DataGuard System — “The Taming of the Stack” — NDSS 2022

Challenge:

Current defenses provide very limited protection from memory safety errors

All
Stack
Objects

Proposed runtime defenses incur overheads that have limited their use

Researchers have proposed that many accesses are safe from memory errors,
but no technique provides validation for all classes of memory errors

Step 1: Simple
Safety Validation
CCured + Escape
Analysis

72% of stack
objects have no
unsafe operations

(are “safe”)

16% of stack
objects validated
statically
(are “safe”)

4% of stack
objects do not
have concrete
safety constraints
(assume “unsafe”)

Step 2: Collect
Safety Constraints

For each memory
error class

28% of stack
objects have
unsafe operations
(may be “unsafe”)

Step 3: Static
Safety Validation
Value Range + Integer
Range + Live Range

Step 4: Concolic
Safety Validation
Def-Use Guided
Concolic Execution

Solution:

3% of stack
objects validated
concolically

(are “safe”)

91.45% of stack

objects protected

by Safe Stack

(without runtime checks!)

objects cannot

(assume “unsafe”)

Safety validation identifies stack objects whose accesses cannot cause any

spatial, type, and temporal memory errors comprehensively
Validation using static analyses and guided concolic execution

Isolate safe objects using the Safe Stack defense without runtime checks

CNS-1801534: Threat-Aware Defenses - Trent Jaeger
(Penn State), Gang Tan (Penn State), Mathias Payer
(Purdue/EPFL), Dongyan Xu (Purdue)

Scientific Impact:

. >90% of stack objects are safe from spatial,
type, and temporal errors comprehensively

. 3% and 6.3% of stack objects found safe by
CCured and Safe Stack, respectively, are
actually unsafe — reduce attack surface

. Safe Stack overhead reduced from 11.3% to
4.3% for SPEC 2006 benchmarks

. Applicable to real-world programs and
prevents real exploits — CVEs and CGC
binaries

Broader Impact and Participation:

. Shows that using safety validation to
provide a foundation for low-cost
runtime protection is feasible

. Automatic program hardening protects
over 90% of stack objects from memory
errors by construction

. Analyses facilitate automation of kernel-
driver isolation - KSplit - see our poster

. Extending safety validation for heap
objects

. Exploring hardware-assisted approaches
for secure isolation

. Teaching in our Software Security course



