Data-Driven Cyberphysical Systems

Provably correct control in data rich/labels scarce scenarios
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Motivation
How can we synthesize control strategies for CPS in scenarios with rich run-time data, but where
labeling is expensive and off-line training may not capture rare but potentially catastrophic events?

Challenges
* QObtaining space-spanning data, specially for situations involving unsafe operations
» Real-time labeling with certifiable performance, even for data previously unseen

* Synthesizing non-conservative, provably stabilizing control laws
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Leveraging Simulations to Handle Scarce Labels

Goal: Leverage simulations to obtain spanning data

Obtaining enough trajectory space spanning data for

CPS can be costly or unfeasible

Physics based simulators can generate data cheaply,
but require costly tuning to match the actual CPS

Proposed approach: Domain adaptation
Generate a large simulation dataset (source) and collect

a smaller set of (labeled) real data (target)

Find a transformation from source to target that
optimizes classification accuracy

Use simulator adapted data for classification and
controller design
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Training Data (Left: Regular

Simulation, Right: Clogged Nozzle)

Technical details:
Align covariances and use the extra degrees of freedom
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Testing Data (Left: Regular Scenario,
Right: Clogged Nozzle)

to optimize classification accuracy
Optimization problem solvable via Sum of Squares

Transforming source samples by our mapping

Source Domain
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Training Output /Testing (Top: Transformed Source,
Bottom: Ground Truth Target)
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Results:
PCA300 PCA200 PCA100 PCA20
Accuracy on 85.91% 86.45% 86% 81.67%
Target after (111.26%) (112.94%) (111%) (12.64%)
adaptation

Efficient Data Labeling

Goal: On the fly data labeling
* On the fly data labeling is challenging in the
rare events

presence of

« Traditional learning relying on large amounts of training
data may not be feasible in some CPS applications

Proposed approach: SoS based classifiers
« Use empirical statistical information to build

So0S

polynomials that approximate the support of the data
« Given an unknown sample, assign it to the most likely
distribution or label it as “unseen before” (with certified

probability of miss-classification)
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Technical detalils:
e Lift the data:
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« (Create the moment matrix:

Z va (i) vy, (i)
« Classify unknown samples y accordlng to:
Qly) = v, (y)M™ v, (y)
o Certificate:
t d+n
prob {Q(y) >t} < — where s = ( -
S
Results:
PCA300 PCA200 PCA100 PCA20
Accuracy 96.20% 95.91% 95.76% 89.91%
(SVM)
Accuracy 99.56% 95.03%
(SoS)

http://DataDrivenCPS.org — {taskazan.b,dai.t}@husky.neu.edu, msznaier@coe.neu.edu

Non-conservative Control Synthesis

Goal: Synthesizing certified controllers

« Traditional approach based on Sysld + Robust Control is
computationally expensive and potentially conservative

« Existing model free data-driven approaches cannot
certify stability or performance

Proposed approach: Lyapunov based DD control

« Define the consistency set S as the set of all plants
compatible with existing priors and experimental data

* (non-conservatively) parameterize the set of all
controllers the can stabilize S in terms of a polyhedral
Lyapunov function V

* Find V by solving a polynomial optimization
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Technical details:
« Thesetofall (LTI) plantsin S is a polytope P
* Use the fact that U, stabilizes (A;,B;) Iiff there exist V,H,

AV+BU, = VH,
||H||€1—>€1 < d<1

* Use Farkas Lemma to impose stability of P

A,V + B, U,
HHH€1—>51

VH,,
d <1
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All (A; B;) compatible with the
available information live here

System Response under Random Switching

Results:
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