Data-driven Analysis of Equity and Fairness in Public Transit

Yihan Shao

PI: Dr. Ayan Mukhopadhyay Dr. Abhishek Dubey

Introduction & Fairness in ML

Task

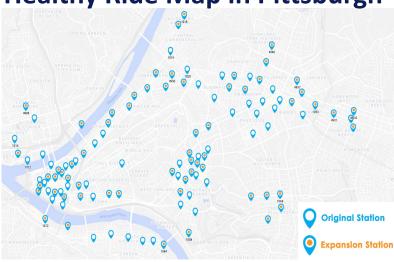
- predict the bike demand for the Healthy Ride with historical outflow data while ensuring relative fairness between the high-income and low-income groups.

Fairness

Motivation: All is objective only in the sense of learning what human teaches. The data provided by human can be highly-biased.

Ex. XING, a job platform similar to Linked-in, was found to rank less qualified male candidates higher than more qualified female candidates.

Healthy Ride Map in Pittsburgh

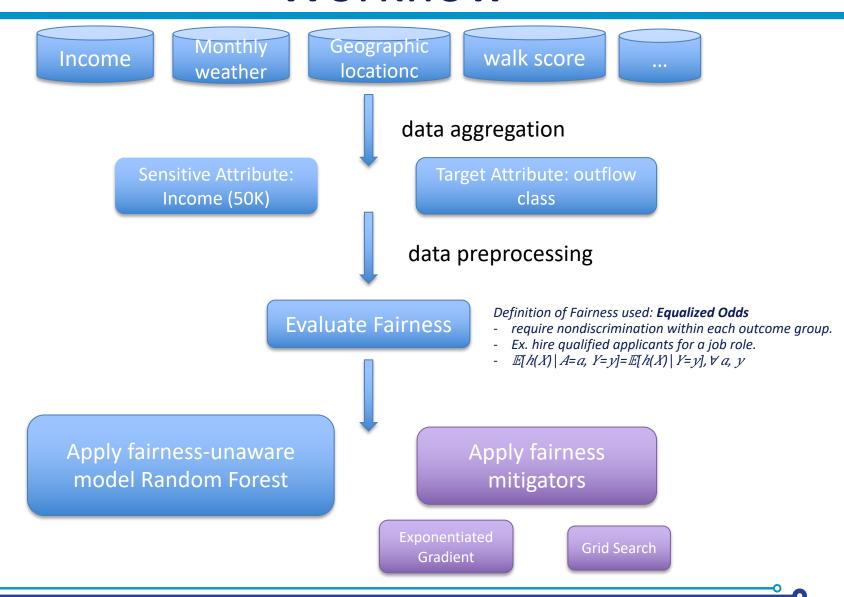


Search query	Work experience	Education experience		Candidate	Xing ranking
Brand Strategist	146	57	12992	male	1
Brand Strategist	327	0	4715	female	2
Brand Strategist	502	74	6978	male	3
Brand Strategist	444	56	1504	female	4
Brand Strategist	139	25	63	male	5
Brand Strategist	110	65	3479	female	6
Brand Strategist	12	73	846	male	7
Brand Strategist	99	41	3019	male	8
Brand Strategist	42	51	1359	female	9
Brand Strategist	220	102	17186	female	10

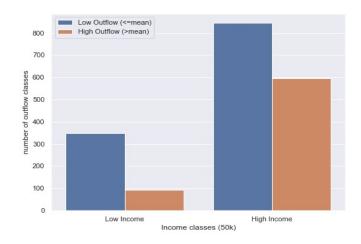
TABLE II: Top k results on www.xing.com (Jan 2017) for the job serach query "Brand Strategist".

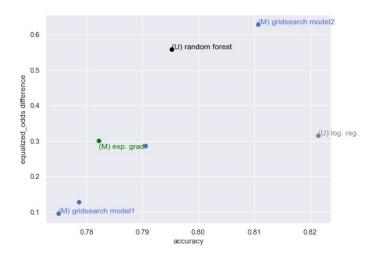
Figure: The bias in the query for Brand Strategist from XING(from Lahoti et al. 2018).

Workflow



Model results





- Equalized odds difference: implemented as the greater value of the true positive rate difference and false positive rate difference.
- Grid search: implemented as a simplified version of the exponentiated gradient reduction and works by generating a sequence of relabelings and reweightings, and trains a predictor for each.
- **Ideal case:** a predictor at (1,0) perfectly accurate and without any unfairness under equalized odds (with respect to the sensitive feature "income class").
- The range of the axes the disparity axis covers more values than the accuracy. Can reduce disparity substantially for a small loss in accuracy.
- Pick the model which represented the best tradeoff between accuracy and disparity given the relevant business constraints.

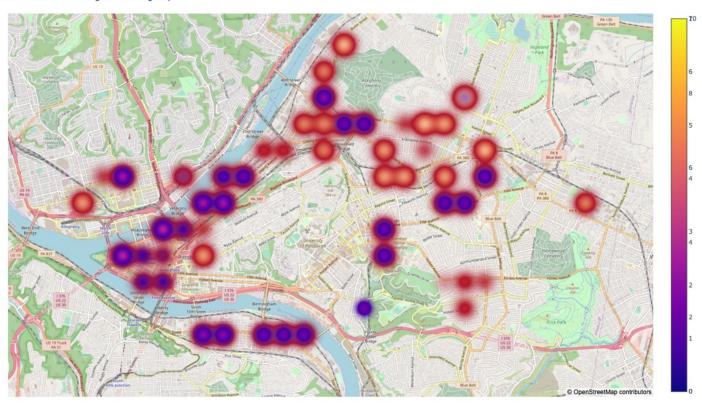
Model Visualization

Geological visualization of predicted bike demand for Pittsburgh : income and Unmitigated Prediction of # of high demand groups

Income & Unmitigated prediction ▼

Red dot: distribution of high-income classes

Purple dot: distribution of high-outflow classes



Unmitigated Prediction

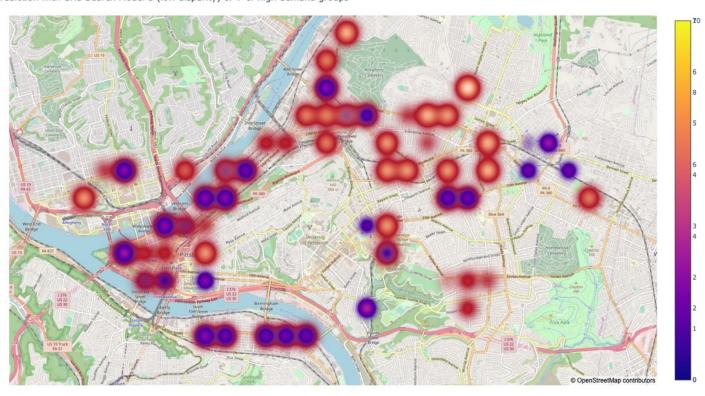
Model Visualization

Geological visualization of predicted bike demand for Pittsburgh: income and Mitigated Prediction with Grid Search Model 1 (low disparity) of # of high demand groups

Income & Mitigator gridsearch model 1 (low disparity) ▼

Red dot: distribution of high-income classes

Purple dot: distribution of high-outflow classes



Mitigated Prediction

Conclusion

Lessons:

- It's not only being "different" is an effective result, being the "same" is also a result.
- Pay more attention when preprocessing data.
- Learn new ideas and apply them quickly
- Challenges
 - Bugs & debugging
- Things go well:
 - I will be continuing research in the Fall semester.