

Data-Driven Adaptive Real-Time (DART) Flow-Field Estimation Using Deployable UAVs

Jesse B. Hoagg, Sean C. C. Bailey, Alexandre Martin, Michael P. Sama, University of Kentucky Award Number: CNS-1932105 Award Date: October 1, 2019

Challenge:

- To produce accurate micrometeorological estimates and to forecast airborne contaminant dispersion in real-time
- Accurate prediction is challenging because of atmospheric turbulence, ground terrain topology, changing wind conditions

Solution:

- DART CPS consists of a computational fluid dynamic (CFD) cyber system and a physical system of autonomous instrumented UAVs
- UAVs obtain sparse physical measurements of the atmospheric flow and contaminant concentrations
- DART algorithm uses sparse physical measurements to continually improve predictive capability of a CFD model

Scientific Impact:

- Project aims to advance several areas that could apply to other CPS:
- -Real-time data-driven model adaption
- -Advances in CFD turbulence modeling
- -Improvements in **UAV-based sensing** and data processing
- -Cyber-feedback formation control for autonomous vehicles

Broader Impact:

- Accurate real-time prediction of airborne contaminant dispersion is critical for planning emergency response
- Fukushima Daiichi disaster and Aliso Canyon natural gas leak
- Other examples: forest fires, oil spills, fracking accidents, train derailments
- Project impacts education (**10 undergrad** and **6 grad students**) and outreach on use of UAVs for a variety of applications (e.g., first responders)
- Data-driven model adaptation can be in other CPS and non-CPS areas (e.g., ID of model parameters from data in less time)