Data-Driven Cyberphysical Systems

Provably correct control in data rich/labels scarce scenarios.
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* Synthesizing non-conservative, provably stabilizing control laws

Leveraging Simulations to Handle Scarce Labels Data-Driven Control & Estimation

Goal: Leverage simulations to obtain spanning data to train supervised fault detection Goal: Design directly from data. Al_ :,:: l
algorithms.  Model-based method is computationally expensive = 7 '\ — 2 =
« QObtaining enough trajectory space spanning data for CPS can be costly or unfeasible and potentially conservative o)l c(2,)}

especially when the data is required to be obtained under abnormal conditions * Existing model free data-driven approaches cannot certify 4«[—» ~~~~~~~ S
* Physics based simulators can generate data cheaply, but require costly tuning stability or performance Lt
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Proposed Approach: Domain adaptation. Proposed Approach:
« (Generate a large simulation dataset (source) and collect a smaller set of (labeled) real a. Lyapunov Based DD Control

data (target) which has limited number of faulty data points (label imbalance) « Define the consistency set S as the set of all plants compatible with existing priors and
* Find a transformation between domains that optimizes classification accuracy experimental data
» Use simulator adapted data for classification and controller design « Parametrize the set of all controllers the can stabilize S in terms of a polyhedral Lyapunov

function V(x) = ||Vx||x
* Find V by solving a polynomial optimization
b. Hankel Based DD Estimation
« Build Hankel matrix with experimental data
* Minimize the rank of Hankel matrix to find the set of the noise that could explain the data
« Worst-case optimal estimator is the Chebyshev center Ui, = Ui + %(nma,x + Nonin)

Technical Details:

a. SVM Based Fault Detector: Joint training that aligns covariances via linear transformation
and minimizes classification error, solvable via iterative algorithm
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Adaptation i3 Technical Details:
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b. SoS Based Fault Detector

« Use empirical statistical information to build SoS polynomials that approximate the support b. Line Search + HDC + Moments

Hybrid Decoupling Constraints
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Results: Receding
« Optimization problem has a closed form solution which only requires SVD of two sxs =2
: _(d+ n) N ] - o | b ===
matrices where s ( n Results: Trained with... | SVM S0 X 0 1 LK O ; X 0 EE ; é\“‘i‘“’"‘” /
o | Src Tested on Src | 0.9086 | 0.9634 X|=1]0o 0 O\ x| +|0|uy : i // — \/ |
m8 Src Tested on Tgt | 0.8736 | 0.8505 N 0 0 W v W TR | ;\ / |
— | Tgt Tested on Tgt | 0.6671 | 0.6022 - T - - - T - ] I
= | Adaptation (ours) | 0.9524 | 0.9385 CREE I R R R R I R S
= | Src Tested on Src | 0.8883 | 0.9293 IR Unknown Switch Known Switch
i % | Src Tested on Tgt | 0.8884 | 0.7399 e 12\ Y =" 33‘ A [
o | Tgt Tested on Tgt | 0.9919 | 0.9953 AN T el P | -
~~ | Adaptation (ours) | 0.9391 | 0.8940 N ‘ ] ol [ |2 ,
Src Tested on Src | 0.9298 1 N I \ | g-100 TS S o LZ: L;: ?
?53 Src Tested on Tgt | 0.8592 1 ) R o E \/\ E
S S o ~ | Tgt Tested on Tgt | 0.5026 | 0.4317 % / V%W’WW“* : \
d=2 n=2 N,=248 N, = 252 Adaptation (ours) | 0.9661 | 0.9877 NS I R e S T T

http://DataDrivenCPS.org — msznaier@coe.neu.edu Grant CNS 1646121





