Data-driven Analysis of Equity
and Fairness in Public Transit
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Introduction & Fairness in ML

Task

predict the bike demand for the
Healthy Ride with historical outflow
data while ensuring relative
fairness between the high-income
and low-income groups.

Fairness

Motivation: Al is objective only in
the sense of learning what human
teaches. The data provided by
human can be highly-biased.

Ex. XING, a job platform similar to
Linked-in, was found to rank less
qgualified male candidates higher
than more qualified female
candidates.

Healthy Ride Map in Pittsburgh
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Search Work  Education Profile Candidate Xing

query experience experience Views ranking
Brand Strategist 146 S5 12992  male 1
Brand Strategist 327 0 4715  female 2
Brand Strategist 502 74 6978 male 3
Brand Strategist 444 56 1504  female 4
Brand Strategist 139 25 63 male 5
Brand Strategist 110 65 3479  female 6
Brand Strategist 12 73 846 male 7
Brand Strategist 99 41 3019 male 8
Brand Strategist 42 51 1359  female 9
Brand Strategist 220 102 17186 female 10

TABLE II: Top k results on www.xing.com (Jan 2017) for the
job serach query “Brand Strategist”.

Figure: The bias in the query for Brand Strategist from XING(from Lahoti et al. 2018).
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https://arxiv.org/pdf/1806.01059.pdf
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l data preprocessing

: Definition of Fairness used: Equalized Odds
Evaluate Fairness - require nondiscrimination within each outcome group.
- Ex. hire qualified applicants for a job role.
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Model results

Low Income High Income
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Equalized odds difference: implemented as the
greater value of the true positive rate difference
and false positive rate difference.

Grid search: implemented as a simplified version of
the exponentiated gradient reduction and works by
generating a sequence of relabelings and
reweightings, and trains a predictor for each.

Ideal case: a predictor at (1,0) - perfectly accurate
and without any unfairness under equalized odds
(with respect to the sensitive feature “income
class”).

The range of the axes - the disparity axis covers
more values than the accuracy. Can reduce disparity
substantially for a small loss in accuracy.

Pick the model which represented the best trade-
off between accuracy and disparity given the
relevant business constraints.
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Model Visualization

Geological visualization of predicted bike demand for Pittsburgh
: income and Unmitigated Prediction of # of high demand groups
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Model Visualization

Geological visualization of predicted bike demand for Pittsburgh
: income and Mitigated Prediction with Grid Search Model 1 (low disparity) of # of high demand groups
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Conclusion

e Lessons:

— It's not only being “different” is an effective result,
being the “same” is also a result.

— Pay more attention when preprocessing data.
— Learn new ideas and apply them quickly
* Challenges
— Bugs & debugging
* Things go well:
— | will be continuing research in the Fall semester.
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