline?) 
Timing There is enough memory assigned to each task. 
Timing No hardware will be changed; etc. 
Fault tolerance On power failure a battery backup is available and it is functional 
Fault tolerance More than “n” simultaneous failures do not occur. 
Security A particular module will not be attacked. 
Security An encryption key won’t be compromised 
Control Only one module controls a particular actuator. 
Control Data sent to control algorithm is correct and in-time. 

J.2 Monitoring an assumption at run time 
Since underlying assumptions have been the cause of many failures and can contribute to 
hazards, assumption-aware work products of engineering are valuable – indeed, necessary, in 
complex critical systems (e.g., for which the SAFETY property has to be assured).  If an 
assumption can change over time, runtime monitoring for such change may be considered.  
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Does the presented design have an assumption that can change over time? If so, does the 
design include run time monitoring of the change in the assumption? 

J.3 Statement of assumptions within code 
Sometimes, assumptions are also written into source code (with a keyword such as assumes), 
so that source code can be scanned by programs to collect and analyze all the assumptions. 
This technique often deteriorates over time as code is updated and assumptions are not.  

J.4 Statement of assumptions within models 
Assumptions can also be added to graphic representations of work products, using tools based 
on languages such as SysML [4]. This tends to be imprecise and difficult to maintain. Academic 
tools such as Ptolemy have some support for specifying assumptions [5]. 

J.5 References for Appendix J 
[1] P. Feiler, D. Cluch, J. Hudak, The Architecture, Analysis and Design Language (AADL), An 

Introduction, CMU/SEI-2006-TN-011. 

[2] G. Lewis, T. Mahatham, and L. Wrage, Assumptions Management in Software 
Development, Technical Note, CMU/SEI-2004-TN-021, August 2004. 

[3] Eclipse http://www.eclipse.org/home/index.php  

[4] SysML:    http://www.sysml.org/  

[5] Ptolemy:   http://ptolemy.eecs.berkeley.edu/  
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Appendix K: DEPENDENCY 
Authors:  

Prof. John Stankovic, University of Virginia http://www.cs.virginia.edu/people/faculty/stankovic.html  

Prof. Manfred Broy, Technische Universität München http://www4.in.tum.de/~broy/ 

Prof. John McDermid, University of York http://www-users.cs.york.ac.uk/~jam/  

Integrative editing by Sushil Birla, Senior Technical Advisor for I&C, U.S. Nuclea Regulatory Commission 

K.1 Purpose and Scope 
This appendix explains the term, dependency, as used in Section 2.7.6. 

In software it is often noted that if module A uses module B, then module A depends on module 
B. However, dependencies are much more complicated than a simple uses relation. This 
appendix provides a comprehensive understanding of these complications.  

A dependency between two or more system elements may exist or occur through their structure, 
their behaviors, or their values, in the form of some cause-effect relationship. 

There exist a number of dependencies within developed systems, between their elements and 
their constituents as well as in their descriptions as included in their work products [1]. 

K.2 Safety significance of dependency 
A safety system in an NPP is an independent layer of defense. An independent layer of defense 
protects against the unknowns and uncertainties in the other layers of defense. An obscure 
dependency can undermine the intended defense strategy. 

Dependencies on common sources of defects or deficiencies can render homogeneous 
redundancy ineffective, because the same defect can repeat in each redundant element; for 
example: 

• Defect or deficiency156 in a requirement. 
• Defect or deficiency in implementation of the application software. 
• Defect or deficiency in implementation or configuration of the system software. 

Dependencies can propagate the effect of a deficiency to independent and functionally different 
units; consider the following cases: 

• Dependency on common internal information; for example: 
o Year 2000 “bug.” 
o Count of cycles since the last reset. 

• Dependency on conditions, external to the units; for example: 
o Usage of resources dependent upon process transients. 

Section 3.4.2 Item 3 refers to the concern of compromise of redundancy through a dependency.  
The effect of these dependencies should be analyzed to prove that the safety function is not 
degraded. 

                                                 
156 Issue: If requirements are deficient, the terms “failure” and “defect” are not applicable; the CCF notion, 
applied to a specified system, does not serve well; failure analysis and defect analysis do not serve as 
adequate hazard analysis.  

http://www.cs.virginia.edu/people/faculty/stankovic.html
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K.3 Types of Dependency 
Any factor on which an identified hazard depends (or by which it is influenced) is a contributory 
hazard. Dependency may be through many kinds of coupling157; for example: 

1. Function. 
2. Control flow. 
3. Data; information. 
4. Sharing or constraint of resources. 

4.1. Explicit preference-order. 
5. Conflicting goals or losses of concern. 
6. States or conditions in the environment.  

6.1. Controlled processes. 
6.2. Supporting physical processes. 

7. Fault 
8. Constraints 
9. Assumptions 
10. Concept. 
11. Some unintended, unrecognized form of coupling.  

K.4 Examples of dependencies  
Dependencies exist within and across hardware and software components and also result from 
the interaction with the physical world.  To organize the ideas of dependencies we first list and 
give a few examples of those dependencies that arise from the hardware and the physical 
world.   

1. Sensors: software signal processing and decision making algorithms are dependent on the 
properties of sensors such as range, accuracy, repeatability, sensitivity, resolution, 
overshoot, drift, and power as well as the numbers and placement (location) of the sensors. 

2. Actuators: power needed to run the actuator; accuracy of applying command signal 

3. CPU/Memories: speed of cpu; implementation features such as caches, branch prediction; 
size of memory; type and location of memories on busses; power requirements 

4. FPGAs: speed; power; timing; availability of inputs 

5. Busses: communication between distributed devices/software depend on the bus speed and 
access protocols; may also depend on a hierarchy of busses. 

6. I/O devices: speeds; power; location; read and write techniques 

7. Physical properties: sizes of sensors, actuators, computing; I/O; temperatures produced by 
devices; reliability of devices; fault models; will system degrade over time without 
renewing/maintenance (a form of entropy) 

                                                 
157 In addition to the factors directly in the causal paths, hazards can also be contributed from side effects 
such as interferences across activities and resources. 
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8. Time: guaranteeing deadlines depends on the time requirements of real world phenomena, 
the speed of hardware, the software processing required, scheduling algorithms; 
accumulated delays 

9. Location: where sensors, actuators, displays are placed 

10. Environmental: external conditions such as earthquakes, hurricanes, power outages; 
humidity;  fire 

11. Control: accuracy of models upon which control algorithms were created; availability or max 
delay of inputs to controller 

12. Chain of events: collection or order of sets of events  

13. Humans: reaction time; awareness; expertise 

Examples of dependencies that arise primarily in software include the following: 

1. Numbers and types of parameters: This is straightforward to check and often given in 
Interface Definition Languages (IDLs). 

2. Uses relationship: A call graph (usually automatically generated) can identify simple uses 
relationships. 

3. Runtime environment: The OS, its version, and particular settings (configurations) and 
algorithms being used constitute the runtime environment. It is necessary to ensure that 
there are not unexpected modules being run, e.g., for system monitoring or periodic cleanup 
modules unless required and accounted for.  

4. Resources: amount of cpu time, memory, bus bandwidth  

5. Name: components assumed named consistently 

6. Data: location, synchronization, availability, redundancy 

7. Ordering: some sets of components must run in a strict or partial order 

8. Race Conditions: if components can execute in different orders the result may be a race 
condition. 

The following examples demonstrate how tight specifications, assumptions, and constraints 
interrelate logically and may lead to implicit dependencies that can be discovered by analysis of 
explicitly documented dependencies. 

K.4.1 Example of a data dependency 

For instance, two state attributes, A and B, for data values in a system are in a dependency if 
given the value of A, the value of B is affected by the value of A (e.g.: fixed to a specific value; 
bounded within a specific range).  

K.4.2 Example of a timing dependency 

Other examples are timings of events or causal dependencies between events such as shown 
in the following simple example 

• event A: “temperature of water gets too high while valve is closed”;  
• event B: “valve opens”;  
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• dependency in the system: “whenever event A happens then event B happens within x 
milliseconds”.  

K.4.3 Example of a dependency on a hardware function 
A function or information in software can be dependent on a function implemented in hardware. 
Example: 

 “sensor 1 data available” depends_on “power supply X failure” 

 “sensor 2 data available” depends_on “power supply X failure” 

which indicates a common cause failure. Such a dependency is different from direct 
dependency.  

A common cause dependency between events A and B can be denoted as follows: 

 common_cause A, B 

if there is an event C where the condition 

 A depends_on C     
and   

B depends_on C 

holds. 

K.4.4 Example of a resource dependency 
These different types of dependencies may interact. For instance, a resource dependency may 
cause a functional dependency. If there are two functions, A and B, that as intended to be 
independent but use the same resources, unintentionally become dependent. If function A may 
compromise the shared resource in a certain situation such that the function B is no longer 
available, this is an unwanted (and unspecified) dependency from A to B.This example 
illustrates that the hazard analysis of systems should consider the logical relationships between 
dependencies and should consider rules to deduce further dependencies from explicitly 
documented ones. 

K.4.5 Dependency through assumptions and constraints  
There are constraints on interactions that cause dependencies: 

• Assumptions about the environment: properties of the environment that are represented 
as assumptions (example: “The water temperature cannot change by more than 10 
degrees with 10 milliseconds”).  

• Properties of system elements: interact with assumptions (example: “Whenever the 
temperature changes by more than 1 degree the sensor issues a signal”).  

• Constraints on interactions (example: “There is a delay of at least 1 millisecond between 
two signals issued by the temperature sensor”). 

Assumptions are often not given to the developer as part of the specification and are not direct 
relationships between components of the system. Note that the overall system depends on 
assumptions being valid so there are dependencies related to assumptions, but they are treated 
separately (see Appendix J: ASSUMPTIONS).  
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K.4.6 Example of logical dependency between logical entities  

Let us consider examples of system properties expressed by logical entities: 

(P1) “The temperature changes within 1 millisecond by less than 1 degree.” 

(P2) “The temperature sensor updates the variable that stores the measured temperature 
every 10 milliseconds.” 

(P3) “The variable that stores the measured temperature holds a value that deviates at most by 
10 degrees from the actual temperature.” 

These logical entities may be contained in different work products or in one work product at 
different positions. 

(P3) expresses a system dependency. 

(P3) is a logical consequence of (P1) and (P2). This is an example of a dependency between 
logical entities.  

If the property “The water is too hot” is a hazard (or a contributing hazard) and if its mitigation 
depends on the preciseness of the stored measured temperature, then the dependency “(P3) is 
a logical consequence of (P1) and (P2)” is of relevance for the hazard analysis. If (P1) or (P2) are 
changed, then the conclusion of the hazard analysis may no longer be valid.  

Specific logical dependencies may relate logical entities formulated at different levels of 
abstraction. Assume that a sensor sends an alarm signal S1 if the water temperature gets too 
hot. Then the dependency between event “signal S1 sent” and the event “water temperature too 
hot” is only understandable by the additional information “signal S1 indicates water too hot”. This 
way we get a relationship between the technical information “signal S1 sent” and the domain 
specific event “water temperature too hot”. 

For dependencies between system properties the dependency model basically captures logical 
dependencies between logical statements (in terms of logical entities). The network of logical 
dependencies is basically addressing logical implication. Although logical implication seems to 
be a rather straightforward concept, as well known given a number of logical propositions 
(documented by logical entities), their implication relationships can be very sophisticated by 
combining them in applying deduction rules leading to proof trees, which represent sub-
networks of the networks of logical dependencies (see [1]). 

K.5 Dependencies can network 

For a system of the kind in RIL-1101 focus, dependencies are not simple chains or trees, but a 
network (also known as directed graph or digraph [64]); for example: 

• The same factor may recur in many places in the network (i.e., common causes). 
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• There are feedback paths; the dependency structure is a directed cyclic graph. It is a 
well-known generic control structure, for which well-known analysis techniques exist. It 
can be applied to a safety-related system in its concept phase (Section 3.4) or to its 
element (Sections 3.7; 3.8-3.9). It can also be applied to the technical processes 
(Section 3.3), for developing a safety related system or its element. It can also be 
applied to the organizational processes (Section 3.2) that influence the development 
processes.  

K.6 Dependencies can propagate through faults 
Also for faults in systems there exist many dependencies. Hazard analysis should include the 
analysis of the dependencies across faults to find whether a fault can propagate to degrade a 
safety function. This requires (see [3]158) a fault propagation specification and component fault 
behavior specification, an explicit specification of fault types propagated,  and an explicit 
specification of system fault states. 

K.7 Unrecognized dependency 
Missing, wrong, unwanted, or misunderstood dependencies may contribute to a hazard. If A can 
have an unwanted effect on B, then B is in some sense dependent on A. In other words, B is not 
independent of A. Dependence of this type motivated RIL-1101, in which it is characterized as 
Interference. Furthermore, in such cases (of unwanted interactions), the effect on B may not be 
determinable. For example, consider  

• effect of resource sharing 

• effect of a memory leak. 

There are so many sources of unwanted dependencies that it is easy159 to miss one. As soon as 
one is discovered or suspected, it should be documented. Then, known methods can be applied 
to perform the analysis. 

Unrecognized dependencies are defects in hazard analysis and may lead to degradation of a 
safety function. 

For complicated dependencies many observations are needed to uncover dependency [2]. 

K.8 Expressing dependencies 
System dependencies are general relations between  

• system functions 
• system elements 
• platform (infrastructural) services 
• system events, messages, and signals 
• system data 
• system states 

                                                 
158 This reference uses the term “error” which is mapped into the term “fault” in RIL-1101. 
159 In current practice 



 DRAFT  September 2014 
Rev. 4 

 

DRAFT RIL-1101 Page 150 
 

• system timing 

This documentation can be made very explicit (example: proposition P1: “event A leads to event 
B”; proposition P2: “event B leads to event C”) or implicit where a dependency can be concluded 
from explicit stated dependencies (example: from the two propositions P1 and P2 we can 
conclude proposition P3: “event A leads to event C”). If all three propositions P1, P2, and P3 are 
explicitly included in work products in logical entities, say E1, E2, and E3 resp., then we get an 
instance of dependencies between logical entities of work products. The contents of E1 and E2 
imply proposition P3 being part of the content of E3. 

The following predicate expresses dependencies in a formalised way for events A and B in a 
system160: 
 A depends_on B 

This proposition expresses that there is some causal relationship between A and B. Actually 
there are many instances for such a relationship: 

• A cannot happen before B has happened; example: consider a system which is 
supposed to raise an alarm (event A) as soon as the pressure in a tank gets too high 
and where there is a sensor that measures the pressure and sends the values to the 
alarm manager (event B). 

• A is guaranteed to happen if B has happened; example: consider a system which is 
supposed to raise an alarm (event A) as soon as a the pressure in a tank gets too high 
and where there is a sensor that measures the pressure and sends the values to the 
alarm manager; then the “incorrect pressure too high data measured at sensor” (event 
A) leads to an incorrect alarm (event A). 

• A cannot happen if B has happened; example: consider a system which is supposed to 
raise an alarm (event A) as soon as a the pressure in a tank gets too high and where 
there is a sensor that measures the pressure and sends the values to the alarm 
manager over a communication line; assume that the energy supply for the 
communication line can be interrupted (event B). 

Note that the proposition 

 A depends_on B 

does not require that in every behavior the event A may interfere with B; it means that there is 
some instance of behavior where A does interfere with B. 

Note furthermore that the relationship 

 A depends_on B 

Is not symmetric, in general, and even not transitive. The same holds for its negation 

 A independent_of B 

                                                 
160 This is an example of a formal predicate on dependecies between events. Similar relationships can be 
introduced between data attributes in states or, more generally, rules for dependencies in data and 
control flow and how their dependencies relate. 
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The missing transitivity of the independence relation makes it very difficult to reason about 
independence and freedom from interference. 

The examples show that dependencies between system constituents lead to dependencies 
between logical entities of work products. Since the content of logical entities of work products 
can be understood as logical propositions and predicates, these dependencies can be treated 
as logical relations between propositions or predicates. 

 

System dependencies can be reflected in system models. The models should contain enough 
information to understand dependencies and propagation paths for contributory hazards (see 
Table 22 Note 1. Appendix C.6 suggests how a dependency model can help HA.  

A model captures and describes certain classes of dependencies (such as process 
dependencies) including rules to derive dependencies and to analyze their effects. This does 
not imply that a separate model is needed exclusively for this purpose. A separate model could 
lead to inconsistencies with the primary engineering model. For dealing with dependencies 
within the work product, the primary engineering model of the (work) product should suffice: 
model of requirements; model of architecture; model of detailed design; source code could also 
serve as a “model” of the executable. These models should be expressive enough to capture all 
kinds of dependencies. 

For dependencies within the development process, the primary engineering model of the 
process should suffice. In other words, all factors affecting the product (of the process) should 
be identified in the process model. 

Semantics of the relationships should be explicit. 

K.9 Deriving dependencies 
Note the difference between an implicit dependency, which is not documented explicitly, but can 
be deduced by combination from explicitly documented dependencies, and a dependency that 
is not identified at all - thus, not discoverable through analysis. 

The system behavior can be deduced from the architecture and the specification of the interface 
behavior of its elements, when rules of composition and refinement are followed (see Appendix 
D: REFINEMENT). Similarly, system behavior can also be deduced from some fault condition in 
an element of the system, if the architecture includes the relationships that affect fault 
propagation [4].  

Thus, a well-specified architecture is essential for dependency analysis (see [3][4]).  

K.10 Avoiding unwanted dependency 
Careful explicit specification of constraints and system properties and subsequent analysis 
make hidden dependencies explicit and help to avoid unwanted dependencies and to reason 
about dependencies in hazard analysis. 

K.11 Languages available for modeling dependencies 
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Examples of means that have been used to model161 dependencies include the following: Call 
graphs, IDLs [5], data flow diagrams, and design languages (graphical or not) such as AADL [6] 
and SysML [8]. AADL, with extensions and supporting tools, is in use as a research platform in 
many countries, with ongoing extension activities to support safety evaluation [3].  

 

For Want of a Nail 
For want of a nail the shoe was lost. 

For want of a shoe the horse was lost. 
For want of a horse the rider was lost. 

For want of a rider the message was lost. 
For want of a message the battle was lost. 
For want of a battle the kingdom was lost. 
And all for the want of a horseshoe nail. 

K.12 References for Appendix K 
[1] M. Broy: A Logical Approach to Systems Engineering Artifacts and Traceability: From 

Requirements to Functional and Architectural Views. In:  M. Broy, D. Peled, G. Kalus (eds): 
Engineering Dependable Software Systems, IOS Press 2013, P. 1-48. 

[2] J. L. Pfaltz: Logical implication and causal dependency. Conceptual structures: inspiration 
and application, volume Springer Verlag LNAI, 4068, 145-157. (2006). 

[3] J. Delange, P. Feiler: Supporting Safety Evaluation Process using AADL. Layered 
Assurance Workshop ’2013, New Orleans, USA 

[4] P. Feiler, A. Rugina: Dependability Modeling with the Architecture Analysis & Design 
Language (AADL). CMU/SEI-2007-TN-043, Technical report, Carnegie Mellon Software 
Engineering Institute, July 2007 

[5] http://www.omg.org/gettingstarted/omg_idl.htm 

[6] P. Feiler, D. Cluch, J. Hudak, The Architecture, Analysis and Design Language (AADL), An 
Introduction, CMU/SEI-2006-TN-011. 

[7] S. Si Albir, UML in a Nutshell, O’Reilly, 1998. 
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161 These are not necessarily complete and are only as good as the information recorded in them. 
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