
Sixth Annual Cyber-Physical Systems Principal Investigators’ Meeting
Arlington, VA – November 16-17, 2015

Scientific Impact: 
• >90% of stack objects are safe from spatial, 

type, and temporal errors comprehensively
• 3% and 6.3% of stack objects found safe by 

CCured and Safe Stack, respectively, are 
actually unsafe – reduce attack surface

• Safe Stack overhead reduced from 11.3% to 
4.3% for SPEC 2006 benchmarks

• Applicable to real-world programs and 
prevents real exploits – CVEs and CGC 
binaries

Solution: 
• Safety validation identifies stack objects whose accesses cannot cause any 

spatial, type, and temporal memory errors comprehensively 
• Validation using static analyses and guided concolic execution
• Isolate safe objects using the Safe Stack defense without runtime checks

Challenge: 
• Current defenses provide very limited protection from memory safety errors
• Proposed runtime defenses incur overheads that have limited their use
• Researchers have proposed that many accesses are safe from memory errors, 

but no technique provides validation for all classes of memory errors

Broader Impact and Participation: 
• Shows that using safety validation to 

provide a foundation for low-cost 
runtime protection is feasible

• Automatic program hardening protects 
over 90% of stack objects from memory 
errors by construction

• Analyses facilitate automation of kernel-
driver isolation - KSplit - see our poster

• Extending safety validation for heap 
objects

• Exploring hardware-assisted approaches 
for secure isolation

• Teaching in our Software Security course

CNS-1801534: Threat-Aware Defenses - Trent Jaeger 
(Penn State), Gang Tan (Penn State), Mathias Payer 
(Purdue/EPFL), Dongyan Xu (Purdue)

DataGuard System – “The Taming of the Stack” – NDSS 2022

Step 1: Simple 
Safety Validation
CCured + Escape

Analysis

Step 2: Collect 
Safety Constraints 

For each memory 
error class

Step 3: Static 
Safety Validation

Value Range + Integer 
Range + Live Range 

All
Stack

Objects

72% of stack
objects have no 

unsafe operations
(are “safe”)

28% of stack
objects have 

unsafe operations
(may be “unsafe”)

4% of stack
objects do not
have concrete 

safety constraints
 (assume “unsafe”)

Step 4: Concolic 
Safety Validation

Def-Use Guided 
Concolic Execution

16% of stack
objects validated

statically
 (are “safe”)

3% of stack
objects validated

concolically
 (are “safe”)

5% of stack
objects cannot

be validated
 (assume “unsafe”)

91.45% of stack
objects protected

by Safe Stack
 (without runtime checks!)


