
The 4th NSF Secure and Trustworthy Cyberspace Principal Investigator Meeting
October 28-29, 2019  |  Alexandria, Virginia

Data Oblivious ISA Extensions for Side Channel-Resistant and High-Performance 
Computing

University of Illinois at Urbana-Champaign

Jiyong Yu, Lucas Hsiung, Mohamad El Hajj, Christopher W. Fletcher

Data Oblivious ISA (OISA) Design

• Security:
• ISA specifies what data is secret
• ISA specifies what operation can leak

• Efficiency: HW free to data oblivious operations
• Portability: ISA and security specification is fixed across 

hardware implementations

Putting it all together
ISA designers decide instructions with Safe/Unsafe operands

Hardware designers augment processors with logic to 
enable/disable hardware optimizations  

Programmers annotate data as Confidential/Public

Processors enforce taint propagation and transition rules:

• Public data → Safe operand   >> no protection

• Public data → Unsafe operand  >> no protection

• Confidential data → Safe operand  >> disable HW optimizations

• Confidential data → Unsafe operand >> exception!

Introduction
Microarchitecture side channel attacks:

• Huge privacy threat

• Fundamental problem: secret data affects HW resource 
pressure

• Various attacks proposed for different HW resources

Difficulty in solving this type of attacks:

• No contract between HW and SW

• SW doesn’t know what HW leaks

• HW doesn’t know what is secret in SW

Data Oblivious Programming
Definition:

• SW solution to block microarchitecture side channel attacks

• Rewrite programs to be data oblivious, i.e., remove visible data-
dependent behaviors

• Data oblivious programs can be represented as a static data-flow graph

Design Feature
Security: Defense against non-speculation & speculative 
side-channel attacks

Efficiency: Design space for safe optimizations

• Case 1: Oblivious load operation: O(N) → O(logN) → O(1)

• Case 2: Oblivious sort operation:  O(Nlog2N) → O(NlogN)

Portability: Consistent security guarantee across hardware 
instances

Hardware Implementation
Hardware prototyping on RISC-V BOOM

Performance Evaluation

• Achieving speedup of upto 8.8x over baseline data oblivious 
programming

• Case studies:

• AES: 4.4x speedup over bitslice AES

• Memory oblivious library: more than 4.6x speedup over 
ZeroTrace [SGF’18]

Security Evaluation

• Proving non-interference property for the trace of observable 
processor states

• Challenges:

• Formalizing attacker’s observability

• Modeling complicated modern processors

// data-oblivious code 

a ← load (addr1);

b ← load (addr2);

cmov secret, a, b; 

// a = secret? b : a

a ← load addr1 b ← load addr2

cmov secret, b, a

// source code

if (secret)

a ← load (addr1);

else

a ← load (addr2);

what data is 

confidential?

Component 1: new form 

of Dynamic information 

flow tracking

how to protect 

confidential data?

Component 2: new 

instructions with safe 

operands

multiplier

ID value tag

r1 1 Public

r2 0 Confidential

r3 0 Confidential

<unsafe>

<unsafe>

Register file

Fast, insecure with
Zero-skipping

multiplier

ID value tag

r1 1 Public

r2 0 Confidential

r3 0 Confidential

<safe>

<safe>

Register file

Slow, secure without
Zero-skippingProcessor

New Dynamic Information Flow Tracking (DIFT):

• Programmers declare data as Public or Confidential

• Confidential data is tracked in hardware using DIFT

• Rules:

• Public data needs no protection

• Confidential data must be protected

Instruction with Safe/Unsafe Operand

• Each input operand is defined as Safe or Unsafe

• Safe operand blocks side channel from that operand

• Unsafe operand provides no protection

Processor

Confidential 
data

Safe Operand

Confidential 
data

Safe Operand
Unsafe

Operand

Bad speculation

Non-
speculative 
attack

Speculative 
attack

Disable HW 
optimizations

Stop speculation

Network and Distributed System Security Symposium (NDSS), 2019
Distinguished Paper Award Honorable Mention/CSAW Applied Research Competition Finalist

HW optimizations undermine all of them!

Security assumptions:

• Instructions are evaluated in data-independent manner

• Data is transferred in data-dependent manner

• Instruction sequence is not a function of data


