DataGuard System – "The Taming of the Stack" – NDSS 2022

Challenge:

- Current defenses provide very limited protection from memory safety errors
- Proposed runtime defenses incur overheads that have limited their use
- Researchers have proposed that many accesses are safe from memory errors, but no technique provides validation for all classes of memory errors

Solution:

- Safety validation identifies stack objects whose accesses cannot cause any spatial, type, and temporal memory errors comprehensively
- Validation using static analyses and guided concolic execution
- Isolate safe objects using the Safe Stack defense without runtime checks

CNS-1801534: Threat-Aware Defenses - Trent Jaeger (Penn State), Gang Tan (Penn State), Mathias Payer (Purdue/EPFL), Dongyan Xu (Purdue)

Scientific Impact:

- >90% of stack objects are safe from spatial, type, and temporal errors comprehensively
- 3% and 6.3% of stack objects found safe by CCured and Safe Stack, respectively, are actually unsafe – reduce attack surface
- Safe Stack overhead reduced from 11.3% to 4.3% for SPEC 2006 benchmarks
- Applicable to real-world programs and prevents real exploits – CVEs and CGC binaries

Broader Impact and Participation:

- Shows that using safety validation to provide a foundation for low-cost runtime protection is feasible
- Automatic program hardening protects over 90% of stack objects from memory errors by construction
- Analyses facilitate automation of kerneldriver isolation - KSplit - see our poster
- Extending safety validation for heap objects
- Exploring hardware-assisted approaches for secure isolation
- **Teaching** in our Software Security course