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Project Goal

To design fast, resilient and cost-optimal controllers for
extreme-dimensional CPS networks (such as electric power
systems) in a model-free way using massive volumes of
real-time streaming data.

Reinforcement Learning based Optimal Control

* Recent literature (Vrabie, Vamvoudakis & Lewis, Powell & Frazier, Jiang & Jiang, Zhang &
Basar, Bhasin & Dixon, Fazel & Mesbahi, Mukherjee, Bai & Chakrabortty) have shown RL to
be highly successful for model-free LQR optimal control
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Control

e System: © = Ax + Bu

>0
e Cost functional: J = f (mTQm + uTRu) dt
0

e control law that minimizes the value of the cost: u = —Kux _
RL learns K by solving the

o K=RIBTP Riccati equation using only
x(f) and u(f), no model
o AP+ PA—-PBR 'B"P+Q =0

e Can we learn real-time Reinforcement Learning based LQR controllers
for large and complex CPS networks in a tractable way?

Problem Formulation

Plant Fundamental Steps of RL
x(1)= Ax(t)+ Bu(t), x(0)= X, 1. Apply exploration noise

A, B unknown u(t) = up(t) for 0 <t <ty
2. NN training step: Waitand collect
u(r) x(t)

enough measurements of x(t) and wo(f)
for solving a least-squares estimate of
the Riccati matrix P

Kktl = f(K"’,x(tk);u(tk)); K® = Kis O(x, ug)p = V(z,up)

u(t) = K*x(t) /ol \

Must have least Vectorized Vector of

RL Controller nn+1)2rowstobe  roorew  measurements of

full column-rank “value function” J

3. Generate an initial estimate K° from P°

4. Fort >ty apply u(t) = K*z(t)

Central controller learns the S 'tera"e;c 1 )
full-dimensional optimal KM = §(K", o(ty), u(ty))
controller K ¢ : Nonlinear RL function

Main challenge is A simple 10-dimensional K can
Curse of easily take 1 hour of learning time

Dimensionality! in a standard PC!

1. Define projection matrices P that bring out a possible decomposition
of local and global control objectives through low-rank controllability
subspaces.

2. Design artificial neural networks (NN) that can quickly learn and
predict P from data.

3. Design online hierarchical Reinforcement Learning (RL)-based optimal
controllers that independently learn the local and global controls.

This controller will be significantly more scalable and faster than
centralized RL due to its hierarchical structure involving smaller-
dimensional state feedback, and parallelization of the learning loops.
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Proposed Approach

S Conventional RL

Con: Learns u(t) = Kux(t)
for the whole network at one shot

- Large learning time
- DenseK requires”C2 comm.links

Pro: u(t) is optimal

Group 1

x, =A,x, +A,x,+Bu,
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Three Primary Questions

Q1: How to transition from model-basedto
model-free (data-driven) control?

Q2: How to take decisions in real-time based on
data only?

Q3: Make control highly scalable with network

size
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Hierarchical RL

Pro: Learnsu(t) in multiple stages (in parallel):

u(t) = Wiocat (t) + Ugiobal (t)

Ulocal 1s group-wise decentralized, and
Uglobal s an aggregate input in reduced dimension

Con: u(t) is sub-optimal

Group 2

Physical -
Coupling x, = Ay x + A,,x, + Bu,

A,.. A,,. B, unknown

Local RL
Controller 1

X1, global
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Local RL.
Controller 2

Kggobag learning
U1, global = Kga!oba! (]-: :) L global

U2 global — Kga!oba.l (21 :) L global y,

Global RL Controller

c=Px
How to group agents: /

Compressed state
1. Time-scale separation

Proposed Hierarchical RL

Benefits:

1. Local RL & Global RL can go on in parallel —
saves learning time

2. Data privacy is preserved between groups

3. Reduces inter-group communication

Drawbacks:

1. Conventional RL produces optimal controller:
K™ = Kﬂptimai

The proposed hierarchical RL will be super-fast
but will produce only a sub- optimal controller:

uf(t) =  Ulocal (t) + ugﬂobai(t)
— K.!oca.!:r.! + Kgiﬂbaimg

Smaller r willimprove global learning time, but
degrade closed-loop performance

Compression matrix

- P is averaging - several papers on identifying P (coherent groups) from
PMU data, redundancy in observability

2. Low-rank controllability

- P follows from SVD of empirical controllability gramian
- Only gens with most influence on inter-area mode are identified
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Application in Power System Controls

Centralized Learning

NETS+NYPA Power Grid Model
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Wide-Area Power _Grid Model
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(b) with controller, Algorithm 1
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(c) with controller, Algorithm 2, 12 = 24

E(k+1) =P¢&, (k+1) +QA, (k)

" 0.1, data | |
£k +1) AT 4K Ocollection 20 4.1 40 60 80 100
! : ]_F{ : ]+Q[ : ] time (sec)

1
o=

Sn(k+1) én (K) 4, (K)

Markov Chain Model for Service Rate Control

Sparsity-Constrained Learning

Neural networks will be trained with experimental data to identify clusters in real-time, as well as to
identify desired sparse structures of local RL controllers

Train neural networks with prior data, predict groups from online data

Unsupervised methods - Kernel-based K-means, Graph product decompositions Theory: Impose sparse structure on local controllers to minimize communication:
Tensor decomposition theory (excellent survey paper by Sidiropoulos) « The local learning law

KiHh =& (K, zite), wity))

Clustering pattern p,_ Clustering pattern p, Clustering pattern p,,_

will, in general, produce a dense fk;;, which means all-to-all communication
x(t)(a,, B:} z(t){a,, B1} z(t)ga,, B}

: : : * To avoid this, we will augment the NN training step of RL with an additional sparsity
()1 A100. Broo} () { A100. Broo} 2(t) { A100. Broo} constraint

N J N J N J Conventional LS: ®(x, ug)p = V(x,ug)
Y Y Y Imposes sparse

Training data set Training data set Training data set min [1p]le / structurk on P and K
¥ ¥ ¥ Modified LS: 1

— <
Recurrent Recurrent Recurrent st [[®(z, uo)p — V(z, uo)ll2 < ¢
Neural Neural Neural / N

Network Network Network Must have least Vectorized Vector of

n(n+1)/2 rows to be form of P measurements of

full column-rank “value function” J

K-means clustering K-means clustering K-means clustering

Experimental Testbed

1. Multi-vendor PMU-based hardware-in-loop
simulation testbed at NCSU will be used for

e ~ | verification and validation

EHWJ 5 | 2. We will showcase resiliency of hierarchical RL
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Undergraduate, K-12 and minority education in power systems via Science House and
FREEDM ERC programs at NC State

New graduate curriculum on Machine Learning and Data Science

International collaborations with Tokyo Institute of Technology in Japan

Industry collaborations with power utilities (Duke Energy) and software vendors (SAS, ABB)
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