NRI: Decentralized Feedback Control Design for Cooperative Robotic Walking with Application to Powered Prosthetic Legs

PI: Kaveh Akbari Hamed

Assistant Professor Hybrid Dynamic Systems and Robot Locomotion Laboratory Department of Mechanical Engineering Virginia Tech

Co-PI: Robert D. Gregg

Assistant Professor Locomotor Control Systems Laboratory Department of Mechanical Engineering The University of Texas at Dallas

Research Goals

The **overarching goal** of this project is to create a **potentially transformative** decentralized feedback control framework to robustly stabilize walking trajectories of legged robots through cooperative subsystems.

- 1) To create systematic algorithms that synthesize decentralized feedback controllers to robustly stabilize periodic orbits of hybrid dynamical systems;
- 2) To experimentally realize decentralized feedback control architectures on a 3D quadruped robot and a powered prosthetic leg.

Hybrid Models and Periodic Orbits

Walking locomotion can be modeled as **periodic solutions** of the hybrid model.

Cooperative Hybrid Subsystems

Subsystem i $1 \le i \le N$

$$\Sigma_{i}: \begin{cases} \dot{x}_{i} = f_{i}\left(x_{1}, x_{2}, \cdots, x_{N}\right) + \sum_{j=1}^{N} g_{ij}\left(x_{1}, x_{2}, \cdots, x_{N}\right) u_{j}, & x^{-} \notin S\\ x_{i}^{+} = \Delta_{i}\left(x_{1}^{-}, x_{2}^{-}, \cdots, x_{N}^{-}\right) + d_{i}, & x^{-} \in S \end{cases}$$

 $x_i \in \mathcal{X}_i \subset R^{n_i}$: Local State Variables $u_i \in \mathcal{U}_i \subset R^{m_i}$: Local Control Inputs $d_i \in \mathcal{D}_i \subset R^{n_i}$: Local Uncertainty

$$x = \left(x_1^{\top}, x_2^{\top}, \cdots, x_N^{\top}\right)^{\top}$$
$$u = \left(u_1^{\top}, u_2^{\top}, \cdots, u_N^{\top}\right)^{\top}$$

NSF NRI PIs Meeting, October 29

 $x_2 \wedge u_2$

Coordination of Subsystems

Phasing Variable: A strictly increasing scalar variable that represents the progress of the robot on the periodic orbit

Example: The links are synchronized by the crank angle (**phasing variable**).

Example: Typical phasing variable for bipedal walking

Proposed Decentralized Controllers

Class of parameterized and general nonlinear feedback laws

$$u_i = \Gamma_i \left(x_i, \Theta(x), \Psi_i(x), \xi_i \right), \quad i \in \{1, 2, \cdots, N\}$$

 Feedback laws have access to their own local measurements (local state variables) as well as a subset of measurable global variables.

Robust Stabilization Problem

Parameterized Poincaré Map with controlled outputs and exogenous inputs

$$\mathcal{P}: \begin{cases} x[k+1] = P\left(x[k], \xi, d[k]\right) \\ c[k] = c\left(x[k]\right) \end{cases}$$

 $d[k] \in \mathcal{D}$: discrete-time uncertainty (exogenous inputs) $c[k] \in \mathcal{C}$: discrete-time outputs to be controlled

Linearization around $(x, d) = (x^{\star}, 0)$

$$\partial \mathcal{P} : \begin{cases} \delta x[k+1] = \frac{\partial P}{\partial x} \left(x^{\star}, \xi, 0 \right) \, \delta x[k] + \frac{\partial P}{\partial d} \left(x^{\star}, \xi, 0 \right) \, d[k] \\ \delta c[k] = \frac{\partial c}{\partial x} \left(x^{\star} \right) \, \delta x[k] \end{cases}$$

Iterative Semidefinite Programs

We develop an effective numerical algorithm based on a sequence of iterative and offline optimization problems involving Bilinear and Linear Matrix Inequalities (BMIs and LMIs) to overcome specific difficulties arising from the lack of closed-form expression for the Poincaré map, high dimensionality, and underactuation in tuning the parameters of decentralized feedback controllers.

$$\left\|T_{dc}\right\|_{\mathcal{H}_{2}}^{2} := \frac{1}{2\pi} \int_{-\pi}^{\pi} \operatorname{trace}\left(T_{dc}^{\mathsf{H}}\left(e^{j\omega}\right) T_{dc}\left(e^{j\omega}\right)\right) \mathrm{d}\omega < \mu$$

$$||T_{dc}||^2_{\mathcal{H}_{\infty}} := \sup_{||d||_{\mathcal{L}_2}} \frac{||\delta c||_{\mathcal{L}_2}}{||d||_{\mathcal{L}_2}} < \mu$$

• K. Akbari Hamed and R. D. Gregg, "Decentralized event-based controllers for robust stabilization of hybrid periodic orbits: Application to underactuated 3D bipedal walking," *IEEE Transactions on Automatic Control*, In Press, August 2018

• K. Akbari Hamed and R. D. Gregg, "Decentralized feedback controllers for robust stabilization of periodic orbits of hybrid systems: Application to bipedal walking," *IEEE Transactions on Control Systems Technology*, vol. 25, issue 4, pp. 1153-1167, July 2017

Application to Prosthetic Legs

 K. Akbari Hamed and R. D. Gregg, "Decentralized event-based controllers for robust stabilization of hybrid periodic orbits: Application to underactuated 3D bipedal walking," IEEE Transactions on Automatic Control, In Press, August 2018
NSF NRI PIs Meeting, October 29

Application to Prosthetic Legs

Two Prosthesis Testbeds for Decentralized Control

D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp and R. D. Gregg, "Continuous-phase control of a powered knee-ankle prosthesis: Amputee experiments across speeds and inclines," *IEEE Transactions on Robotics*, vol. 34, no. 3, pp. 686-701, June 2018
NSF NRI PIs Meeting, October 29

Application to Prosthetic Legs

Next step: To transfer the algorithm to the UT Dallas leg

• K. Akbari Hamed and R. D. Gregg, "Decentralized event-based controllers for robust stabilization of hybrid periodic orbits: Application to underactuated 3D bipedal walking," *IEEE Transactions on Automatic Control*, In Press, August 2018

- K. Akbari Hamed and R. D. Gregg, "Decentralized feedback controllers for robust stabilization of periodic orbits of hybrid systems: Application to bipedal walking," *IEEE Transactions on Control Systems Technology*, vol. 25, issue 4, pp. 1153-1167, July 2017
- D. Quintero, D. J. Villarreal, D. J. Lambert, S. Kapp and R. D. Gregg, "Continuous-phase control of a powered kneeankle prosthesis: Amputee experiments across speeds and inclines," *IEEE Transactions on Robotics*, vol. 34, no. 3, pp. 686-701, June 2018
- K. Akbari Hamed, R. D. Gregg, and A. D. Ames, "Exponentially stabilizing controllers for multi-contact 3D bipedal locomotion," *American Control Conference (ACC)*, pp. 2210-2217, Milwaukee, WI, June 2018

Application to Autonomous Bipedal Robots

- K. Akbari Hamed, B. G. Buss, and J. W. Grizzle, "Exponentially stabilizing continuous-time controllers for periodic orbits of hybrid systems: Application to bipedal locomotion with ground height variations," The International Journal of Robotics Research, vol. 35, issue 8, pp. 977-999, August 2016
- B. G. Buss, K. Akbari Hamed, B. A. Griffin, and J. W. Grizzle, "Experimental results for 3D bipedal robot walking based on systematic optimization of virtual constraints," *The 2016 American Control Conferences (ACC)*, pp. 4785-4792, Boston, MA, July 2016

ATRIAS

- 3D bipedal robot with 13 DOFs and 7 DOUs (6 Actuators)
- 55 Kg

Application to Autonomous Quadruped Robots

Dynamic Stable 3D Quadruped Walking with the BMI Algorithm (Amble Gait)

Next step: To transfer the algorithm to Vision 60 at VT

NSF NRI PIs Meeting, October 29

controllers," 2019 American Control Conference, Under Review, 2018

Thank you for your attention.