
UnCoVer

Unifying Control and Verification

of Cyber-Physical Systems

(UnCoVerCPS)

WP3 - Online Verification for Control

Deliverable 3.3: Report on Compositional Verification and Incremental Verification in

Interaction with Online Controller Adaptation

Ref. Ares(2018)6580565 - 20/12/2018

WP3 D3.3 – Report on compositional verification and incre-

mental verification in interaction with online controller

adaptation

Authors Maria Prandini - PoliMi

Olaf Stursberg, Zonglin Liu - UKS

Goran Frehse - UGA

Matthias Althoff - TUM

Alexander Rausch, Jens Oehlerking - Bosch

Short Description This deliverable described the achievements of the UnCoVer-

CPS project in two directions: compositional verification of

cyber-physical systems, where a divide-and-conquer approach is

adopted so as to verify smaller subsystems instead of applying

a monolithic verification approach; and incremental online veri-

fication for controller adaptation, where constraints for control

tuning are computed online, which calls for incremental compu-

tational methods and the study of the impact of time-varying

constraints on the controller properties.

Deliverable Type Report

Dissemination level Public

Delivery Date 30 Dec 2018

Contributions by PoliMi, UKS, UGA, TUM, Bosch

Internal review by Goran Frehse, Geoff Pegman, Xavier Fornari

External review by

Internally accepted by Matthias Althoff

Date of acceptance

Document history:

Version Date Author Description

1.0 15 October 2018 Prandini et al. Draft version

2.0 26 October 2018 Prandini et al. Internal review version

3.0 20 November 2018 Prandini et al. Revised after internal review

4.0 8 December 2018 Prandini et al. Final revision

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

2 of 70

CONTENTS

Contents

1 Introduction 4

2 Compositional verification 6

2.1 Decomposing continuous-time systems . 7

2.1.1 Fundamentals of set approximations 10

2.1.2 Decomposition error . 12

2.1.3 Decomposed reachability algorithm . 16

2.1.4 Industrial case study . 20

2.2 Verification of structured mixed logical dynamical systems 25

2.2.1 Integrating non-influential input detection and model reduction for

cascaded systems . 25

2.2.2 A parallel verification scheme for constraint coupled systems 30

3 Incremental verification in interaction with online controller adaptation 41

3.1 Incremental Computation of Reachable Sets for Anytime Verification 41

3.1.1 Preliminaries . 41

3.1.2 Safety Verification of Autonomous Vehicles 43

3.1.3 Anytime Safety Verification . 46

3.1.4 Examples . 51

3.2 Recursive feasibility and stability of predictive controllers for systems with

changing environments . 53

3.2.1 Illustrating Example . 65

4 Conclusions 67

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

3 of 70

1 INTRODUCTION

1 Introduction

This deliverable describes the achievements of the UnCoVerCPS project under tasks 3.3 and

3.4 of work package 3, investigating new methods to reduce significantly the computation

time for formal verification of continuous and hybrid systems to the purpose of verifying

if planned actions are safe during the operation of the system. Specifically, two research

directions have been pursued, that is: compositional verification and incremental verification

for online controller tuning.

The first research direction is a further enhancement of the achievements on verification in

work package 3 of this project. More precisely, the new methods for reachability computations

documented in Deliverable 3.2 could be integrated in the proposed compositional verifica-

tion schemes, and the results on compositional reachability analysis in Deliverable 3.1 are

extended here to further subsystems interconnections. Compositional verification can also be

instrumental to the design of networked predictive control strategies as the one described in

Deliverable 2.2, where the problem is naturally formulated compositionally.

The second research direction is explicitly connected to the control part in work package

2 and, in particular, to the development of task 2.4 documented in Deliverable 2.3 where

methods for interleaving reachability computations with controller optimization are presented.

Figure 1 provides a schematic view of the project structure and the interconnections of

tasks 3.3 and 3.4 with the other tasks.

T 1.1 Modeling and Identification of
Networked CPS

T1.2 Refinement of hybrid system
models

T1.3 Conformance testing

T1.4 Automatic formalisation of
system requirements

T2.1 Constraint generation for
control based on behavior prediction

T2.2 Networked predictive control
for hybrid CPS

T2.3 Enhancing the real-time
computability of online control

T 2.4 Interleaving reachability
computation and controller

optimization

T3.1 Faster methods for reachability
analysis of nonlinear systems

T3.2 Pre-computation of reachable
sets for partial reference trajectories

T3.3 Compositional Verification

T3.4 Incremental Verification in
Interaction with Online Controller

M
e

th
o

d
s

T
o

o
lc

h
a

in

Requirements generation

System model generation

VerificationControl

T3.5 Assessment of the certifiability
for the relevant safety standards

T4.1 Extension of
SCADE for on-the-fly

synthesis and
verification

T4.2 Integration of
the tools SpaceEx

and CORA

T4.3 Integration of the tools SCADE,
Simplorer, SpaceEX and CORA

T 4.4 Conversion of SCADE models
to hybrid automata

T4.5 Embedding Controller
Synthesis into the Tool Chain

T4.6 Certifiable code generation

A
p

p
li
c

a
ti

o
n

s

Modeling

T5.1 Wind Turbines T5.2 Smart Grids T5.3 Automated Driving
T5.4 Human-Robot

collaborative manufacturing

S
ta

n
d

a
rd

s

a
p
p
ly

 &
 e

va
lu

a
te

Figure 1: Structure and information flow of the UnCoVerCPS work packages and tasks.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

4 of 70

1 INTRODUCTION

As for compositional verification, the idea is to cope with the curse of dimensionality by a

divide-and-conquer approach and verify smaller subsystems instead of applying a monolithic

verification approach. One can exploit the specific interconnected structure of the system or

decompose it appropriately in parts that have little interaction. This is addressed for the class

of linear systems (Section 2.1) and mixed logical dynamical (MLD) systems (Section 2.2),

which are equivalent to piecewise affine systems under well-posedness conditions. A parallel

decomposition approach can be adopted for the verification of multiple MLD systems which

are coupled via some budget constraint due to resource sharing (Section 2.2.2).

As for incremental verification for online controller tuning, the goal is twofold:

- use coarse model abstractions to provide rapid although conservative verification results

that can be used to formally verify safety in the online operation of a system such as in

autonomous driving applications. The coarse model abstractions are refined continually

if computation time is available so as to allow for improving the system performance

(see Section 3.1);

- provide guarantees on the performance of the controller that is adapted to the time-

varying constraints originated by the dynamic environment where the system is evolving.

In particular, the focus is on recursive feasibility and stability of model predictive

control with time-varying state constraints originating, e.g., from safety requirements in

autonomous driving or human-robot cooperation (see Section 3.2).

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

5 of 70

2 COMPOSITIONAL VERIFICATION

2 Compositional verification

The verification of a dynamic system is a challenging problem and, despite recent advances,

scalability remains a major obstacle. The goal of this task is to examine how an analysis of the

components of a system can be exploited to provide guarantees for the composed system. This

becomes particularly compelling to address large scale applications where multiple subsystems

are interacting like, e.g., in a smart grid involving loads, generators, storage systems, that are

interconnected through the electrical grid.

The idea behind compositional verification is to apply costly computations to smaller

subsystems, and then combine the results to infer properties about the composed systems.

Because the analysis steps are so much more complex than the system description itself, we

can assume without much penalty that we have a monolithic description of the system, and

then subdivide it into subsystem that suit our method of analysis. In the remainder of this

section, when we speak of decomposing the system, this does not necessarily imply that we

actually construct the entire system description and then manipulate the description to obtain

subsystems. Often, a structural analysis of the system, which can itself be compositional, can

identify which subsystems should be analyzed in which configuration. However, by speaking

about the (implicitly or explicitly) composed system, we can take the decomposition to

the level of individual variables, which allows us to identify the decomposition that is most

advantageous in terms of the approximation error. We distinguish the following cases of how

variables depend on each other, illustrated in Fig.2:

1. Parallel : If variables do not depend on each other (maybe with common inputs), the

decomposition is straightforward.

2. Cascade: The variables depend on each other in a cascade structure, where the variables

can be ordered such that one depends on its predecessors but not on its successors. This

structure can be analyzed compositionally by starting with the first component in the

cascade, then moving on to its successor, etc.

3. Feedback : Some variables are connected in a feedback loop. Decomposing the loop

could lead to unstable behavior, in which case the analysis would be overly conservative.

Therefore, it may be better to analyze the entire loop together (without decomposition).

However, the algorithm we propose in Sect. 2.1.3 can handle even this case, since it

exploits a mixed composed/decomposed approach.

It is clear that, in general, a separate analysis of the components will incur an (over-)

approximation error that can be much greater than the composed system. Note that this error

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

6 of 70

2 COMPOSITIONAL VERIFICATION

xu

y

(a) parallel

xu

zy

(b) cascade

x

u

(c) feedback

Figure 2: Dependencies between subsystems

is distinctly worse in set-based analysis compared to numerical simulation: As we will show in

Section 2.1.3 with reference to linear systems, the approximation error is at most linear in the

diameter of the set. Taking numerical simulation to be the limit case of set-based analysis

with sets of diameter zero, this means that the approximation error is zero if our algorithm

would be applied to numerical analysis. This is due to the mixed composed/decomposed

approach that will be described later.

In Section 2.1, we describe the decomposition problem for the important class of linear

time-invariant systems with nondeterministic inputs. This class of systems actually refers

to differential inclusions: approximation errors or modeling uncertainties can be added as

set-valued bias terms that guarantee that the actual behavior is included in the set of solutions

of the system. The question of the approximation error that can be achieved will be discussed

on a general level in Section 2.1.2 and in Section 2.1.3 with specific reference to the reachability

algorithm.

In Section 2.2 a verification method for cascade Mixed Logical Dynamical (MLD) systems

exploiting decomposition and model reduction is presented. MLD systems ([8]) are equivalent

to various classes of hybrid models [23, 7], and, in particular, to PieceWise Affine (PWA)

systems commuting between a finite set of affine dynamics (the modes), each one associated

with a polyhedral region in the partitioned joint state and input space. The PWA systems

class is important from a theoretical as well as a practical point of view, since arbitrarily

complex nonlinear systems can be approximated with PWA systems with an approximation

error that depends on the size of the polyhedral regions.

2.1 Decomposing continuous-time systems

We consider a linear time invariant (LTI) dynamical system of the form

ẋ = Ax, (1)

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

7 of 70

2 COMPOSITIONAL VERIFICATION

`

X

{x ∈ R2 : `Tx ≤ ρX (`)}

•σX (`)

Figure 3: Geometric interpretation of the support function of a convex set X

with x ∈ Rn, x(0) ∈ X0. The solutions of (1) are functions x(t) = eAtx(0), which we can write

as sets

X (t) = eAtX0.

We call the set-valued function X (t) a reach tube.

Assuming we have an algorithm to approximate the reachable states of the system, can we

decompose A and compute the reachable states on the components at a lower cost? Without

loss of generality, we consider in the sequel a decomposition of the system into two subsystems.

By applying this procedure recursively, we can achieve a decomposition into an arbitrary

number of subcomponents.

We decompose the system into two subsystems, one producing a reach tube Y(t) and one

producing a reach tube Z(t) such that the result is an overapproximation of the reach tube

X (t).

Definition 1 (Cartesian decomposition). Reach tubes Y(t), Z(t) are a Cartesian decomposi-

tion of a reach tube X (t) if

X (t) ⊆ Y(t)×Z(t). (2)

Notation Let us introduce some notation. We denote with In the identity matrix and

with 0n the zero matrix of dimension n × n. The p-norm of an n-dimensional vector x is

‖x‖p =
(∑n

i=1|xi|p
)1/p

. From the dual norm property [24], the matrix norm induced by the

p-norm on vectors satisfies, for any 1 ≤ p ≤ ∞,

∥∥AT
∥∥

p
p−1

= ‖A‖p . (3)

The logarithmic norm of A is µp(A) = limδ→0+(‖In + δA‖p− 1)/δ [41]. It provides the bound

∥∥eAt
∥∥
p
≤ eµp(A)t. (4)

Moreover, from (3) we deduce

µ p
p−1

(AT) = µp(A). (5)

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

8 of 70

2 COMPOSITIONAL VERIFICATION

Decomposing the Initial States We can deduce from (2) that the best choice for the

initial states of the subsystems is their projection.

Lemma 2.1. The smallest sets of initial states of any Cartesian decomposition are Y0 =(
In1 0n2

)
X0 and Z0 =

(
0n1 In2

)
X0.

Proof. Note that

Y(t)×Z(t) =

In1

0n2

Y(t)⊕

0n1

In2

Z(t).

Setting t = 0 in X (t) ⊆ Y(t)×Z(t), we get

X0 ⊆

In1

0n2

Y0 ⊕

0n1

In2

Z0.

Multiplying both sides with
(
In1 0n2

)
, we get

(
In1 0n2

)
X0 ⊆

(
In1 0n2

)

In1

0n2

Y0 ⊕

(
In1 0n2

)

0n1

In2

Z0

=
(
In1

)
Y0 ⊕ 0n = Y0,

and similarly for Z0.

In general we have X0 6= Y0 ×Z0. This means that even if the two subsystems perfectly

model the dynamics of the system, the Cartesian decomposition incurs an approximation

error due to the overapproximation of the initial states. Let

X̂ (t) := eAtX̂ 0, with X̂ 0 := Y0 ×Z0. (6)

It is straightforward that any Cartesian decomposition satisfies

X̂ (t) ⊆ Y(t)×Z(t), (7)

and equality holds if the decomposition perfectly matches the system dynamics. Depending

on how we compute Y(t),Z(t), equality may not hold.

Definition 2 (Exactness). A decomposition is exact if X̂ (t) = Y(t)×Z(t).

Before we move on to examining the error of decompositions that are not exact, we first

introduce the notation and some basic notions about convex sets.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

9 of 70

2 COMPOSITIONAL VERIFICATION

2.1.1 Fundamentals of set approximations

Minkowski sum and support function Recall that the Minkowski sum of two sets X
and Y is the set of sums of elements of X and Y , namely X ⊕Y = {x+ y : x ∈ X and y ∈ Y}.
There is a relation between products of sets and Minkowski sum: if X ⊆ Rn and Y ⊆ Rm,

then X × Y = (X × {0m})⊕ ({0n} × Y).

Let X ⊆ Rn be a compact convex set. The support function of X , denoted ρX , is defined

as ρX : Rn → R,

ρX (`) = max
x∈X

`Tx.

We will use the following well-known properties.

Proposition 1. For all compact convex sets X , Y in Rn, for all n× n real matrices A, all

positive scalars λ, and all vectors ` ∈ Rn, we have:

1. ρAX (`) = ρX (AT `)

2. ρλX (`) = ρX (λ`) = λρX (`)

3. ρX⊕Y(`) = ρX (`) + ρY(`)

Approximations of Convex Sets We recall some basic notions for approximating convex

sets. Throughout the paper, we denote convex sets as X ⊆ Rn, Y ⊆ Rn1 , Z ⊆ Rn2 , with

n1 + n2 = n. Let Bnp be the ball of the p-norm in n dimensions, Bnp = {x | ‖x‖p ≤ 1}.
Its support function is ρBnp (d) = ‖d‖ p

p−1
. We measure the approximation accuracy as the

Hausdorff distance with respect to a given p-norm:

dpH
(
X , X̂

)
= inf{ε ≥ 0 | X̂ ⊆ X ⊕ εBnp and X ⊆ X̂ ⊕ εBnp }.

Another useful characterization of the Hausdorff distance is the following. Let X ,Y ⊂ Rn

be polytopes. Then,

dpH(X ,Y) = max
`∈Bnp

|ρY(`)− ρX (`)|.

In the special case X ⊆ Y, the absolute value can be removed.

Lemma 2.2. Let X̂ with X ⊆ X̂ , and let ε > 0. Then, dpH(X , X̂) ≤ ε if and only if for all

d ∈ Rn,

ρX̂ (d) ≤ ρX (d) + ε ‖d‖ p
p−1

.

Coordinate transformations scale the approximation error as follows.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

10 of 70

2 COMPOSITIONAL VERIFICATION

Lemma 2.3. If X ⊆ X̂ , then dpH
(
MX ,M X̂

)
≤ ‖M‖p d

p
H

(
X , X̂

)
. This bound is tight in the

sense that for some ε > 0 there is a point on the boundary of M(X ⊕ εBp) whose distance to

MX in the p-norm is ‖M‖p.

Proof. Expressed with support functions,

ρMX̂ (d) = ρX̂ (MTd) ≤ ρX (MTd) + ερBp(MTd)

≤ ρX (MTd) +
∥∥MT

∥∥
p

p−1
ε ‖d‖ p

p−1

With (3),
∥∥MT

∥∥
p

p−1
= ‖M‖p.

The existence of the point on the boundary follows from the definition of the matrix

norm, which implies existence of d, and the definition of the support function, which implies

existence of a point.

The Hausdorff distance is subadditive for the Cartesian product.

Lemma 2.4. For d =
(
a
b

)
, ‖a‖p ≤ ‖d‖p, ‖b‖p ≤ ‖d‖p, and ‖d‖1 = ‖a‖1 + ‖b‖1.

Lemma 2.5. Assume that Y ⊆ Ŷ ⊆ Rn1 and Z ⊆ Ẑ ⊆ Rn2. Then, for 1 ≤ p <

∞, dpH
(
Y × Z, Ŷ × Ẑ

)
≤ dpH

(
Y, Ŷ

)
+ dpH

(
Z, Ẑ

)
. For p = ∞, d∞H

(
Y × Z, Ŷ × Ẑ

)
≤

max
{
d∞H
(
Y, Ŷ

)
, d∞H

(
Z, Ẑ

)}
.

Proof. Let p ≥ 1, dpH
(
Y, Ŷ

)
≤ ε1, and dpH

(
Z, Ẑ

)
≤ ε2. By definition, Y ⊆ Ŷ ⊆ Y ⊕ ε1Bp and

Z ⊆ Ẑ ⊆ Z ⊕ ε2Bp. Expressed with support functions, for any direction d1,

ρŶ(d1) ≤ ρY(d1) + ε1ρBn1
p

(d1) = ρY(d1) + ε1 ‖d1‖ p
p−1

,

and similarly for Ẑ and any direction d2. Applying

Y × Z =

In1

0n2

Y ⊕

0n1

In2

Z,

we get for any direction d =
(
d1
d2

)
, with Lemma 2.4,

ρŶ×Ẑ(d) = ρŶ(d1) + ρẐ(d2)

≤ ρY(d1) + ε1 ‖d1‖ p
p−1

+ ρZ(d2) + ε2 ‖d2‖ p
p−1

= ρY×Z(d) + ε1 ‖d1‖ p
p−1

+ ε2 ‖d2‖ p
p−1

≤ ρY×Z(d) + (ε1 + ε2) ‖d‖ p
p−1

.

Let ε = max{ε1, ε2} and p =∞, then with Lemma 2.4,

ρŶ×Ẑ(d) ≤ ρY×Z(d) + ε ‖d1‖1 + ε ‖d2‖1
= ρY×Z(d) + ε ‖d‖1 .

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

11 of 70

2 COMPOSITIONAL VERIFICATION

We pay special attention to the case where X is a polyhedron, since we frequently encounter

it in practice. The following lemma allows us to efficiently compute the distance between

convex sets X , X̂ if the constraints of X are given.

The asphericity of a non-empty bounded convex set is the minimum ratio of the circum-

radius (the radius of the exterior ball of smallest volume) to the inradius (the radius of the

interior ball of largest volume). In general, it can be computed with arbitrary accuracy by

solving a sequence of LP problems [15]. In particular, in the case of initial sets given by

hyper-rectangles it is trivial to compute it in the sup-norm.

Lemma 2.6 (see [31]). Let X be a polytope given by constraints
∧
i f

T
i x ≤ gi, i ∈ {1, . . . ,m},

and we assume WLOG that ||fi||p = 1. Let pX be the asphericity of X (in the p-norm). For

any polytopic over-approximation, X̂ ⊇ X , it holds

dpH(X , X̂) ≤ pX max
i
ρX̂ (fi)− gi.

2.1.2 Decomposition error

In the following subsections, we compare the error incurred by the decomposition X̂ (t) instead

of X (t).

Similarity Transformations Sometimes the decomposition requires a coordinate trans-

formation with similarity matrix S, i.e., we decompose the system

˙̄x = SAS−1x̄

with reach tubes Ȳ(t), Z̄(t) and obtain as approximation of the original system

X̂ (t) ⊆ S−1
(
Ȳ(t)× Z̄(t)

)
, (8)

with initial states Ȳ0 = S1X0 and Z̄0 = S2X0, where
(
S1
S2

)
= S.

Approximation of the Initial States The distance from X̂ (t) to X (t) is quantified as

follows.

Lemma 2.7. Let X (t) = eAtX0, X̂ (t) = eAtX̂ 0. Then

dpH
(
X (t), X̂ (t)

)
≤ eµtdpH

(
X0, X̂ 0

)
,

where µ = µp(A) is the logarithmic p-norm of A.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

12 of 70

2 COMPOSITIONAL VERIFICATION

Proof. From Lemma 2.3 and inequality (4), it follows that

dpH
(
X (t), X̂ (t)

)
≤ ||eAt||dpH

(
X0, X̂ 0

)
≤ eµtdpH

(
X0, X̂ 0

)
.

Note that a similarity transformation does not change how the error evolves over time.

Polyhedral initial states If X0 is a polytope in constraint form, then Lemma 2.6 can be

used to efficiently compute the error bound ε of the initial states for a given similarity matrix

S. Note that if S−1 = ST , then f1
i = ST1 S1fi, f

2
i = ST2 S2fi.

Let πj(v) denote the projection of the vector v ∈ Rn onto the variables associated to the

j-th block, for j ∈ {1, . . . , b}.

Proposition 2. Let X0 be a polytope given by constraints
∧
i f

T
i x ≤ gi, with asphericity pX0 ,

and assume WLOG that ||fi|| = 1. Consider a decomposition into b blocks. Then

dH(X0, X̂0) ≤ pX0 max
i

b∑

j=1

ρX0

(
STj πj

(
(S−1)T fi

))
− ρX0(fi). (9)

Proof. First we prove the case b = 2 blocks. The general case follows by induction. We let

X̂ 0 := S−1(Ȳ0 × Z̄0), and want to prove that

dH(X0, X̂0) ≤ pX0 max
i
ρX0(ST1 π1(Sfi)) + ρX0(ST2 π2(Sfi))− ρX0(fi). (10)

We have that

dH(X0, X̂0) = dH(X0, S
T (S1X0 × S2X0))

= max
`∈Bnp

ρST (S1X0×S2X0)(`)− ρX0(`)

= max
`∈Bnp

ρS1X0×S2X0(S`)− ρX0(`)

= max
`∈Bnp

ρ(S1X0×{0n2})⊕({0n1}×S2X0)(S`)− ρX0(`)

= max
`∈Bnp

ρS1X0×{0n2}(S`) + ρ{0n1}×S2X0
(S`)− ρX0(`)

Putting this together,

dH(X0, X̂0) = max
`∈Bnp

ρX0(ST1 π1(S`)) + ρX0(ST2 π2(S`))− ρX0(`). (11)

The conclusion follows from applying Lemma 2.6, and the homogeneity property of the

support function.

Iteratively applying the previous proposition, we can handle an arbitrary number of blocks.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

13 of 70

2 COMPOSITIONAL VERIFICATION

ẏy

żz

A1

A2

Figure 4: Block-diagonal structure illustrated as a block diagram

Block-Diagonal Decomposition A straightforward decomposition is possible if A is block

diagonal:

A =

A1 0

0 A2

 ⇒ eAt =

e

A1t 0

0 eA2t

 .

Any matrix can be brought to block diagonal form by a coordinate transformation of the

form y = Sx. For instance, any square matrix A can be brought to real Jordan form [24]

SAS−1 =

J1 0 0

0
. . . 0

0 0 JK

 , with Jk =

Ck I 0

0
. . . I

0 0 Ck

 ,

with two-dimensional block of the form Ck =
(ak bk
−bk ak

)
for the eigenvalue ak ± ibk. The size of

the blocks Jk corresponds to the multiplicity of the k-th eigenvalue of A. Every system A

with distinct eigenvalues can therefore be decomposed into 2-dimensional subsystems, so the

decisive question is whether the initial condition can also be decomposed in the transformed

coordinates.

Proposition 3. Consider a system ẋ = Ax and nonsingular S such that

SAS−1 =

A1 0

0 A2

 ,

with A1 ∈ Rn1×n1 and A2 ∈ Rn2×n2 . Let S1 ∈ Rn1×n be the first n1 rows of S and S2 ∈ Rn2×n

be the remaining rows, i.e.,
(
S1
S2

)
= S. Let Ẏ = A1Y , Ż = A2Z with Y0 = S1X0 and

Z0 = S2X0. Then X̂ (t) = S−1
(
Y(t)×Z(t)

)
.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

14 of 70

2 COMPOSITIONAL VERIFICATION

ẏy

żz

A1

A2

A12

Figure 5: Upper-triangular structure illustrated as a block diagram

Upper triangular decomposition If the system is of upper triangular form, it is straight-

forward and well-known that the solution x(t) can be computed by first computing z(t) and

then solving for y(t) using z(t) as an input. The extension to sets is however not entirely

trivial, since reach tubes do not preserve trajectories. Different sets of trajectories could

produce the same reach tube Z(t), but might lead to different reach tube X (t). We show

through set-based integration that this is not the case and the decomposition is valid even

with sets.

Proposition 4. Consider a system ẋ = Ax with matrix A of the form

A =

A1 A12

0 A2

 .

Let the decomposed systems be

Ẏ = A1Y +A12Z, (12)

Ż = A2Z (13)

with Y0 =
(
In1 0n2

)
X0 and Z0 =

(
0n1 In2

)
X0. Then X̂ (t) ⊆ Y(t)×Z(t).

Proof. The solution of the system is

X (t) = eAtX0 =

∞∑

k=0

Ak t
k

k!X0 =

e

A1t
∫ t

0 e
A1(t−s)A12e

A2sds

0 eA2t

X0

In the decomposition, we first obtain the solution Z(t) = eA2tZ0. For a given trajectory Z(t),

the solution for Y(t) is known to be

Y(t) = eA1tY0 ⊕ eA1t

∫ t

s=0
e−A1sA12Z(s)ds,

Since Z(t) ∈ Z(t), we have that Y(t) includes all possible solutions (but maybe more).

The degree of the overapproximation obtained through the decomposition depends on the

diameter of Z(t), which in turn depends only on the diameter of Z0 and
∥∥eA2t

∥∥.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

15 of 70

2 COMPOSITIONAL VERIFICATION

The real Schur decomposition transforms any square matrix A into upper triangular form

with block size 2× 2. A potential advantage of the Schur form over the real Jordan form is

numerical stability. The downside of any block triangular decomposition is the fact that it

cannot be parallelized.

2.1.3 Decomposed reachability algorithm

In this section, we present the reachability algorithm, which was published in [13]. All

set-based compositional verification approaches known to us use the following sequence:

1. decomposing the system in continuous time,

2. discretizing time and computing the appropriate initial sets,

3. computing the reachable sets of the subsystems,

4. either combine the reach sets to a reach set of the composed system, or check properties

directly on the subsystem.

The starting point of this algorithm – and ultimately the root of its success – was the

observation that the time discretization step (essentially, computing the matrix exponential)

is orders of magnitudes faster than the set computations required for reachability. Based on

this observation, we change the order of the first two steps to discretize the composed system

instead:

1. discretizing time and computing the appropriate initial sets,

2. decomposing the system,

3. computing the reachable sets of the subsystems,

4. either combine the reach sets to a reach set of the composed system, or check properties

directly on the subsystem.

Discretizing Time Starting from a continuous-time system of the form

ẋ = Ax+ u, u ∈ U , x(0) ∈ X0,

we bring the system to a discrete-time form

X (k + 1) = ΦX (k)⊕ V(k),

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

16 of 70

2 COMPOSITIONAL VERIFICATION

where

Φ = eAδ

X (0) = CH
(
X0,ΦX0⊕δU(0)⊕Eψ(U(0), δ)⊕E+(X0, δ)

)

V(k) = δU(k)⊕ Eψ(U(k), δ), ∀ k = 0, 1, . . . , N

. (14)

Note that in this general form we admit the possibility that the set U may change from one

time step to the next. If we are only interested in looking at the system at discrete points in

time – without covering the states reached in the dense time between – the transformation is

Φ = eAδ

X (0) = X0

V(k) = Φ1(A, δ)U(k), ∀ k = 0, 1, . . . , N

(15)

The auxiliary error terms (bloating terms) are

Eψ(U(k), δ) := �(Φ2(|A|, δ) � (AU(k)))

E+(X0, δ) := �(Φ2(|A|, δ) � (A2X0)),

where the matrices Φ1(A, δ) and Φ2(A, δ) are defined via

Φ1(A, δ) :=
∞∑

i=0

δi+1

(i+ 1)!
Ai, Φ2(A, δ) :=

∞∑

i=0

δi+2

(i+ 2)!
Ai.

Decomposed Reachability We now consider the system decomposed into b row-blocks:

X (k + 1) =

Φ11 · · · Φ1b

...
. . .

...

Φb1 · · · Φbb

X (k)⊕ V(k). (16)

In this recurrence, the approximation error of the k-th step is propagated, and possibly

amplified, in step k + 1. This can be partly avoided by using a non-recursive form [21]. We

present two scenarios, which differ in whether the sequence of input sets is constant or not.

Let Φk
ij be the submatrix of Φk corresponding to the indices of the submatrix Φij of Φ.

Constant input sets Assuming that the sets V do not depend on k, the non-recurrent

form of (16) is:

X (k) = ΦkX (0)⊕W(k)

W(k + 1) =W(k)⊕ ΦkV, W(0) := {0n}.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

17 of 70

2 COMPOSITIONAL VERIFICATION

The decomposed map, for i = 1, . . . , b, is:

X̂ i(k) =

b⊕

j=1

Φk
ijX̂ j(0)⊕ Ŵ i(k)

Ŵ i(k + 1) = Ŵ i(k)⊕ [Φk
i1 · · ·Φk

ib]V, Ŵ i(0) := {02}.

(17)

Note that the set [Φk
i1 · · ·Φk

ib]V in (17) is of low dimension and corresponds to the i-th block.

Time-varying input sets Assuming that the sequence of inputs depends on k, the non-

recurrent form of (16) is:

X (k) = ΦkX (0)⊕W(k)

W(k + 1) = ΦW(k)⊕ V(k), W(0) := {0n}.

The decomposed map, for i = 1, . . . , b, is:

X̂ i(k) =
b⊕

j=1

Φk
ijX̂ j(0)⊕ Ŵ i(k)

Ŵ i(k + 1) =
b⊕

j=1

ΦijŴj(k)⊕ V̂ i, Ŵ i(0) := {02}.
(18)

Error Analysis in Discrete Time We briefly present the results from [13]. We base the

analysis on the matrix norm of the transformation matrix Φ. There exist constants KΦ and

αΦ such that ∥∥∥Φk
∥∥∥
p
≤ KΦα

k
Φ, k ≥ 0.

If Φ = eAδ, one choice is αΦ = eλδ with λ the spectral abscissa (largest real part of any

eigenvalue of A), although it may not be possible to compute the corresponding KΦ efficiently.

In this case, αΦ ≤ 1 if the system is stable. Another choice is to let αΦ = eµδ, with µ the

logarithmic norm of A and KΦ = 1. In this case, αΦ may be larger than 1 even for stable

systems. Note that in both cases αΦ → 1 as δ → 0.

It turns out that the approximation error is linear in the width of the initial states and the

inputs, and in the decomposition errors of the initial states and the input sets. For unstable

systems, or time steps not large enough, the input set can become the dominating source of

error, e.g., considering cases with αΦ > 1
2 .

Proposition 5. [13] Let the decomposition error of the initial states X (0) be bounded by

εx ≥ dpH
(
X (0), X̂ (0)

)
, and let the decomposition error of V be bounded by εv ≥ dpH

(
V, V̂

)
.

Let ∆x
j be the diameter of X̂ j(0), and ∆x

sum =
∑b

j=1 ∆x
j . Let ∆v

j be the diameter of V̂j, and

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

18 of 70

2 COMPOSITIONAL VERIFICATION

∆v
sum =

∑b
j=1 ∆v

j . Then the approximation error due to decomposition, at step k, is bounded

by

dpH
(
X̂ (k),X (k)

)
≤ KΦ

(
αkΦ
(
b∆x

sum + εx
)

+
(
b∆v

sum + εv
)
αΦ

1− αk−1
Φ

1− αΦ

)
+ εv.

If αΦ < 1 (stable system), the error is bounded for all k by

dpH
(
X̂ (k),X (k)

)
≤ KΦ

(
b∆x

sum + εx +
(
b∆v

sum + εv
) αΦ

1− αΦ

)
+ εv.

Error Analysis in Continuous Time In dense time, the decomposition error of V is

bounded by

εv = δdpH
(
U , Û

)
.

The decomposition error for the initial states is more complex and harder to estimate. We

consider the idealized case where the system is stable with αΦ = e−λδ, λ > 0, for an

infinitesimal time step δ → 0. Then αΦ → 1− λδ and αΦ
1−αΦ

→ 1
λδ , so that the decomposition

error due to the inputs does not go to zero in Prop. 5. Let ∆X0 , ∆U be the sum of the

diameters of decomposed sets of X0 and U . Let εx0 = dpH
(
X0, X̂ 0

)
and εv0 = dpH

(
U , Û

)
. For

both the discrete time and the dense time case, εx → εx0 , ∆x
sum → ∆X0 , ∆v

sum → δ∆U and

εv → δεv0. Then Prop. 5 gives a nonzero upper bound

dpH
(
X̂ (k),X (k)

)
≤ KΦ

(
b∆X0 + εx0 +

(
b∆U + εv0

) 1

λ

)
+O(δ).

This indicates that a small time step may be problematic for systems with large time constants

(small λ).

Experimental Results In [13], we compared the above algorithms to the best-performing

analysis tools: SpaceEx for continuous time and Hylaa for discrete time. On 9 standard

benchmarks, with dimensions from 8 to 10913, we obtained a speedup of a factor of 1x–79x.

In continuous time, we were able to handle systems up to dimension 10913, while SpaceEx

crashed for dimensions larger than 384.

In sum, we can report a speedup of up to two orders of magnitude and pushing the size of

treatable systems also by two orders of magnitude. It remains open under which characteristics

a system can benefit from a large speedup with our algorithm. While sparsity of the dynamic

matrix is a positive indicator, our experiments indicate that it is neither a guarantee nor a

requirement.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

19 of 70

2 COMPOSITIONAL VERIFICATION

2.1.4 Industrial case study

In this section we present the results of the evaluation of the decomposition approach presented

in Section 2.1.3 on an industrial use case at Bosch.

The source model of the use case consists of partial differential equations (PDEs) which

describe chemical processes within an one-dimensional pipe. We discretized the system of PDEs

spatially into N homogeneous cells in order to obtain non-linear ODEs. Furthermore, the ODEs

are linearized in order to be able to perform reachability analysis with the novel decomposition

approach [13] and SpaceEx [1, 19]. Here, SpaceEx is our reference implementation as one of

the most performant reachabililty analysis tools for linear systems. Increased performance of

reachability analysis tools are of considerable interest within Bosch as they allow the use of

more complex and accurate models and enable us to use reachability analysis in automated

controller synthesis approaches that provide us with safety guarantees. In case of the use case

considered within this section, more accurate models can be realized by increasing the number

of spatial cells N . In our evaluations we set N to three different values N ∈ {10, 100, 200}.
The number of state variables xi for each model is then equal to N . Being able to increase

the size of the model in terms of number of states in a meaningful way makes the selected use

case especially suitable for investigating the scalalbility of the novel decomposition approach

against existing methods.

The parameters of the reachability tools were set as follows: The discretization time σ

(decomposition algorithm) and the sampling time (SpaceEx) were set to 5ms with a total time

horizon of T = 5s. Within SpaceEx, we used the state-of-the-art support function algorithm

LGG with flow pipe tolerance set to −1. The non-deterministic initial set χ0 was defined to

be a hypercube from 0 to 0.1 (∀i ∈ 1, . . . , N : xi(0) ∈ [0, 0.1]).

All experiments were performed on an standard HP Elitebook 840 G2 notebook with Intel

Core i5-5300U 2.3GHz and 16GB RAM running Linux. SpaceEx version was v0.9.8f.

Table 1 summarizes the experimental results regarding the runtimes of the novel de-

composition algorithm and SpaceEx. Figures 6 to 11 show the reachable sets computed

by the new algorithm/SpaceEx for the last state xN (end of the one-dimensional pipe) for

N ∈ {10, 100, 200} over time t.

Regarding computation time, we observe that new decomposition approach is considerably

faster for the more accurate spatial discretization in the models with N = 100 and N = 200

in our data set. The speedup can be more than two orders of magnitude. At the same time,

the new algorithm does not introduce any over-approximation compared to SpaceEx. The

potential over-approximation introduced by the decomposition approach in contrast to the

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

20 of 70

2 COMPOSITIONAL VERIFICATION

Runtime [s]

N new decomp. approach orig. SpaceEx Speedup O.A. [%]

10 0.09 0.26 2.89 -16.80

100 0.56 22.80 40.71 -1.98

200 1.52 169.96 111.82 -3.06

Table 1: Runtime comparison and over approximation (O.A.) results between the implementation of

the novel decomposition approach and the state-of-the-art algorithm in SpaceEx for different numbers

of state variables N .

results of SpaceEx were computed in the same way as described in [13]: The bounds of the

reachset from SpaceEx for the state xN (t = T) were taken as the baseline and we report the

relative deviation. In fact, the bounds of the reachsets are a bit smaller for the reported

evaluation at xN (T) (N ∈ {10, 100, 200}) (since the numbers in column “O.A.” are negative).

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

21 of 70

2 COMPOSITIONAL VERIFICATION

Figure 6: Reachsets computed for state x10 (N = 10) by the new decomposition approach.

Figure 7: Reachsets computed for state x10 (N = 10) by SpaceEx.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

22 of 70

2 COMPOSITIONAL VERIFICATION

Figure 8: Reachsets computed for state x100 (N = 100) by the new decomposition approach.

Figure 9: Reachsets computed for state x100 (N = 100) by SpaceEx.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

23 of 70

2 COMPOSITIONAL VERIFICATION

Figure 10: Reachsets computed for state x200 (N = 200) by the new decomposition approach.

Figure 11: Reachsets computed for state x200 (N = 200) by SpaceEx.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

24 of 70

2 COMPOSITIONAL VERIFICATION

2.2 Verification of structured mixed logical dynamical systems

Differently from the previous section that was focusing on compositional verification for

continuous linear systems, in this section we address compositional verification for systems

which are hybrid, i.e., have both a continuous and a discrete state/input component, but still

are characterized a (piecewise) linear dynamics governing the continuous state evolution.

More specifically, we consider the problem of verifying a specification that is given in

terms of a finite horizon behavior of some output variable of a mixed logical dynamical (MLD)

systems ([8]). The output can possibly coincide with the state of the MLD system. More

specifically, we shall focus on

i) MLD systems that can be partitioned into a cascade of smaller MLD subsystems,

ii) a system composed of multiple MLD systems that are coupled by some joint constraint.

In both cases verification is reformulated as an optimization program, which is solved through

an iterative procedure that is guaranteed to terminate in a finite number of iteration. The

solution for cascade systems exploits non influential input detection and model reduction,

while the one for constraint coupled systems rests on a parallel scheme for the solution of the

optimization program.

2.2.1 Integrating non-influential input detection and model reduction for cas-

caded systems

We consider a Mixed Logical Dynamical (MLD) system S̃ described by:

x̃(k + 1) = Ax̃(k) +Buu(k) +Bδδ(k) +Bzz(k) +Baff

ỹ(k) = Cx̃(k) +Duu(k) +Dδδ(k) +Dzz(k) +Daff (19)

Exx(k) + Euu(k) + Eδδ(k) + Ezz(k) ≤ Eaff

where x̃ ∈ Rñ is the state, y ∈ Rp̃ is the output, and u = [u1, u2, . . . , um]> is the input vector,

which comprises m scalar control inputs ui ∈ [ui, ui], i = 1, . . . ,m. As for δ and z, they are

respectively binary and continuous auxiliary variables: δ ∈ {0, 1}rl and z ∈ Rrc . For MLD

systems, the assumption of well-posedness translates into the uniqueness of the solution of

the inequalities in (19), i.e., given a state-input pair it is always possible to find a unique

corresponding value for the auxiliary variables δ and z.

Our goal is to verify if there exists some assignment for the inputs ui, i = 1, . . . ,m,

that make system (19) satisfy a certain specification starting from a given initial condition

x̃(0) = x̃0. The specification is expressed in terms of the behavior of the output ỹ along a

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

25 of 70

2 COMPOSITIONAL VERIFICATION

finite horizon of length T + 1. Typically, it is given in terms of some constraint on the value

of ỹ:

ỹ?l,h ≤ ỹ(t+ h) ≤ ỹ?u,h, h = 0, 1, . . . , T. (20)

for some t ≥ 0, where ỹ?l,h and ỹ?u,h denote respectively some lower and upper bound on

ỹ(t+ h).

The verification problem can be rephrased as an input design problem where we aim at

determining an input sequence such that the specification is satisfied. Among all possible

solutions to this input design problem, we aim at the one that enforces the specification

by setting as few inputs as possible (influential inputs), or, equivalently, by maximizing the

number of inputs that can take an arbitrary value without compromising the satisfaction of

the specification (non-influential inputs). This problem arises within a verification context

where the aim is to test the correct functioning of some given system, whose evolution is

affected by some inputs. In such a context, the specification may represent an unsafe behavior

for the system and the goal is to verify if the system is safe for each possible assignment of

the inputs, and, if this is not the case, what are the inputs responsible for the unsafe behavior

(influential input detection).

According to the approach that we proposed in [42], the problem can be structured into

the following two main steps:

� enlarge the MLD system by embedding in its description the specification, and translate

the specification into a reachability condition with some suitable target set for the

system output;

� reformulate the problem of reaching the target set as an optimization problem, where,

simultaneously, we look for the input sequences that steer the output of the enlarged

system into the target set and we also detect which inputs are non-influential.

Depending on the system at hand – and, in particular, for high dimensional systems with

both continuous and logic state components – the resulting optimization problem may be

difficult to solve. If the system under analysis can be partitioned into a cascade of smaller

subsystems, then, it is possible to exploit the cascade structure to simplify the problem. More

specifically, the idea developed in [42] is to start from the last subsystem in the cascade,

solve the optimization problem for it, and use that solution to formulate an ’intermediate’

specification that involves the outputs of the preceding subsystem in the cascade. Then, by

iterating this procedure, we can trace all the way back to the inputs of the original system.

Note that the detection of non-influential inputs can play a significant role also within the

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

26 of 70

2 COMPOSITIONAL VERIFICATION

iteration procedure, since the tightness of each intermediate specification decreases as the

number of non-influential inputs increases.

The described decomposition method can be integrated with model reduction of an MLD

system so as to reduce its complexity. The model reduction method that we developed in [43]

and reported in Deliverable 1.2 of the project can be particularly useful to this purpose since

it preserves the input/output behavior of the system and detects inputs that do not affect the

output and hence are non-influential.

In the rest of the section we recall the decomposition approach in [42] and describe an

iterative algorithm that integrates the model reduction method proposed in [43].

We start by embedding the specification into an enlarged description of the system

dynamics and then look for the inputs that make the enlarged system reach a certain region of

the state space, which corresponds to the specification being satisfied. For ease of explanation,

we focus on the case when the output ỹ is a scalar, i.e., p̃ = 1. The procedure that we shall

describe can then be easily extended to the more general case of p̃ > 1 by applying it to each

component of the output.

We introduce T additional scalar state variables x̃add,i, i = 0, . . . , T − 1, to store the

sequence ỹ(t + i), i = 0, . . . , T − 1. The additional state variables evolve according to the

equations:

x̃add,0(k + 1) = x̃add,1(k)

x̃add,1(k + 1) = x̃add,1(k)

... (21)

x̃add,T−2(k + 1) = x̃add,T−1(k)

x̃add,T−1(k + 1) = Cx̃(k) +Duu(k) +Dδδ(k) +Dzz(k) +Daff

If we define the enlarged state and output variables x ∈ Rn and y ∈ Rp, with n = ñ+ T and

p = T + 1, as follows

x(k) =

x̃add,0(k)

x̃add,1(k)
...

x̃add,T−1(k)

x̃(k)

y(k) =

ỹ(k − T)

ỹ(k − T + 1)
...

ỹ(k − 1)

ỹ(k)

and embed (21) into (19), we obtain the following enlarged system S:

x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) +Bzz(k) +Baff

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

27 of 70

2 COMPOSITIONAL VERIFICATION

y(k) = Cx(k) +Duu(k) +Dδδ(k) +Dzz(k) +Daff

Exx(k) + Euu(k) + Eδδ(k) + Ezz(k) ≤ Eaff

with appropriately defined matrices and the initialization of the additional state variable set

to zero, i.e., x(0) = x0 = [0, . . . , 0, x̃>0]>.

The problem of designing the inputs of S̃ in (19) so as to impose the satisfaction of a

specification with linear constraints of the form (20) translates into that of designing the

inputs of S so as to make its output y reach the target set Yf given by:

Yf := {y ∈ Rp : Hay ≤ Hb}

where

Ha =

 Ip

−Ip

 Hb =

[
ỹ?u,0 . . . ỹ?u,T −ỹ?l,0 . . . −ỹ?l,T

]>
,

with Ip denoting the p× p identity matrix.

Note that specifications with linear constraints jointly involving ỹ(k + i), i = 0, 1, . . . , T ,

would still translate into y belonging to some appropriately defined polytopic target set Yf .

In [42] a procedure to determine a control input sequence that steers the output of the

system in the target set Yf in some finite time say Tf starting from x0 while simultaneously

minimizing the number of influential inputs is described.

Let us consider the case when the overall system S is structured or can be reduced to the

cascade of two systems, say S1 feeding with its output S2, as in Figure 12.

Figure 12: System S is the cascade of subsystems S1 and S2.

The problem then becomes that of designing the inputs of S1 so as to make its outputs

evolve as the testing signals of S2. Note that the detection of non-influential inputs can

simplify the problem, since setting only a limited number of inputs of S1 can indeed save time

and reduce the effort in the testing phase.

Exploiting the cascade structure of S, Algorithm 1 decomposes the problem into two

sub-problems for the lower dimensional systems S1 and S2. In Algorithm 1 variables x1 and

x2 denote, respectively, the state of systems S1 and S2.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

28 of 70

2 COMPOSITIONAL VERIFICATION

Algorithm 1 Iterative verification algorithm for a cascading system with model reduction

1: Input: Systems S1, S2 with output ϕ and y; Spec y(T) ∈ Yf ; Initialization x1,0, x2,0.

2: (S2,r, x2,r, ϕr) = Reduce(S2, y)

3: (S1,r, x1,r, ur) = Reduce(S1, ϕr)

4: T2 = MinimumTimeForSpec(S2,r,Yf , x2,r,0)

5: while 1

6: ϕ∗r = solveNonInfluentialInputs(P2(S2,r, Yf , T2, x2,r,0))

7: Φr,f = translateTime2Target(ϕ∗r)

8: u∗r = solveNonInfluentialInputs(P1(S1,r, Φr,f , T2, x1,r,0))

9: if isFeasible(P1)

10: return u∗r

11: else

12: T2 ← T2 + 1

13: end

14: end

15: Output: Input sequence u∗ that steers y in the target set Yf by using as few inputs as

possible.

The algorithm starts applying a routine called reduce to obtain a reduced order system

S2,r of S2 that preserves its input/output behavior. System S2,r has state x2,r and input ϕr

obtained from the state x2 and the input ϕ of S2 by removing those state component and

inputs that are not affecting the output y. Then, a reduced order model S1,r with state x1,r

and input ur is obtained that preserves its input/output behavior, where the output is ϕr.

The minimum number T2 of time steps needed for system S2,r to reach Yf is determined

by running a routine called MinimumTimeForSpec. Then, non-influential inputs for system

S2,r, initialized at x2,r,0, are computed with reference to the reachability condition y(T2) ∈ Yf
(problem P2). The computation of non-influential inputs is achieved by function solveNonIn-

fluentialInputs. The resulting optimal control input sequence ϕ∗r is then used to formulate an

intermediate finite horizon specification on the output of S1,r (function translateTime2Target).

Note that the detection of non-influential inputs at this stage allows to relax the constraints

on the output of S1,r (or, equivalently, to enlarge the target set Φf), making it more likely to

obtain a feasible problem for S1. The same procedure for the computation of non-influential

inputs is then repeated for system S1,r. In principle, the resulting problem might be unfea-

sible, and, if that is the case, Algorithm 1 restarts the computations in the loop with an

augmented time horizon. Note also that if the algorithm stops at the first iteration, we are

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

29 of 70

2 COMPOSITIONAL VERIFICATION

guaranteed that the solution u∗ returned is also of minimum length. We refer the reader to

[42] for the description of functions MinimumTimeForSpec, solveNonInfluentialInputs, and

translateTime2Target, and to Deliverable 1.2 for the model reduction procedure implemented

in function reduce.

2.2.2 A parallel verification scheme for constraint coupled systems

Let us consider an MLD system described by

x(k + 1) = Ax(k) +Buu(k) +Bδδ(k) +Bzz(k) +Baff

y(k) = Cx(k) +Duu(k) +Dδδ(k) +Dzz(k) +Daff (22)

Exx(k) + Euu(k) + Eδδ(k) + Ezz(k) ≤ Eaff

where x ∈ Rnc × {0, 1}nl is the state composed of both continuous and binary variables,

u ∈ Rmc × {0, 1}ml is the input vector comprising a continuous and a discrete component,

and δ ∈ {0, 1}rl and z ∈ Rrc are binary and continuous-valued auxiliary variables.

Suppose that we need to verify if there exists some input sequence u(0), u(1), . . . , u(T) such

that the output y reaches some polyhedral target set at time T : y(T) ∈ Yf = {Hay ≤ Hb}.
If we set θ =

[
u(0)>, . . . , u(T)>, z(0)>, . . . , z(T)>, δ(0)>, . . . , δ(T)>

]>
, then, the problem

becomes finding θ ∈ (Rmc × {0, 1}ml)T+1 × (Rrc)T+1 × ({0, 1}rl)T+1 such that G1θ ≤
G2 + G3x(0), where G1, G2, and G3 are appropriately defined matrices obtained from the

system dynamics and the target constraint. A similar formulation can be actually derived if

the output is subject to linear constraints along the time horizon [0, T] (see Section 2.2.1). If

we set

Θ = {θ ∈ (Rmc × {0, 1}ml)T+1 × (Rrc)T+1 × ({0, 1}rl)T+1 : G1θ ≤ G2 +G3x(0)}

then, the problem reduces to determining θ ∈ Θ, which is a mixed integer linear feasibility

problem whose combinatorial complexity is determined by the number of discrete decision

variables. Suppose now that we have m MLD systems of the form (22), each one of them

possibly subject to some (linear) output specification, and that there is a coupling constraint

among their decision vectors θi, i = 1, . . . ,m, of the form:
m∑

i=1

Wiθi ≤ b, (23)

with b ∈ Rp and Wi, i = 1, . . . ,m, matrices of appropriate dimension, originating, e.g., from

some share resources with finite capacity (budget constraint). Then, the verification problem

for the m MPD systems is coupled and can be formulated as follows

Find θi ∈ Θi, i = 1, . . . ,m such that

m∑

i=1

Wiθi ≤ b. (24)

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

30 of 70

2 COMPOSITIONAL VERIFICATION

Problems of the form (24) are generally challenging to solve if the number m of systems

is large mainly due to the large number of discrete decision variables. We next describe an

iterative method to address this issue by solving m MILP in parallel whose complexity is

determined by the number of discrete decision variables in each θi vector separately (divide

and conquer strategy).

It is worth noticing that the same approach can be applied to address the verification of a

monolithic and high dimensional MLD system, if it can be decomposed in m smaller MLD

systems with a coupling constraint of the form (23). The rest of the section is extracted from

[18], with slightly modified notations.

In order to solve the feasibility program (24), we look for a solution to the optimization

problem

min
θ1,...,θm

m∑

i=1

c′iθi (25)

subject to:
m∑

i=1

Wiθi ≤ b

θi ∈ Θi, i = 1, . . . ,m

where a linear separable cost function is introduced. Note that a feasible solution for (25) is a

solution to the feasibility problem (24).

Despite the advances in numerical methods for integer optimization, when the number

m of subsystems is large, the presence of discrete decision variables makes the optimization

problem hard to solve, and calls for some decomposition into lower scale MILPs, as suggested

in [44].

A common practice to handle problems of the form of (25) consists in first dualizing the

coupling constraint introducing a vector λ ∈ Rp of p Lagrange multipliers and solving the

dual program

max
λ≥0

−λ′b+

m∑

i=1

min
θi∈Θi

(c′i + λ′Wi)θi, (26)

to obtain λ?, and then constructing a primal solution θ(λ?) = [θ1(λ?)′ · · · θm(λ?)′]′ by solving

m MILPs given by:

θi(λ) ∈ arg min
θi∈vert(Θi)

(c′i + λ′Wi)θi, (27)

where the search within the closed constraint polyhedral set Θi can be confined to its set

of vertices vert(Θi) since the cost function is linear. Unfortunately, while this procedure

guarantees θ(λ?) to satisfy the local constraints since θi(λ
?) ∈ Θi for all i = 1, . . . ,m, it does

not guarantee the satisfaction of the coupling constraint.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

31 of 70

2 COMPOSITIONAL VERIFICATION

A way to enforce the satisfaction of the coupling constraint is to follow the approach in

[40], where the dual program (26) is solved via a particular iterative methodology, namely,

the subgradient algorithm. At each iteration of the subgradient algorithm a tentative primal

solution is generated by every subsystem. By appropriately averaging the tentative solutions

across iterations (see [40, pag. 117]), one can obtain a solution that satisfies the joint constraint.

However, when discrete decision variables are present, such solution does not necessarily

satisfy also the local constraints. Specifically, letting conv(Θi) denote the convex hull of Θi,

i = 1, . . . ,m, if we apply the above procedure to (25), we obtain an optimal solution θ?LP to

the following Linear Program (LP):

min
θ1,...,θm

m∑

i=1

c′iθi (28)

subject to:
m∑

i=1

Wiθi ≤ b

θi ∈ conv(Θi), i = 1, . . . ,m.

This fact is true because the dual of the convexified problem (28) coincides with the dual of

(25) and is given by (26) (see [20] for a proof). Clearly θ?LP ∈ conv(Θ1)× · · · × conv(Θm) does

not necessarily imply that θ?LP ∈ Θ1 ×Θ2 × · · · ×Θm. Therefore the solution θ?LP recovered

using [40] satisfies the coupling constraint but not necessarily the local constraints. An

alternative approach for finding an optimal solution to the primal-dual pair (28)-(26) is to

exploit the column generation algorithm (see [25]). Even in this case, however, the procedure

converges to a solution θ?LP of (28), but it is not guaranteed that such a solution is feasible

for the local constraints in (25).

For these reasons recovery procedures for MILPs are usually composed of two steps: a

tentative solution that is not feasible for either the joint constraint or the local ones is first

obtained exploiting one of the two procedures described above, and then a problem-specific

heuristic is applied to recover a feasible solution for (25), see, e.g., [9, 35].

Problems in the form of (25) have been investigated in [6], where the authors studied the

behavior of the duality gap (i.e., the difference between the optimal value of (25) and (26))

showing that it decreases relatively to the optimal value of (25) as the number of agents grows.

The same behavior has been observed in [9]. In the recent paper [44], the authors explored

the connection between the solutions θ?LP to the linear program (28) and x(λ?) recovered via

(27) from the solution λ? to the dual program (26). They proposed a method to recover a

primal solution which is feasible for (25) by using the dual optimal solution of a modified

primal problem, obtained by tightening the coupling constraint by an appropriate amount.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

32 of 70

2 COMPOSITIONAL VERIFICATION

We now recall those parts of [44] that are relevant for the developments in this work. Let

ρ ∈ Rp with ρ ≥ 0 and consider the following pair of primal-dual problems:

min
θ1,...,θm

m∑

i=1

c′iθi (29)

subject to:
m∑

i=1

Wiθi ≤ b− ρ

θi ∈ conv(Θi), i = 1, . . . ,m

and

max
λ≥0

−λ′(b− ρ) +
m∑

i=1

min
θi∈Θi

(c′i + λ′Wi)θi. (30)

(29) constitutes a tightened version of (28), whereas (30) is the corresponding dual. For all

j = 1, . . . , p, let ρ̃ ∈ Rp be defined as follows:

[ρ̃]j = p max
i∈{1,...,m}

{
max
θi∈Θi

[Wi]jθi − min
θi∈Θi

[Wi]jθi

}
, (31)

where [Wi]j denotes the j-th row of Wi and [ρ̃]j the j-th entry of ρ̃.

Define P̃LP and D̃ as the primal-dual pair of optimization problems that are given by

setting ρ equal to ρ̃ in (29) and (30).

Assumption 1 (Existence and uniqueness, [44]).

Problems P̃LP and D̃ have unique solutions θ?LP,ρ̃ and λ?ρ̃.

Proposition 1 (Theorem 3.1 in [44]). Let λ?ρ̃ be the solution to D̃. Under Assumption 1, we

have that any θ(λ?ρ̃) satisfying (27), is feasible for (25).

The proof of Proposition 1 rests on Theorem 2.5 in [44]. Example 2.6 in [44] shows how

Theorem 2.5 in [44], and therefore also Proposition 1, strongly depend on the uniqueness

part of Assumption 1. Note, however, that in case P̃LP has multiple solutions, then a small

perturbation in its cost coefficients will render its solution unique, thus making Assumption 1

fulfilled again. We refer the reader to [44] for further details.

Inspired by the idea of constraint tightening in [44], we propose Algorithm 2 for the parallel

computation in a finite number of iterations of an approximate solution to the optimization

problem (25) that is feasible.

Algorithm 2 is a variant of the dual subgradient algorithm. As the standard dual subgra-

dient method, it includes two main steps: step 7 in which a subgradient of the dual objective

function is computed by fixing the dual variables and minimizing the Lagrangian with respect

to the primal variables, and step 13 which involves a dual update step with step size equal

to α(k), and a projection onto the non-negative orthant (in Algorithm 2 [·]+ denotes the

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

33 of 70

2 COMPOSITIONAL VERIFICATION

Algorithm 2 Parallel verification scheme

1: λ(0) = 0

2: s̄i(0) = −∞, i = 1, . . . ,m

3:
¯
si(0) = +∞, i = 1, . . . ,m

4: k = 0

5: Repeat

6: For i = 1 to m do

7: θi(k + 1)← arg min
θi∈vert(Θi)

(c′i + λ(k)′Wi)θi

8: s̄i(k + 1) = max{s̄i(k),Wiθi(k + 1)}, i = 1, . . . ,m

9:
¯
si(k + 1) = min{

¯
si(k),Wiθi(k + 1)}, i = 1, . . . ,m

10: ρi(k + 1) = s̄i(k + 1)−
¯
si(k + 1), i = 1, . . . ,m

11: ρ(k + 1) = pmax{ρ1(k + 1), . . . , ρm(k + 1)}
12: λ(k + 1)

13: =
[
λ(k) + α(k)

(m∑

i=1

Wiθi(k + 1)− b+ ρ(k + 1)
)]

+

14: k ← k + 1

15: until θ(k) = [θ1(k)′ · · · θm(k)′]′ satisfies the coupling constraint

projection operator onto the p-dimensional non-negative orthant Rp+). The operators max

and min appearing in steps 8, 9, and 11 of Algorithm 2 with arguments in Rp are meant to be

applied component-wise. The sequence {α(k)}k≥0 is chosen so as to satisfy limk→∞ α(k) = 0

and
∑∞

k=0 α(k) =∞ (e.g., α(k) = 1
k), as requested in the standard dual subgradient method

to achieve asymptotic convergence. Furthermore, in order to guarantee that the solution to

step 7 of Algorithm 2 is well-defined, we impose the following assumption on (25):

Assumption 2 (Boundedness). The polyhedral sets Θi, i = 1, . . . ,m, in problem (25) are

bounded.

If arg minθi∈vert(Θi)(c
′
i + λ(k)′Wi)θi in step 7 is a set of cardinality larger than 1, then, a

deterministic tie-break rule is applied to choose a value for θi(k + 1).

Algorithm 2 is conceived to be implemented in a parallel scheme where, at each iteration k,

every subsystem i updates its local tentative solution θi(k + 1) and communicates Aixi(k + 1)

to some central unit that is in charge of the update of the dual variable. The tentative value

λ(k + 1) for the dual variable is then broadcast to all subsystems. Note that subsystems do

not need to communicate to the central unit their local constraint set and cost but only their

tentative solution θi(k).

The tentative primal solutions θi(k + 1), i = 1, . . . ,m, computed at step 7 are used in

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

34 of 70

2 COMPOSITIONAL VERIFICATION

Algorithm 2 by the central unit to determine the amount of tightening ρ(k + 1) entering

step 13. The value of ρ(k + 1) is progressively refined through iterations based only on those

values of θi ∈ Θi, i = 1, . . . ,m, that are actually considered as candidate primal solutions, and

not based on the whole sets Θi, i = 1, . . . ,m. This reduces conservativeness in the amount of

tightening.

A further reduction in the level of conservativeness can be achieved by assigning to

[ρi(k + 1)]j in step 11 of Algorithm 2 the (less conservative) sum of the p-largest [ρi(k + 1)]j ,

for all j = 1, . . . , p. Further discussion is provided after the proof of Proposition 1.

Algorithm 2 terminates when θ(k) = [θ1(k)′ · · · θm(k)′]′ satisfies the coupling constraint.

As for the initialization of Algorithm 2, λ(0) is set equal to 0 so that at iteration k = 0 each

subsystem i computes its locally optimal solution

θi(1)← arg min
θi∈vert(Θi)

c′iθi.

Since ρ(1) = 0, if the local solutions θi(1), i = 1, . . . ,m, satisfy the coupling constraint (and

they hence are optimal for the original problem (25)), then, Algorithm 2 will terminate since

λ will remain 0, and the subsystems will stick to their locally optimal solutions.

Before stating the feasibility guarantees of the solution computed by Algorithm 2, we need

to introduce some further quantities and assumptions.

Let us consider the sequence {ρ(k)}k≥1, iteratively computed in Algorithm 2 (see step 11),

and given by

[ρ(k)]j = p max
i∈{1,...,m}

{
max
r≤k

[Wi]jθi(r)−min
r≤k

[Wi]jθi(r)
}
. (32)

Due to Assumption 2, for any i = 1, . . . ,m, conv(Θi) is a bounded polyhedron. If it is

also non-empty, then vert(Θi) is a non-empty finite set (see Corollaries 2.1 and 2.2 together

with Theorem 2.3 in [11, Chapter 2]). As a consequence, the sequence {ρ(k)}k≥1 converges in

finite-time to some ρ̄ since it takes values in a finite set and is (component-wise) monotonically

non-decreasing. Note that the limiting value ρ̄ for {ρ(k)}k≥1 satisfies ρ̄ ≤ ρ̃ and γ̄ ≤ γ̃ where

ρ̃ and γ̃ are defined in (31).

Define PLP and D as the primal-dual pair of optimization problems that are given by

setting ρ equal to ρ̄ in (29) and (30).

In order to state the feasibility properties of Algorithm 2, besides Assumption 2, the

following assumption is needed.

Assumption 3 (Existence and uniqueness).

Problems PLP and D have unique solutions θ̄?LP and λ̄?.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

35 of 70

2 COMPOSITIONAL VERIFICATION

Note that Assumption 3 is similar to Assumptions 1. However, owing to the fact that

ρ̄ ≤ ρ̃, imposing Assumption 3 in place of Assumption 1 makes Algorithm 2 applicable to a

larger class of problems with respect to the approach in [44].

We are now in a position to state the finite-time feasibility result.

Theorem 1 (Finite-time feasibility). Under Assumptions 2 and 3, there exists a finite iteration

index K such that, for all k ≥ K, θ(k) = [θ1(k)′ · · · θm(k)′]′, where θi(k), i = 1, . . . ,m,

are computed by Algorithm 2, is a feasible solution for problem (25), i.e.,
∑m

i=1Wiθi(k) ≤ b,
k ≥ K and θi(k) ∈ Θi, i = 1, . . . ,m.

Note that if PLP is not feasible for the resulting ρ̄, then
∑m

i=1Wiθi(k + 1)− b+ ρ(k + 1)

is bounded below by some positive constant for a sufficiently high k given that ρ(k + 1)

converges to ρ̄. Since
∑∞

k=0 α(k) =∞, step 13 of Algorithm 2 will then produce a {λ(k)}k≥0

sequence diverging towards +∞. Therefore, observing a component of λ(k) which diverges as

k increases is an indication that the existence part of Assumption 3 is not satisfied.

The proof of Theorem 1 is based on some preliminary results that are presented next.

Proposition 2 (Dual asymptotic convergence). Under Assumptions 2 and 3, the Lagrange

multiplier sequence {λ(k)}k≥0 generated by Algorithm 2 converges to an optimal solution of D.

Proof. As discussed after equation (32), there exists a K ∈ N such that for all k ≥ K we have

that the tightening coefficient ρ(k) computed in Algorithm 2 becomes constant and equal to

ρ̄. Therefore, for any k ≥ K, Algorithm 2 reduces to the following two steps

θi(k + 1) ∈ arg min
θi∈vert(Θi)

(c′i + λ(k)′Wi)θi (33)

λ(k + 1) =

[
λ(k) + α(k)

(
m∑

i=1

Wiθi(k + 1)− b+ ρ̄

)]

+

(34)

which constitute a gradient ascent iteration for D. According to [10], the sequence {λ(k)}k≥0

generated by the iterative procedure (33)-(34) is guaranteed to converge to the (unique under

Assumption 3) optimal solution of D.

Note that this result requires only uniqueness of the optimal solution of D. Uniqueness of

the optimal solution to PLP is not necessary.

Lemma 2.8 (Robustness against cost perturbation). Let P be a non-empty bounded poly-

hedron. Consider the linear program minθ∈P (c′ + δ′)θ, where δ is a perturbation in the cost

coefficients. Define the set of optimal solutions as Θ(δ). There always exists an ε > 0 such

that for all δ satisfying ‖δ‖ < ε, we have Θ(δ) ⊆ Θ(0).

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

36 of 70

2 COMPOSITIONAL VERIFICATION

Proof. Let u(δ) = minθ∈P (c′+ δ′)θ. Since P is a bounded polyhedron, the minimum is always

attained and u(δ) is finite for any value of δ. The set Θ(δ) can be defined as

Θ(δ) = {θ ∈ P : (c′ + δ′)θ ≤ u(δ)}, (35)

which is a non-empty polyhedron. As such, it can be described as the convex hull of its

vertices (see Theorem 2.9 in [11, Chapter 2]), which are also vertices of P (Theorem 2.7 in

[11, Chapter 2]).

Let V = vert(P) and Vδ = vert(Θ(δ)) ⊆ V . Consider δ = 0. If V0 = V , then, given the

fact that, for any δ, Θ(δ) is the convex hull of Vδ and Vδ ⊆ V = V0, we have trivially that

Θ(δ) ⊆ Θ(0), for any δ. Suppose now that V0 ⊂ V . For any choice of θ? ∈ V0 and θ ∈ V \ V0,

we have that c′θ? < c′θ, or equivalently c′(θ? − θ) < 0. Pick

ε = min
θ?∈V0
θ∈V \V0

−c
′(θ? − θ)
‖θ? − θ‖ (36)

and let (θ̄?, θ̄) be the corresponding minimizer. By construction, (36) is well defined since θ̄?

is different from θ̄. Since c′(θ? − θ) < 0 for any θ? ∈ V0 and θ ∈ V \ V0, we have that ε > 0.

Moreover, for any θ? ∈ V0 and θ ∈ V \ V0, if δ satisfies ‖δ‖ < ε, then

(c′ + δ′)(θ? − θ) = c′(θ? − θ) + δ′(θ? − θ) ≤ c′(θ? − θ) + ‖δ‖ ‖θ? − θ‖

< c′(θ? − θ) + ε ‖θ? − θ‖

≤ c′(θ? − θ) +

(
−c
′(θ? − θ)
‖θ? − θ‖

)
‖θ? − θ‖

= c′(θ? − θ)− c′(θ? − θ) = 0, (37)

where the first inequality is given by the fact that u′v ≤ |u′v| together with the Cauchy–

Schwarz inequality |u′v| ≤ ‖u‖ ‖v‖, the second inequality is due to δ satisfying ‖δ‖ < ε, and

the third inequality is given by the definition of ε in (36).

By (35) and the definition of u(δ), for any point θδ in the set Vδ, we have that (c′ + δ′)θδ ≤
(c′ + δ′)θ, for all θ ∈ V , and therefore (c′ + δ′)θδ ≤ (c′ + δ′)θ? for any θ? ∈ V0 ⊂ V . By (37),

whenever ‖δ‖ < ε, we have that (c′+δ′)θ? < (c′+δ′)θ for any choice of θ? ∈ V0 and θ ∈ V \V0,

therefore (c′ + δ′)θδ < (c′ + δ′)θ for any θ ∈ V \ V0. Since the inequality is strict, we have that

θδ 6∈ V \ V0, which implies θδ ∈ V0. Since this holds for any θδ ∈ Vδ, we have that Vδ ⊆ V0.

Finally, given the fact that, for any δ, Θ(δ) is the convex hull of Vδ and Vδ ⊆ V0, we have

Θ(δ) ⊆ Θ(0), thus concluding the proof.

Exploiting Lemma 2.8, we shall show next that each {θi(k)}k≥1 sequence, i = 1, . . . ,m,

converges in finite-time to some set. Note that, for the subsequent result, only uniqueness of

the optimal solution of D is required.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

37 of 70

2 COMPOSITIONAL VERIFICATION

Proposition 3 (Primal finite-time set convergence). Under Assumptions 2 and 3, there

exists a finite K such that for all i = 1, . . . ,m the tentative primal solution θi(k) generated by

Algorithm 2 satisfies

θi(k) ∈ arg min
θi∈vert(Θi)

(c′i + λ̄?′Wi)θi, k ≥ K, (38)

where λ̄? is the limit value of the Lagrange multiplier sequence {λ(k)}k≥0.

Proof. Consider subsystem i, with i ∈ {1, . . . ,m}. We can characterize the solution θi(k)

in step 7 of Algorithm 2 by performing the minimization over conv(Θi) instead of vert(Θi)

since the problem is linear and by enlarging the set vert(Θi) to conv(Θi) we still obtain all

minimizers that belong to vert(Θi). Adding and subtracting λ̄?′Wiθi to the cost, we then

obtain

θi(k) ∈ arg min
θi∈conv(Θi)

(c′i + λ̄?′Wi + (λ(k − 1)− λ̄?)′Wi)θi. (39)

Set δi(k − 1)′ = (λ(k − 1)− λ̄?)′Wi, and let Θi(δi(k − 1)) be the set of minimizers of (39)

as a function of δi(k − 1). By Lemma 2.8, we know that there exists an εi > 0 such that if

‖δi(k − 1)‖ < εi, then Θi(δi(k − 1)) ⊆ Θi(0).

Since, by Proposition 2, the sequence {λ(k)}k≥0 generated by Algorithm 2 converges

to λ̄?, by definition of limit, we know that there exists a Ki such that ‖δi(k − 1)‖ =
∥∥(λ(k − 1)− λ̄?)′Wi

∥∥ < εi for all k ≥ Ki. Therefore, for every k ≥ K = max{K1, . . . ,Km},
we have that θi(k) ∈ Θi(0) = arg minθi∈conv(Θi)(c

′
i + λ̄?′Wi)θi, i = 1, . . . ,m. This property

jointly with the fact that θi(k) ∈ vert(Θi), i = 1, . . . ,m, leads to (38), thus concluding the

proof.

We can now finally prove Theorem 1.

Proof of Theorem 1. Theorem 2.5 of [44] establishes a relation between the solution θ̄?LP

of PLP and the one recovered in (27) from the optimal solution λ̄? of the dual optimization

problem D. Specifically, it states that there exists a set of indices I ⊆ {1, . . . ,m} of cardinality

at least m− p, such that [θ̄?LP](i) = θi(λ̄
?) for all i ∈ I, where [θ̄?LP](i) is the subvector of θ̄?LP

corresponding to the i-th subsystem. Therefore, following the proof of Theorem 3.1 in [44],

we have that

m∑

i=1

Wiθi(λ̄
?) =

∑

i∈I
Wiθi(λ̄

?) +
∑

i∈Ic
Wiθi(λ̄

?)

=
∑

i∈I
Wi[θ̄

?
LP](i) +

∑

i∈Ic
Wiθi(λ̄

?)

=
m∑

i=1

Wi[θ̄
?
LP](i) +

∑

i∈Ic
Wi

(
θi(λ̄

?)− [θ̄?LP](i)
)

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

38 of 70

2 COMPOSITIONAL VERIFICATION

≤ b− ρ̄+ p max
i=1,...,m

{Wiθi(λ̄
?)−Wi[θ̄

?
LP](i)}, (40)

where Ic = {1, . . . ,m} \ I, and b − ρ̄ constitutes an upper bound for
∑m

i=1Wi[θ̄
?
LP](i) given

that θ̄?LP is feasible for PLP.

According to [40, p. 117], the component [θ?LP](i) of the (unique, under Assumption 3)

solution θ̄?LP to PLP is the limit point of the sequence {θ̃i(k)}k≥1, defined as

θ̃i(k) =

∑k−1
r=1 α(r)θi(r + 1)
∑k−1

r=1 α(r)
.

By linearity, for all k ≥ 0, we have that

Wiθ̃i(k) =

∑k−1
r=1 α(r)Wiθi(r + 1)
∑k−1

r=1 α(r)
≥ min

r≤k
Wiθi(r) =

¯
si(k) ≥

¯
si,

where the first inequality is due to the fact that all α(k) are positive and the second equality

follows from step 9 of Algorithm 2. In the final inequality,
¯
si(k) is lower bounded by

¯
si, that

denotes the limiting value of the non-increasing finite-valued sequence {
¯
si(k)}k≥0. Note that

all inequalities have to be intended component-wise. By taking the limit for k →∞, we also

have that

Wi[θ̄
?
LP](i) ≥

¯
si. (41)

By Proposition 3, there exists a finite iteration index K such that θi(k) satisfies (38). Since

(40) holds for any choice of θi(λ̄
?) which minimizes (c′i + λ̄?′Wi)θi over vert(Θi), if k ≥ K,

then we can choose θi(λ̄
?) = θi(k). Therefore, for all k ≥ K, (40) becomes

m∑

i=1

Wiθi(k) ≤ b− ρ̄+ p max
i=1,...,m

{Wiθi(k)−Wi[θ
?
LP](i)}

≤ b− ρ̄+ p max
i=1,...,m

{
max
r≤k

Wiθi(r)−Wi[θ
?
LP](i)

}

= b− ρ̄+ p max
i=1,...,m

{
s̄i(k)−Wi[θ

?
LP](i)

}

≤ b− ρ̄+ p max
i=1,...,m

{s̄i −
¯
si}

= b, (42)

where the second inequality is obtained by taking the maximum up to k, the first equality is due

to step 8 of Algorithm 2, the third inequality is due to the fact that s̄i is the limiting value of

the non-decreasing finite-valued sequence {s̄i(k)}k≥1 together with (41), and the last equality

comes from the definition of ρ(k) = pmax{ρ1(k), . . . , ρm(k)} where ρi(k) = s̄i(k)−
¯
si(k).

From (42) we have that, for any k ≥ K, the iterates θi(k), i = 1, . . . ,m, generated by

Algorithm 2 provide a feasible solution for (25), thus concluding the proof.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

39 of 70

2 COMPOSITIONAL VERIFICATION

As previously mentioned, we can make Algorithm 2 less conservative by assigning to [ρi(k+

1)]j in step 11 of Algorithm 2 the sum of the p-largest [ρi(k+1)]j , for all j = 1, . . . , p. To adapt

the proof, it suffice to note that the j-th component of pmaxi=1,...,m{Wiθi(λ̄
?)−Wi[θ̄

?
LP](i)}

in (40) can be substituted with the sum of the p-largest values in the set {[Wi]jθi(λ̄
?) −

[Wi]j [θ̄
?
LP](i)}mi=1, and the following derivations will remain unchanged.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

40 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

3 Incremental verification in interaction with online controller

adaptation

3.1 Incremental Computation of Reachable Sets for Anytime Verification

In this section, we propose a procedure to formally verify the safety of autonomous vehicles

online, i.e., during operation, that considers the uniqueness of each traffic situation. A chal-

lenging aspect of online verification is the varying number of surrounding traffic participants,

which causes significant variations in computational demand. To guarantee timely safe motion

plans, we propose an anytime approach that provides rapid conservative verification results

based on coarse model abstractions, which are refined continually if computation time is

available. Reachability analysis, which over-approximates all possible behaviors of other traffic

participants, is performed for each abstraction. The interested reader is referred to [22], where

the following text was originally published.

3.1.1 Preliminaries

In this subsection, we introduce some general notation and the concepts of reachable and

occupancy sets. Please note that throughout this section, we assume that all safety-relevant

traffic participants are detected by the sensors of the ego-vehicle.

Notation Let Rn represent the n-dimensional Euclidean space. Given an n-dimensional

vector a of any set A or a list a of length |a| = n, ai represents its ith component or element

for i ∈ {1, . . . , n}, and P(A) denotes the power set of A, i.e., the set of all subsets of A. The

Minkowski addition of two sets A and B is defined by A⊕ B = {a+ b
∣∣ a ∈ A, b ∈ B}.

The set of Booleans B comprises two elements, i.e., true > and false ⊥. Let ∧ and ∨
denote logical conjunction and disjunction, respectively. The logical equality and nonequality

are denoted respectively by ≡ and 6≡.

The sensor measurements are updated only at discrete time steps tk for k ∈ Z≥0. To

simplify parallelization, we consider only a fixed step size, i.e., tk+1 − tk = ∆t, as shown in

Fig. 13. Moreover, the constant receding prediction horizon is denoted by h ∈ Z>0, which

corresponds to the number of time intervals evaluated by prediction at each initial time step tk.

Reachable Set Typically, an exact mathematical model M exact of another traffic participant

is not known by the ego-vehicle unless transmitted via vehicle-to-vehicle communication.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

41 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

t0 t1 · · · tk

now

tk+1 · · · tk+h−1 tk+h

t

prediction horizon h∆t

Figure 13: Fixed receding prediction horizon h at current initial time step tk, and constant step

size ∆t.

Therefore, we use nondeterministic dynamic models that capture real physical behavior. All

considered models of different complexity for another traffic participant are contained in a

list M of length |M |.
The nominal behavior of model Mi for i ∈ {1, . . . , |M |} is given by the following ordinary

differential equation:

ẋ(i)(t) = f (i)
(
x(i)(t), u(i)(t)

)
, (43)

where x(i)(t) ∈ Rn
(i)
x and u(i)(t) ∈ Rn

(i)
u denote the state and input, respectively. The inputs,

e.g., steering rate and acceleration, are uncertain but bounded by the set U (i) ⊂ Rn
(i)
u for

all times, i.e., ∀t : u(i)(t) ∈ U (i) which is denoted by u(i)(·) ∈ U (i). Based on new sensor

measurements, the uncertain initial state set X (i)
0 (tk) ⊂ Rn

(i)
x is updated at each time step tk,

and the corresponding initial state is x
(i)
0 (tk) ∈ X (i)

0 (tk). The solution of (43) beginning from

initial time step tk is denoted by ξ(i)
(
t, x

(i)
0 (tk), u

(i)(·)
)
.

The exact reachable set, i.e., the set of states x(i) that are reachable, based on model Mi,

initial time step tk, and prediction time interval [tk+j−1, tk+j] is

Re(Mi, tk, tk+j) =
{
ξ(i)
(
t, x

(i)
0 (tk), u

(i)(·)
) ∣∣ t ∈ [tk+j−1, tk+j],

x
(i)
0 (tk) ∈ X (i)

0 (tk), u
(i)(·) ∈ U (i)

}
,

(44)

where i ∈ {1, . . . , |M |} and j ∈ {1, . . . , h}. Typically, (44) cannot be computed exactly [29].

Thus, we use over-approximations R ⊇ Re and want R to enclose Re as tightly as possible.

In the following, we assume that tight over-approximations are provided for all models.

Model Mi is called an abstraction of the unknown model M exact of another traffic partici-

pant if the exact reachable set of Mi over-approximates the set of M exact, i.e., for all j and k it

holds that Re(M exact, tk, tk+j) ⊆ Re(Mi, tk, tk+j). In this work, we assume all models Mi are

abstractions, i.e., conformant with the real physical system. If this assumption is invalid, more

uncertainty must be added to the nondeterministic model abstractions, as done in reachset

conformance [37, 38].

Occupancy Set We introduce the mapping

Π
(
x(i)
)

: Rn
(i)
x → P

(
R2
)
,

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

42 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

which projects the state x(i) of a traffic participant to its set of occupied X-Y -positions. For

a given set A, the projection is applied element-wise, i.e., Π(A) = {Π(a) | a ∈ A}. The

predicted occupancy set of another traffic participant based on model Mi, initial time step tk,

and prediction interval [tk+j−1, tk+j] is denoted by

Okj (Mi) = Π
(
R(Mi, tk, tk+j)

)
, (45)

i.e., given by projecting the reachable set R to the two-dimensional set of occupied X-Y -

positions. The relation

Okj (M exact) ⊆
|M |⋂

i=1

Okj (Mi) (46)

allows us to predict the occupancy set of another traffic participant efficiently by intersecting

the occupancies of |M | different abstractions [3, Prop. 5.1]. Thus, the over-approximation

becomes tighter each time a new model is added.

Similar to (45), the occupancy set of the ego-vehicle based on the known reference trajectory

at time step tk and prediction interval [tk+j−1, tk+j] is denoted by Ekj . The uncertainties due

to a non-perfect tracking controller and the dimensions of the ego-vehicle are included in the

set Ekj [3].

Example 1. A very simple model M1 can be obtained by allowing infinite acceleration and

assuming maximum velocity vmax. Under this model, it is possible to compute the projected

exact reachable set Π(Re) of a point mass as a circular disk with radius r = (tk+j − tk)vmax

corresponding to the prediction interval [tk+j−1, tk+j]. A simple over-approximation Π(R) is a

square with length 2r. Finally, to obtain the occupancy set of the considered traffic participant,

the vehicle dimensions must be added via Minkowski addition. �

3.1.2 Safety Verification of Autonomous Vehicles

In this subsection, we provide an overview of our formal safety verification procedure that uses

set-based prediction of other traffic participants [5, 28]. In addition, the concept of fail-safe

motion planning is presented [32].

Set-based Formal Verification Our formal verification method in Algorithm 3 is executed

in parallel for each surrounding traffic participant and has two return values. The first output

of Algorithm 3 is Boolean true > if there exists a possible collision for the ego-vehicle with

the considered traffic participant, otherwise Boolean false ⊥. To this end, we introduce

the function any, which returns > if any element of the considered input vector c ∈ Bh

is >, otherwise ⊥. At time step tk, the list of occupancies of another traffic participant

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

43 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

and the ego-vehicle for the prediction horizon h are denoted by Ok =
[
Ok1 ,Ok2 , . . . ,Okh

]
and

Ek =
[
Ek1 , Ek2 , . . . , Ekh

]
, respectively. The list Ok is the second output of Algorithm 3.

Algorithm 3 Standard Safety Verification

1: function standardVerification(Ek,M, k, h)

2: updateParameters()

3: for all j ∈ {1, . . . , h} do

4: Okj ←
⋂|M |
i=1Okj (Mi)

5: cj ← checkCollision
(
Okj , Ekj

)

6: return any(c), Ok

Throughout this section, we use the following three model abstractions for other traffic

participants:

� an infinite-acceleration-based model M1 (Section 3.1.1);

� a finite-acceleration-based model M2 [5]; and

� a lane-following model M3 [5].

Although Okj (M2) ⊆ Okj (M1) holds for arbitrary k and j, we do not require the occupancy

set of a model to be the subset of another one or vice versa, e.g., Okj (M2) * Okj (M3) and

Okj (M3) * Okj (M2) generally hold.

The parameters of these models are primarily based on traffic rules and physical con-

straints. For example, M1 and M2 assume that another traffic participant does not exceed

maximum velocity vmax, e.g., given by an exact or relaxed speed limit. Moreover, it is checked

whether the other traffic participant obeys traffic rules, such as staying in their own lane.

If a violation is detected by the ego-vehicle, the corresponding parameter is adapted or

removed, e.g., by increasing the individual speed limit or disabling the assumption that the

other traffic participant will follow lanes in the future. Otherwise, the abstractions become

nonconformant with the real system. The described parameter updating is handled by the

function updateParameters, which is called first in Algorithm 3.

Second, our set-based verification procedure predicts the occupancies of other traffic

participants at time step tk for all h consecutive prediction intervals via reachability analysis,

as shown in Fig. 14. In line 4 of Algorithm 3, the overall occupancy set Okj for another traffic

participant at time step tk and prediction interval [tk+j−1, tk+j] is computed. Based on (46),

in order to reduce the over-approximation error, the occupancy sets Okj (Mi) of all |M | models

are intersected.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

44 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

−100 −80 −60 −40 −20 0 20
−40

−20

0

20

40

60

80

1st traffic
participant

3rd traffic
participant

2nd traffic
participant

ego-
vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Figure 14: Predicted future occupancy sets of all surrounding traffic participants and ego-vehicle.

The time step size is ∆t = 0.1s, and the prediction horizon is h = 17.

Third, collision checks are performed for each prediction interval in line 5 of Algorithm 3.

The set-based method checkCollision
(
Okj , Ekj

)
returns Boolean true > if Okj ∩Ekj 6≡ ∅, otherwise

false ⊥. If no intersection is detected for any of the h prediction intervals, the motion plan of

the ego-vehicle is formally verified as safe with respect to the considered traffic participant.

Otherwise, the ego-vehicle must modify the intended trajectory or perform a fail-safe maneuver

to ensure safety, as explained in the following.

Fail-safe Motion Planning The consideration of all possible future behaviors increasingly

restricts the solution space of the ego-vehicle’s trajectory the larger the prediction horizon h

is chosen. Thus, the formal set-based verification procedure in Section 3.1.2 is primarily used

to verify maneuvers with short time horizons. Nevertheless, there exist non-formal long-term

trajectories that are initially not safe for all parts of the maneuver while considering all

possible future behaviors of the other traffic participants. However, such motion plans can

become safe because uncertainty about the other traffic participants’ future maneuvers is

reduced significantly as time proceeds.

Thus, we use an off-the-shelf trajectory planner to compute a long-term reference motion

plan based on the most likely maneuvers of the other surrounding traffic participants, as

shown in Fig. 15. Our presented safety verification method is only applied to the first part

of the computed motion plan and a consecutive fail-safe maneuver. If formally verified, this

part of the long-term plan can be executed safely; then, the next part along the trajectory

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

45 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

is checked for potential collisions. However, the previously verified fail-safe maneuver, e.g.,

realizing a sufficient distance behind another traffic participant or a standstill, is executed if

the verification fails. Please note that the existence of fail-safe trajectories can be proven by

induction [32]. Similar to our approach, the braking inevitable collision state concept ensures

that the ego-vehicle is always in a legally safe state when a collision occurs, i.e., in a state

where it is not causing a collision [14].

verified first part(
t ∈ [tk, tk+1]

) long-term trajectory(
t ∈ [tk, tlong-term]

)

fail-safe trajectory
(
t ∈ [tk+1, tfail-safe]

)

Figure 15: Comparison of long-term and fail-safe trajectory planning of the white ego-vehicle, which

wants to overtake the blue traffic participant. The predicted occupancy set of the other vehicle at

tfail-safe and the most likely position at tlong-term are shown by the transparent blue rectangle and

vehicle, respectively.

3.1.3 Anytime Safety Verification

In Section 3.1.3, we propose a novel anytime safety verification scheme that attempts to

verify that the trajectory of the ego-vehicle is collision-free as quickly as possible. While

previous works provide a formal concept, none of these approaches are anytime capable, i.e.,

the algorithm can be interrupted at any time after completing a short start-up phase, and

the quality of the results improves as more computation time is available [47]. To design an

efficient algorithm, we

� reuse the list of predicted occupancies Ok−1 obtained at the previous time step tk−1

(Section 3.1.3),

� order the list of models M based on computational complexity and perform collision

checks immediately after a new occupancy set has been computed (Section 3.1.3), and

� refine the predicted occupancies Okj for as long as computation time is available (Sec-

tion 3.1.3).

Anytime Algorithm Our anytime safety verification procedure is presented in Algorithm 4.

It has the same inputs and outputs as Algorithm 3 with one exception, i.e., we use the occupancy

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

46 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

list of the other traffic participant of the previous time step Ok−1 for k ∈ Z>0 as an additional

input.

Algorithm 4 Anytime Safety Verification

1: function anytimeVerification(Ek,M, k, h,Ok−1)

2: if updateParameters() ≡ > then

3: Ok ← lazyUpdate(Ok−1)

4: Okh ← R2

5: else

6: for all j ∈ {1, . . . , h} do

7: Okj ← R2

8: for all j ∈ {1, . . . , h} do

9: mj ← 0

10: cj ← checkCollision
(
Okj , Ekj

)

11: while
(
cj ≡ >

)
∧
(
mj < |M |

)
do

12: mj ← mj + 1

13: Okj ← Okj ∩ Okj (Mmj)

14: cj ← checkCollision
(
Okj , Ekj

)

15: for all j ∈ {1, . . . , h} do

16: for all i ∈ {mj + 1, . . . , |M |} do

17: Okj ← Okj ∩ Okj (Mi)

18: return any(c), Ok

First, we check in line 2 of Algorithm 4 if the updated model parameters at time step tk

have changed compared to those at tk−1 based on new sensor data. If altered, the occupancy

sets obtained at the previous time step tk−1 are based on models Mi that are possibly no

longer conformant with the real system. Therefore, we modify the function updateParameters

compared to Algorithm 3 by adding a return value that is Boolean false ⊥ if the model

parameters have changed or t = t0, otherwise true >. If the return value is >, our procedure

reuses the list of occupancies Ok−1 obtained at the previous time step tk−1 to quickly obtain

over-approximations of Okj for j ∈ {1, . . . , h− 1}, as described in Section 3.1.3. Otherwise, all

h occupancies are initialized with R2 in line 7 of Algorithm 4.

In lines 8 to 14, we attempt to verify that no collision occurs for any prediction interval

as quickly as possible. This is achieved by ordering the list of models M and performing

collision checks (line 14) immediately after obtaining new sets Okj (Mmj), as described in

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

47 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Section 3.1.3. Similar to Algorithm 3, the Boolean collision vector c ∈ Bh stores the formal

verification result for all h prediction intervals. Furthermore, the variable mj ∈ Z≥0 for

j ∈ {1, . . . , h} corresponds to the number of models required to verify safety for the prediction

interval [tk+j−1, tk+j].

If more computation time is available, the remaining abstractions are used additionally to

refine the occupancies Okj in lines 15 to 17, as described in Section 3.1.3. Finally, our anytime

method returns the safety verification result any(c) in addition to the list Ok in line 18 of

Algorithm 4.

Reuse of Occupancy Lists We can quickly predict future occupancies of another traffic

participant at time step tk for k ∈ Z>0 by reusing the list Ok−1 obtained at the previous time

step tk−1. As a result, we only need to compute the occupancy set Okh corresponding to the

last prediction interval [tk+h−1, tk+h] while using elements of Ok−1 as over-approximations

corresponding to the other intervals, as described subsequently.

Proposition 6. At time step tk for k ∈ Z>0, the relation Okj−1(Mi) ⊆ Ok−1
j (Mi) holds for

all models Mi and j ∈ {2, . . . , h}. �

Proof. This relation is valid because the considered time intervals are the same, i.e., it holds

that [tk+(j−1)−1, tk+(j−1)] ≡ [t(k−1)+j−1, t(k−1)+j]. In addition, the prediction uncertainty for

the identical interval is reduced after each time step because more information about the

other traffic participant has been gathered.

As mentioned previously, the list of occupancies of another traffic participant at time

step tk is given by Ok =
[
Ok1 ,Ok2 ,Ok3 , . . . ,Okh−1,Okh

]
. Then, the lazy update function, which

is called in line 3 of Algorithm 4 with Ok−1 as input, is defined by

lazyUpdate(Ok) =
[
Ok2 ,Ok3 , . . . ,Okh−1,Okh,Ok1

]
,

i.e., the method performs a circular shift.

Based on Proposition 6, by executing lazyUpdate(Ok−1), we quickly obtain an over-

approximative result for all prediction time intervals [tk+j−1, tk+j] with j ∈ {1, . . . , h− 1} at

initial time step tk. Therefore, only the element Okh must be computed based on new sensor

measurements at tk to obtain a valid over-approximative list Ok.

Example 2. In the upper plot of Fig. 16, all occupancy sets at time step t0 for h = 3 and

the rightward moving vehicle are illustrated. Based on Proposition 6, we exploit the fact that

O1
1 ⊆ O0

2 and O1
2 ⊆ O0

3 hold to quickly obtain an over-approximative result for the first two

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

48 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

prediction intervals at the subsequent time step t1, as shown in the lower plot of Fig. 16. Thus,

only the occupancy set O1
3 must be computed at time step t1. �

O0
1
O0

2
O0

3

O0
2
O0

3 O1
3

Figure 16: Occupancy sets O0
2 and O0

3 computed at time step t0 (upper plot) are reused at t1 (lower

plot) to over-approximate O1
1 and O1

2, respectively. Only the set O1
3 is computed at time step t1.

Fast Safety Verification In lines 8 to 14 of Algorithm 4, we attempt to verify that the

motion plan of the ego-vehicle is safe for t ∈ [tk, tk+h] as quickly as possible. First, the set Okj
for j ∈ {1, . . . , h− 1}, which is possibly over-approximated by a reused set as explained in

Section 3.1.3, is checked for collision with the ego-vehicle using Ekj . If the trajectory of the

ego-vehicle is unchanged, i.e., Ekj ⊆ Ek−1
j+1 , and we can reuse Ok−1

j+1 , the collision check in line 10

always returns ⊥ and can thus be omitted. However, if a collision is detected in line 10 for a

reused set and a changed motion plan, it is unclear whether this is a true or spurious collision

due to the reuse of over-approximations. In this case, we verify safety for the first h − 1

prediction intervals exactly as done for [tk+h−1, tk+h], which is described in the following.

To speed up the safety verification, we order the list of models M such that Mi has

lower computational complexity than Mi+1 for all i ∈ {1, . . . , |M | − 1}. As a complexity

measure, we use the number of floating point operations required to obtain the corresponding

occupancy set. Then, we compute Okh(M1) corresponding to the simplest abstraction M1 and

intersect this set with the overall occupancy Okh in line 13 of Algorithm 4. Subsequently, a

collision check is performed in line 14. If a collision is detected for model M1, as illustrated

in Fig. 17, we compute Okh(M2) for the second abstraction M2, intersect it with the overall

set Okh to reduce the over-approximation based on (46), and perform a collision check. This

procedure is repeated until safety, i.e., ch ≡ ⊥, is eventually verified for model Mmh
with

mh ∈ {1, . . . , |M |}, as illustrated in Fig. 18. Therefore, we formally verify the motion plan of

the ego-vehicle as safe using as few model abstractions as possible, beginning with the coarsest

ones.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

49 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

⋃h−1
j=1 Ok−1

j

⋃h
j=1 Ekj

Ok
h

E

Figure 17: Results: ch ≡ > and Ok
h ≡ Ok

h(M1).

⋃h−1
j=1 Ok−1

j

⋃h
j=1 Ekj

Ok
h

Figure 18: Results: ch ≡ ⊥ and Ok
h ≡

⋂mh

i=1Ok
h(Mi).

Figure 19: Use of mh models to verify safety for the last prediction interval [tk+h−1, tk+h], i.e., to

show that Ok
h ∩ Ekh ≡ ∅. The first h− 1 occupancies are over-approximated by the collision-free reused

sets obtained at time step tk−1.

The procedure above produces different verification results, i.e., different collision vec-

tors c ∈ Bh, for the same input data depending on the amount of available computation time.

Nevertheless, our interruptible Algorithm 4 can formally verify the safety of the ego-vehicle’s

trajectory for t ∈ [tk, tk+h] much faster than Algorithm 3, as shown in Section 3.1.4. In case

we cannot verify an intended motion plan in time, we execute the verified fail-safe maneuver,

as explained in Section 3.1.2.

Occupancy Set Refinements In lines 15 to 17 of Algorithm 4, our anytime procedure

continues computing the occupancy sets Okj (Mi) based on the more complex models Mi for

i ∈ {mj + 1, . . . , |M |} and the sensor data obtained at tk, even though the collision vector c

no longer changes. This is done to reduce the over-approximation of the occupancy sets

for future reuse of these sets, i.e., at initial time steps tk+k̃ for k̃ ∈ {1, . . . , h}. Thus, if

more computation time is available, the other abstractions are additionally used to refine the

overall occupancies Okj for all j ∈ {1, . . . , h}. Finally, after all occupancy sets are refined, as

illustrated in Fig. 20, Algorithm 4 returns the formal verification result any(c) and the list of

computed occupancies Ok, which are identical to the two outputs of Algorithm 3.

⋃h−1
j=1 Ok

j

⋃h
j=1 Ekj

Ok
h

Figure 20: Refined occupancy sets.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

50 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

3.1.4 Examples

In this subsection, we compare the performance of the formal safety verification Algorithms 3

and 4 on two benchmarks. Our proposed anytime procedure has been integrated into the

open-source MATLAB® tool SPOT [28], which represents occupancies by polygons and

implements Algorithm 3. Since collision detection involving polygons is relatively slow, we

plan to speed it up using bounding volume hierarchies [26, 17] and pre-computed collision

checks [36]. To generate a long-term trajectory, as described in Section 3.1.2, we use the

sampling-based approach in [46]. All computations are run on a single thread of an Intel®

Core� i7-7820HQ with 32GB RAM.

To determine the computational speed-up potential, we terminate Algorithm 4 as soon

as the motion plan is verified. To easily reproduce our results, we use the freely available

motion planning benchmark suite CommonRoad1 [4], since performance comparisons are

highly dependent on the specific traffic scenario. Each benchmark is specified by a unique

identifier and contains detailed information about the ego-vehicle, road network, and other

traffic participants.

PM1:MW1:DEU Muc-3 1 T-1 Benchmark To visualize the computed occupancy sets

for two consecutive time steps, we compare the two verification algorithms using the Common-

Road benchmark PM1:MW1:DEU Muc-3 1 T-1. The considered traffic scenario comprises an

uncontrolled intersection with three other traffic participants and specifies that the ego-vehicle

makes the left turn. The initial configuration and the occupancies computed at time step t0

are shown in Fig. 14. The step size is ∆t = 0.1s, and the prediction horizon is h = 17, i.e., we

predict the occupancies for all surrounding vehicles for the next 1.7s.

The predicted occupancy sets computed by our interruptible Algorithm 4 at time step t1

are shown in Fig. 21. As described in Section 3.1.2, we use models M1, M2, and M3, which

are ordered by computational complexity. In addition to reusing the occupancies obtained at

t0, it is sufficient to consider only the simplest model M1 for the first and second vehicles in

order to guarantee safety. However, for the third traffic participant, we have to use all three

models to formally verify the motion plan.

By averaging the results over 10 simulation runs, we obtain computational speed-ups of

Algorithm 4 compared to Algorithm 3 of 33.6, 28.4, and 3.4 for the first, second, and third

traffic participants, respectively. This results in an overall speed-up of 7.9 and takes 12ms in

total.

1commonroad.in.tum.de

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

51 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

−100 −80 −60 −40 −20 0 20
−40

−20

0

20

40

60

80

1st traffic
participant

3rd traffic
participant

2nd traffic
participant

ego-
vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]

Figure 21: Occupancy sets of all surrounding traffic participants and ego-vehicle computed by

interrupted Algorithm 4 for CommonRoad benchmark PM1:MW1:DEU Muc-3 1 T-1 at time step t1.

There are multiple reasons why our proposed anytime method is not even faster. For

example, the collision check, which is currently computationally expensive due to the inter-

section of polygons, is performed each time after a new set Okh(Mi) is intersected with the

overall Okh in line 13 of Algorithm 4. In contrast, Algorithm 3 performs a single collision

check for only the final occupancy set Okh. Thus, if computing the occupancy set for Mi+1

has lower complexity than performing the collision detection for Mi, it may be beneficial to

skip this check to optimize, e.g., the expected overall computation time. More importantly,

some computations, e.g., obtaining the reachable lanes for model M3, must be performed

regardless of whether the result is only used for the last prediction time interval [tk+h−1, tk+h]

or for all h intervals. However, the complexity of these computations will be reduced in future

implementations.

PM1:MW1:DEU A9-2 1 T-1 Benchmark The second vehicular traffic example is given

by the CommonRoad benchmark PM1:MW1:DEU A9-2 1 T-1. It features a three-lane

highway, where the ego-vehicle is initially located in the middle lane and must perform a lane

change to the right one, as shown in Fig. 22. Furthermore, this scenario includes two other

traffic participants.

Similar to the previous benchmark in Section 3.1.4, the step size is ∆t = 0.1s, and the

prediction horizon is h = 17. By averaging the results over 10 simulation runs for the whole

lane change maneuver, we obtain computational speed-ups of Algorithm 4 compared to

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

52 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

−20 0 20 40 60 80 100
−20
−10

0

10

20
1st traffic participant

2nd traffic participantego-vehicle

X-Position [m]

Y
-P

os
iti

on
[m

]
Figure 22: Initial occupancies of all traffic participants and ego-vehicle for CommonRoad benchmark

PM1:MW1:DEU A9-2 1 T-1.

Algorithm 3 of 43.8 and 50.4 for the first and second traffic participants, respectively. This

results in an overall speed-up of 47.4 and takes 3ms in total. In contrast to the previous

benchmark, it is unnecessary to consider the most complex model M3 for either of the two

other traffic participants in order to guarantee safety, which is the primary reason why a

higher overall speed-up is obtained.

3.2 Recursive feasibility and stability of predictive controllers for systems

with changing environments

This subsection addresses the questions of how and when the crucial properties of stability

and recursive feasibility can be ensured for controlled systems which evolve in dynamic

environments. In particular, we consider the setting that the changing environment can be

cast into time-varying state constraints to be observed by the controlled system. This setting

arises, e.g., in autonomous driving, when an autonomously controlled vehicle has to adjust

its path to the complement of the space occupied by other traffic participants [16], or in

human-robot cooperation, when the robot controller has to ensure that a robotic manipulator

has to circumvent regions momentarily blocked by a human operator [27].

When MPC is used in such cases, the starting point is that in any time instant of an

iterative procedure in discrete time, the state constraints of the system to be controlled are

predicted over a given future time horizon. These constraints can be obtained by reachable

set computations for the environment, e.g. by encoding the regions of a street topology that

are potentially occupied by another car, as presented in Section 3.1. These reachable set

computations can be executed either offline or online. The state constraints to be considered

for the system to be controlled can then be determined as convex subsets of the complement

of the reachable sets of all relevant entities of the environment. The requirement of convexity

for the state constraints is straightforwardly used to simplify the computation of control

strategies in real-time (and in response to changes of the environment).

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

53 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

When adapting the MPC strategy in any time instant of a discrete-time scheme to varying

constraints, obviously the questions arises, whether it is possible to always find a feasible

solution for the control problem – or phrased differently, it has to be determined which changes

of the environment are permissible to ensure the existence of a feasible control strategy, es-

pecially when the change of the environment cannot be exactly predicted in advance. The

corresponding property is known as recursive feasibility in predictive control [30], and it is

one important subject of this work. The second property to be investigated is that of stability,

thus the question of whether the system (subject to the constraints) is certainly driven into a

goal set (or towards a reference state) by the predictive controller [34].

While for time-invariant constraints, recursive feasibility and stability have been studied

for different settings and definitions, only very little work addresses these properties for

time-varying constraints: The work in [45] focuses on MPC with time varying input con-

straints, where the pattern of how the constraints change is assumed to be known a-priori.

Techniques of explicit MPC rely on state-space partitioning which has to be provided in

offline computations [2] – considering all configurations (and thus different partitions) which

may occur in applications like autonomous driving seems not realistic. The work in [33]

introduced the method to homotheticly change the terminal region in order to provide stability

guarantees despite changes of the state and input constraints. However, recursive feasibility

was not addressed in that work, while being an important pre-requisite of stability of predictive

controllers [30].

The following exposition starts from a brief review on how to ensure recursive feasibility

and stability of MPC when the state constraints are time-invariant. Then, we extend the

discussion to the cases when: (a) there is no suitable model to describe the change of the

environment precisely, but where the maximal change of the environment within one sampling

time is known to be bounded; (b) a model of the change of the environment exists with

bounded uncertainties. In both cases, the change of the environment can be understood as

incremental between two successive sampling times, and the bounds can be obtained from

reachability computations. We show that under moderate and realistic assumptions, recursive

feasibility and asymptotic stability of MPC can be preserved for the two cases.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

54 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Time-Invariant State Constraints

To model the dynamics of the system to be controlled, consider the following nonlinear

discrete-time difference equations:

xk+1 = f(xk, uk), (47)

with state vector xk ∈ Rnx and input vector uk ∈ Rnu . At each time step k ∈ N ∪ {0}, the

system evolution is subject to convex state constraints Xk = {x |C ∈ Rnc×nx , dk ∈ Rnc , x ∈
Rnx : C ·x ≤ dk}. This represents constraints with changing positions of bounding hyperplanes

of the polytope Xk, while the orientation of the hybperplane remains unchanged. The input

vector uk is bounded to a time-invariant set U ∈ Rnu .

Before indeed considering time-varying state constraints, let us first review the asymptotic

stability and recursive feasibility of standard MPC problems with time-invariant constraints,

i.e. we first let φu,k = {uk|k, uk+1|k, . . . , uk+H−1|k} and φx,k = {xk+1|k, xk+2|k, . . . , xk+H|k}
denote the prediction of the input and state sequences over a prediction horizon of H steps,

and assume Xk := X, for all k ∈ N ∪ {0}. To model state-dependent, input-dependent, and

terminal costs, we assume a standard quadratic form of the cost functional J (xk):

J (xk) =

H−1∑

j=0

(xT
k+j|kQxk+j|k + uT

k+j|kRuk+j|k)︸ ︷︷ ︸
step cost L(xk+j|k,uk+j|k)

+ xT
k+H|kQfxk+H|k︸ ︷︷ ︸

terminal cost F (xk+H|k)

, (48)

in which Q, R, and Qf are chosen as positive-definite weighting matrices. Furthermore, let a

terminal set Xf ⊆ X be selected. The problem to be solved in step k can then be defined to:

Problem 1.

min
φu,k
J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . ,H − 1}; (49a)

xk+j|k ∈ X, j ∈ {1, . . . ,H − 1}; (49b)

xk+H|k ∈ Xf . (49c)

When using the standard receding-horizon scheme of MPC, only the first step input

signal uk|k of the solution φ∗u,k of Problem 1 in time k is applied, then the next state xk+1 is

measured, and the solution of Problem 1 is repeated for the updated data in k + 1.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

55 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

We next refer to the context of the recursive feasibility of the MPC strategy, which is

similarly defined as in [30]:

Definition 3. (Recursive Feasibility) Given a compact set F of possible initialization x0 of the

system (47), the MPC controller established by solving Problem 1 in any step k is recursively

feasible if and only if for any x0 ∈ F , a feasible solution to Problem 1 for k = 0 implies the

existence of a feasible solution to the problem for any k ∈ {0, 1, 2, · · · }.

Next, the asymptotic stabilization of the system (47) by the MPC controller obtained

from solving Problem 1 is defined similarly to [39]:

Definition 4. (Asymptotic Stability) If there exists a Lyapunov function V : Rnx → R,

V (0) = 0, on X, such that for all k ∈ {0, 1, 2, · · · }, the system (47) under control of the

solution to Problem 1 satisfies V (xk+1) < V (xk), then the controlled system is asymptotically

stabilized to the origin.

As discussed in [34], the asymptotic stability according to Def. 2 can be ensured by

imposing additional assumptions on the terminal set Xf , namely:

Assumption 1. The terminal set Xf ⊆ X is closed, and 0 ∈ Xf applies.

Assumption 2. A terminal controller κf exists such that κf · x ∈ U for all x ∈ Xf , and

f(x, κf · x) ∈ Xf for all x ∈ Xf , i.e., Xf is a control invariant set of the system.

Assumption 3. The condition F (f(x, κf · x))− F (x) + L(x, κf · x) ≤ 0 with L according to

(48) applies for all x ∈ Xf .

Then, the following lemma applies:

Lemma 3.1. If the Assumptions 1, 2, and 3 hold, then the solution to Problem 1 in any

step k leads to a state xk+1 for which Problem 1 again leads to a feasible solution, and the

controlled system is asymptotically stabilized over k.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

56 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Proof. To start with recursive feasibility, we first assume that the state sequence φ∗x,k =

{x∗k+1|k, x
∗
k+2|k, . . . , x

∗
k+H|k} is the optimal solution to Problem 1 in time k. Since x∗k+H|k ∈ Xf

according to (49c) applies, there must exist a new state xk+H+1|k = f(x∗k+H|k, κf ·x∗k+H|k) ∈ Xf

and κf · x∗k+H|k ∈ U according to Assumption 2. Furthermore, each intermediate state in the

sequence φ∗x,k satisfies x∗k+j|k ∈ X, ∀j ∈ {1, · · · , H}. Thus after moving to state x∗k+1|k at

step k + 1, a new candidate state sequence φcdx,k+1 = {x∗k+2|k, . . . , x
∗
k+H|k, xk+H+1|k} does also

satisfy all state constraints of Problem 1 in k + 1, and recursive feasibility according to Def. 1

follows from induction.

As for asymptotic stability, the state sequence φcdx,k+1 in step k+1 leads to costs J cd(xk+1).

This value constitutes an upper bound of the optimal cost: J cd(xk+1) ≥ J ∗(xk+1). Further-

more, the cost difference between J cd(xk+1) and J ∗(xk) can be calculated from:

J cd(xk+1)− J ∗(xk) = F (f(x∗k+H|k, κf · x∗k+H|k))

− F (x∗k+H|k) + L(x∗k+H|k, κf · x∗k+H|k)− L(xk, u
∗
k|k). (50)

According to Assumption 3, the sum of the first three terms on the right-hand side of (50) is

non-positive, thus J cd(xk+1)− J ∗(xk) ≤ −L(xk, u
∗
k|k), implying also: J ∗(xk+1)− J ∗(xk) ≤

−L(xk, u
∗
k|k). As the step cost L defined in (48) is always strictly positive outside of the origin,

J ∗ decreases monotonically. If J ∗ is taken as the Lyapunov function according to Def. 2,

then asymptotic stability of the controlled system according to Def. 2 is obtained.

Bounded Changes of State Constraints

After review of the time-invariant case, let us now turn back to the case of time-varying state

constraints. Note that even if the exact changes of the constraints cannot be predicted, it

still has to be ensured that the successor state obtained from the MPC strategy remains

feasible, and the property of asymptotic stability should still apply. Two different scenarios

are considered in which the state constraints are not precisely known, and sufficient conditions

are proposed to ensure that the desired properties of the MPC strategy hold.

First, we consider the case that no explicit model to predict the change of the constraints

between two subsequent steps is available, but only an upper bound of the change. As

indicated before, assume that the state constraint changes only with respect to the right

hand sides of the inequalities defining Xk+1 = {x |C · x ≤ dk+1}, while the matrix C remains

unchanged. This is useful if a translation from Xk to Xk+1 is sufficient to model the available

subset of the state-space, e.g., if an obstacle to the change of state xk moves, and the constraint

Xk is adapted by changing the vector dk accordingly (without changing the orientation of

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

57 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Xk).

Let the maximal change of any component of the vector dk+1 compared to dk be bounded by:

|dk+1(i)− dk(i)| ≤ wi,max, wi,max ∈ R≥0, (51)

for all i ∈ {1, · · · , nc}. The value of wi,max can be obtained, e.g., by evaluating the physical

limits of the entity which constitutes the changing environment (e.g. the maximal acceleration

of a vehicle, interacting with autonomous car to be controlled).

Based on this information, one can obtain a conservative estimation of the change of the

environment over the horizon by using the prediction:

Xk+j|k = {x |C · x ≤ dk − j · dmax}, ∀ j ∈ {1, · · · , H}, (52)

with dmax = [w1,max, · · · , wnc,max]T ∈ Rnc . The set Xk+j|k represents a conservative estima-

tion (obtained at time k) of the future constraint Xk+j being indeed available for trajectory

planning. We define the set:

φX = {Xk+1|k, Xk+2|k, . . . , Xk+H|k}. (53)

of conservatively predicted state constraints, see also Fig. 23 for an illustration.

Assumption 4. The set Xk+H|k is not empty and contains the terminal set Xf , 0 ∈ Xf , for

all k ∈ {0, 1, 2, · · · }.

Note that as long as the terminal set Xf is contained in Xk+H|k for all k ∈ {0, 1, 2, · · · },
then it will remain to be a control invariant set [12] of the system by employing the terminal

controller κf , despite the change of the state constraints. In other words, if the Assumption 4

holds, then we do not have to re-determine the terminal set Xf with respect to the change of

the environment.

Lemma 3.2. If the condition xk+j ∈ Xk+j|k is satisfied for all j ∈ {1, · · · , H}, then xk+j ∈
Xk+j applies, too.

Proof. According to (51), the relation |dk+j(i)−dk(i)| ≤ j ·wi,max applies for all j ∈ {1, · · · , H}
and for all i ∈ {1, · · · , nc}. This, implies also the relation |dk+j − dk| ≤ j · dmax according

to the definition of dmax. Thus, dk − j · dmax ≤ dk+j holds true and implies Xk+j|k ⊆ Xk+j .

Accordingly, xk+j ∈ Xk+j|k requires that xk+j ∈ Xk+j .

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

58 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Figure 23: Conservative inner approximation of Xk+j through Xk+j|k for all j ∈ {1, · · · , 4} (yellow:

Xk, red: Xk+j , green: Xk+j|k, blue: Xf).

Lemma 3.3. Given j ∈ {1, · · · , H}, then for any j1 ∈ N ∪ {0} with 0 ≤ j1 ≤ j, it applies

that Xk+j|k ⊆ Xk+j|k+j1.

Proof. According to (52), for j and j1 with 0 ≤ j1 ≤ j ≤ H, the predicted constraints Xk+j|k

and Xk+j|k+j1 take the form of:

Xk+j|k = {x |C · x ≤ dk − j · dmax},

Xk+j|k+j1 = {x |C · x ≤ dk+j1 − (j − j1) · dmax}.

Then, according to (51), vector dk+j1 ≥ dk − j1 · dmax, which implies:

dk+j1 − (j − j1) · dmax ≥ dk − j1 · dmax − (j − j1) · dmax,

dk+j1 − (j − j1) · dmax ≥ dk − j · dmax,

i.e. the right hand side of the inequality for Xk+j|k is not larger than that for Xk+j|k+j1 .

Furthermore, as the matrix C in both constraints Xk+j|k and Xk+j|k+j1 is the same, the

relation Xk+j|k ⊆ Xk+j|k+j1 applies.

Note the Lemma 3.2 and 3.3 together establish the following facts:

� The constraint Xk+j|k is a conservative (inner) estimation of the true set Xk+j by taking

all possible realizations of the changes of the environment into account.

� The relation Xk+j+1|k ⊆ Xk+j|k applies according to (52), meaning that the estimation

is increasingly more conservative over j; Additionally, it also implies with Xk+H|k 6= ∅
from Assumption 4, that Xk+j|k 6= ∅ applies for all j ∈ {1, · · · , H}.

� The estimation of the true constraint Xk+j based on set Xk+j1 with j1 ≤ j, is less

conservative than based on set Xk, according to Lemma 3.3.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

59 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Now, the following optimization problem is defined for step k with use of the predicted state

constraints:

Problem 2.

min
φu,k
J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . ,H − 1}; (54a)

xk+j|k ∈ Xk+j|k, j ∈ {1, . . . ,H − 1}; (54b)

xk+H|k ∈ Xf . (54c)

Lemma 3.4. If the Assumptions 2, 3, and 4 hold, then the solution to Problem 2 for any

k ∈ {0, 1, 2, · · · } will establish recursive feasibility and the system (47) is asymptotically

stabilized into the origin.

Proof. First, since xk+1|k ∈ Xk+1|k is ensured by constraint (54b) in Problem 2, and Xk+1|k ⊆
Xk+1 applies according to Lemma 3.2, the state xk+1 resulting from solving Problem 2 is

guaranteed to be contained in constraint Xk+1 despite the uncertainties.

The state constraints in Problem 2 in the step k + 1 are:

xk+1+(j)|k+1 ∈ Xk+1+(j)|k+1, j ∈ {1, . . . ,H − 1}; (55a)

xk+1+(H)|k+1 ∈ Xf . (55b)

Similar as in the proof of Lemma 3.1, the state sequence φ∗x,k = {x∗k+1|k, x
∗
k+2|k, . . . , x

∗
k+H|k}

denotes the optimal solution of Problem 2 in k, and a candidate state sequence φcdx,k+1 =

{x∗k+2|k, . . . , x
∗
k+H|k, xk+H+1|k} is obtained based on φ∗x,k, with xk+H+1|k = f(x∗k+H|k, κf ·

x∗k+H|k) ∈ Xf .

Note that for the first H − 2 states in the candidate sequence φcdx,k+1, it applies that

x∗k+j+1|k ∈ Xk+j+1|k for all j ∈ {1, · · · , H − 2} according to constraint (54b). Based on

Lemma 3.3, Xk+j+1|k ⊆ Xk+1+(j)|k+1 holds for all j ∈ {1, · · · , H − 2}, implying x∗k+j+1|k ∈
Xk+j+1|k ⊆ Xk+1+(j)|k+1, for all j ∈ {1, · · · , H − 2}.

Furthermore, the penultimate state x∗k+H|k in φcdx,k+1 is contained in Xf according to con-

straint (54c). Then, since Xf ⊆ Xk+H|k ⊆ Xk+1+(H−1)|k+1 applies according to Assumption

4 and Lemma 3.3, state x∗k+H|k is also contained in Xk+1+(H−1)|k+1.

Finally, the last state xk+H+1|k in φcdx,k+1 satisfies xk+H+1|k ∈ Xf according to Assumption

2.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

60 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Thus, the candidate sequence φcdx,k+1 satisfies all the constraints of Problem 2 in step

k + 1, and as the corresponding input sequence satisfies the input constraint according to

Assumption 2 and (54a), recursive feasibility of the MPC strategy according to Def. 1 is

guaranteed.

The proof to the asymptotic stability follows a path similar as in the time-invariant case, since

the relation J cd(xk+1)− J ∗(xk) ≤ −L(xk, u
∗
k|k) still applies, ensuring J ∗(xk+1)− J ∗(xk) ≤

−L(xk, u
∗
k|k). Thus, the monotonic decrease of the cost of the Lyapunov function applies,

leading to asymptotic stability of the controlled system according to Def. 2.

Modelled constraint variation with uncertainties

In contrast to the previous case, in which the constrained set were shrinking in all directions

over the prediction, we here model the changes of the constrained state set such that a

translation towards the goal is possible, i.e., we consider a more general case, and still the

prediction of the constrained sets are subject to uncertainties.

Now, we assume that a model M for the prediction of the change of the state constraints

exists, but it contains uncertainties, which may accumulate over the steps of the prediction

horizon.

We assume that in the current step k, the state constraints still have the form Xk =

{x |C · x ≤ dk}, but the predictions X̂k+j|k = {x | d̂k+j|k ∈ Rnc : C · x ≤ d̂k+j|k}, for

j ∈ {1, . . . ,H} are iteratively computed from:

d̂k+j+1|k :=M(d̂k+j|k), ∀ 0 ≤ j ≤ H − 1, (56)

where d̂k+0|k := dk, andM : Rnc → Rnc denotes a model for the variation of the vector d̂k+j|k.

The prediction of the state constraint in the next step is derived from the state constraint in

previous step, while C again remains unchanged during the prediction.

In addition, we require that for two different state constraints, if their maximal difference is

bounded, the difference of the predicted constraints in the next step obtained from the model

M is also bounded and bounded by the same value. Such requirement is summarized as in

the following:

Assumption 5. For any two vectors dak, dbk ∈ Rnc, with dak 6= dbk, if |dak(i) − dbk(i)| ≤ γi,

γi ≥ 0 applies for all i ∈ {1, · · · , nc}, then |M(dak)(i)−M(dbk)(i)| ≤ γi also applies.

In order to formulate the deviation between accumulated uncertainties of the predicted

constraint X̂k+j|k and the true constraint Xk+j = {x |C · x ≤ dk+j}, let each component of

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

61 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

the vector d̂k+j|k satisfy the following property:

|d̂k+j|k(i)− dk+j(i)| ≤ j · ŵi,max, ŵi,max ∈ R≥0, (57)

for all i ∈ {1, · · · , nc}. It implies that the uncertainty over the prediction may linearly increase

over j. Similarly to (51) in the last section, the requirement (57) is reasonable since the upper

bound of ŵi,max can be determined offline from experiments.

To consider the maximally possible uncertainty of the predicted constraint X̂k+j|k, a tightened

constraint X̃k+j|k = {x | d̃k+j|k ∈ Rnc : C · x ≤ d̃k+j|k} is determined according to:

d̃k+j|k := d̂k+j|k − j · d̂max, (58)

with vector d̂max = [ŵ1,max, · · · , ŵnc,max]T ∈ Rnc (see Fig. 24).

Assumption 6. Let the set X̃k+j|k be non-empty for all k ∈ {0, 1, 2, · · · } and j ∈ {1, . . . ,H},
and the terminal set Xf be included in X̃k+H|k, 0 ∈ Xf .

Similar to Assumption 4, if the Assumption 6 holds, then the terminal set Xf has not to

be redetermined with respect to the change of the environment.

Figure 24: Tightening the predicted set X̂k+j|k according to the knowledge of d̂max for all j ∈
{1, · · · , 4} (yellow: Xk, blue: X̂k+j|k, green: X̃k+j|k, red: Xk+j , magenta: Xf).

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

62 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

Lemma 3.5. If X̃k+j|k is obtained from (58), where d̂k+j|k follows from model M according

to (56), and if xk+j ∈ X̃k+j|k for all j ∈ {1, · · · , H}, then xk+j ∈ Xk+j applies too.

Proof. According to (57) and the definition of d̂max, the relation d̂k+j|k − dk+j ≤ j · d̂max
applies. Furthermore, since d̃k+j|k = d̂k+j|k− j · d̂max holds, the relation d̃k+j|k ≤ dk+j applies,

implying X̃k+j|k ⊆ Xk+j . Accordingly, for all xk+j ∈ X̃k+j|k, relation xk+j ∈ Xk+j must hold,

too.

Lemma 3.6. Given the situation in Lemma 3.5 and j ∈ {1, · · · , H}, then for any j1 ∈ N∪{0}
with 0 ≤ j1 ≤ j, it applies that X̃k+j|k ⊆ X̃k+j|k+j1.

Proof. According to (57), it applies for the constraint Xk+j1 with 0 ≤ j1 ≤ j ≤ H, that:

|d̂k+j1|k − dk+j1 | ≤ j1 · d̂max.

Then, according to Assumption 5, for the prediction of the constraint Xk+j by starting once

from the constraint X̂k+j1|k, and once starting from the constraint Xk+j1 , the difference is

bounded by:

|d̂k+j|k − d̂k+j|k+j1 | ≤ j1 · d̂max.

Now, according to (58), substituting d̂k+j|k by d̃k+j|k + j · d̂max, and substituting d̂k+j|k+j1 by

d̃k+j|k+j1 + (j − j1) · d̂max leads to the relation:

(d̃k+j|k + j · d̂max)− (d̃k+j|k+j1 + (j − j1) · d̂max)

≤ j1 · d̂max,

and thus to:

d̃k+j|k − d̃k+j|k+j1 ≤ 0.

With d̃k+j|k ≤ d̃k+j|k+j1 , and given that C in the constraints X̃k+j|k and X̃k+j|k+j1 are the

same, the relation X̃k+j|k ⊆ X̃k+j|k+j1 holds.

Now, the following substitute optimization problem can be defined for step k:

Problem 3.

min
φu,k
J (xk)

s.t.: uk+j|k ∈ U, j ∈ {0, . . . ,H − 1}; (59a)

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

63 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

xk+j|k ∈ X̃k+j|k, j ∈ {1, . . . ,H − 1}; (59b)

xk+H|k ∈ Xf . (59c)

Lemma 3.7. If the Assumptions 2, 3, 5, and 6 hold, then the solution to Problem 3 in step

k will lead to a state xk+1 which also satisfies the constraint Xk+1 at step k+ 1. Furthermore,

this solution implies that Problem 3 again has a feasible solution in step k + 1, and the

controlled system is asymptotically stabilized into the origin.

Proof. Following the reasoning in the proof of Lemma 3.4, as xk+1|k ∈ X̃k+1|k in ensured by

constraint (59b) in Problem 3, and since X̃k+1|k ⊆ Xk+1 applies according to Lemma 3.5, the

state xk+1 resulting from the solution of Problem 3 in step k is guaranteed to be contained in

Xk+1. To obtain recursive feasibility, consider the state constraints of Problem 3 in step k+ 1:

xk+1+(j)|k+1 ∈ X̃k+1+(j)|k+1, j ∈ {1, . . . ,H − 1}; (60a)

xk+1+(H)|k+1 ∈ Xf . (60b)

If the state sequence φ∗x,k = {x∗k+1|k, x
∗
k+2|k, . . . , x

∗
k+H|k} is the optimal solution to Problem 3,

let a candidate state sequence φcdx,k+1 = {x∗k+2|k, . . . , x
∗
k+H|k, xk+H+1|k} be obtained from φ∗x,k

with xk+H+1|k = f(x∗k+H|k, κf · x∗k+H|k) ∈ Xf .

For the first H − 2 states in φcdx,k+1, the inclusion x∗k+j+1|k ∈ X̃k+j+1|k applies for all j ∈
{1, · · · , H − 2} according to constraint (59b). Based on Lemma 3.6, X̃k+j+1|k ⊆ X̃k+1+(j)|k+1

holds for all j ∈ {1, · · · , H − 2}, and thus x∗k+j+1|k ∈ X̃k+j+1|k ⊆ X̃k+1+(j)|k+1, for all

j ∈ {1, · · · , H − 2}. Since the penultimate state x∗k+H|k in φcdx,k+1 is contained in Xf given

(59c), and since Xf ⊆ X̃k+H|k ⊆ X̃k+1+(H−1)|k+1 applies according to Assumption 6 and

Lemma 3.6, it also applies that x∗k+H|k ∈ X̃k+1+(H−1)|k+1. Furthermore, the last state

xk+H+1|k in φcdx,k+1 satisfies xk+H+1|k ∈ Xf according to Assumption 2.

Hence, the sequence φcdx,k+1 satisfies all state constraints of Problem 3 in step k + 1. In

addition, the input sequence leading to φcdx,k+1 must satisfy the input constraints according to

Assumption 2 and (59a), thus recursive feasibility of the MPC strategy according to Def. 1 is

guaranteed.

The proof of asymptotic stability is the same as in Lemma 3.4, where the recursive fea-

sibility implies the monotonic decrease of the costs (establishing a Lypunov function). The

single steps are not repeated here in detail.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

64 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

3.2.1 Illustrating Example

Here, an application of proposed method to the use case of human-robot collaboration as

considered is illustrated. As it is generally hard to obtain an exact model for human motion

prediction (see the discussion in Deliverable 2.1), we employ experimental data obtained

offline to over-approximate the space occupied by a human arm within predictive control

of a robot manipulator: the human arm is assumed to move maximally 5cm in every 7ms

(approximately 0.75m/s) in all directions. The 7ms here is the sampling time of the robot

manipulator, in which the position of its end-effector is updated. The task of the predictive

controller is to move the end-effector from the current position to a desired goal position

without collision with the human arm.

Figure 25: Conservative estimation of the human arm position over the future H = 9 steps, based

on its current position in step k: the gray regions are the regions potentially occupied by the human

arm in each step according to its maximal movement per step, and the yellow regions are the feasible

regions for the robot manipulator; the blue dot marks the selected target position.

Note that the considered problem is related to the first case of applying MPC in a time-

varying environment in the preceding sections, in which only the bounded change of the state

constraints is known. Thus, based on the current, measurable position of the human arm as

well as its maximal change per step, a conservative estimation of the position over the future

steps is determined according to (52), see Fig. 25. Thus, the space (in yellow) complementary

to the region potentially occupied by the human arm (in gray) is the feasible region for the

robot manipulator.

Then, as the recursive feasibility and asymptotic stability is proven for this application

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

65 of 70

3 INCREMENTAL VERIFICATION IN INTERACTION WITH ONLINE CONTROLLER
ADAPTATION

of the predictive controller corresponding to Problem 2, the desired control task is exemplarily

proven to be solvable, see the plot of the position trajectory of the end-effector from a start

to a goal position in Fig. 26.

start

goal

Figure 26: The target position is reached after 198 steps (1.386s) and the red regions are the positions

of the human arm during the transition.

Concluding remarks

In this section, we have addressed the conditions on ensuring recursive feasibility and asymp-

totic stability of MPC strategies for nonlinear dynamic systems under time-varying state

constraints. For the case that no suitable model for the prediction of the state constraints are

available, the key point is to construct a conservative bound on the change of the constraints,

based on knowledge of the current constraints. In the second case, when an uncertain model

of the environment is available, tightened constraints can be used to conservatively bound

the change of the constraints by taking the maximal prediction uncertainty into account. In

both cases, recursive feasibility and asymptotic stability can be shown. In future work, the

findings in this section will be extended to hybrid dynamics as well as to communication of

constraints in settings of distributed MPC.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

66 of 70

4 CONCLUSIONS

4 Conclusions

In this deliverable, we described new approaches developed within the UnCoVerCPS project

that exploit the decomposition of a system into subsystems for improving the scalability

of verification methods. This is particularly interesting when the problem includes discrete

variables since in some cases the combinatorial complexity can hamper the problem solution.

We also considered the adoption of online verification methods for controller tuning and

addressed important issues like stability and recursive feasibility in model predictive control

when using time-varying constrained sets arising from reach set computation, and the impact

of using coarse model abstractions to provide rapid although conservative verification results

in safety critical systems. An algorithm that provides formal safety guarantees is presented in

the latter case.

The described methods find application in the use cases of the projects and, in particular,

those on autonomous driving (see Section 3.1), collaborative robotics (see Section 3.2.1), and

on smart grids (a paper is in preparation at PoliMi on the usage of the parallel decomposition

approach in Section 2.2.2 for implementing ancillary services offered to the main grid), besides

other industrial case studies as that by Bosch in Section 2.1.4 validating the methods in

Section 2.1.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

67 of 70

REFERENCES

References

[1] http://spaceex.imag.fr/.

[2] A. Alessio and A. Bemporad. A survey on explicit model predictive control. In Nonlinear model predictive

control, pages 345–369. Springer, 2009.

[3] M. Althoff and J. M. Dolan. Online verification of automated road vehicles using reachability analysis.

IEEE Transactions on Robotics, 30(4):903–918, 2014.

[4] M. Althoff, M. Koschi, and S. Manzinger. CommonRoad: Composable benchmarks for motion planning

on roads. In IEEE Intelligent Vehicles Symposium, pages 719–726, 2017.

[5] M. Althoff and S. Magdici. Set-based prediction of traffic participants on arbitrary road networks. IEEE

Transactions on Intelligent Vehicles, 1(2):187–202, 2016.

[6] J.-P. Aubin and I. Ekeland. Estimates of the duality gap in nonconvex optimization. Mathematics of

Operations Research, 1(3):225–245, 1976.

[7] A. Bemporad, G. Ferrari-Trecate, and M. Morari. Observability and Controllability of Piecewise Affine

and Hybrid Systems. IEEE Transactions on Automatic Control, 45(10):1864–1876, 2000.

[8] A. Bemporad and M. Morari. Control of systems integrating logic, dynamics, and constraints. Automatica,

35(3):407–427, 1999.

[9] D. Bertsekas, G. Lauer, N. Sandell, and T. Posbergh. Optimal short-term scheduling of large-scale power

systems. IEEE Transactions on Automatic Control, 28(1):1–11, 1983.

[10] D. P. Bertsekas. Nonlinear programming. Athena scientific Belmont, 1999.

[11] D. Bertsimas and J. N. Tsitsiklis. Introduction to linear optimization, volume 6. Athena Scientific Belmont,

MA, 1997.

[12] F. Blanchini. Set invariance in control. Automatica, 35(11):1747–1767, 1999.

[13] S. Bogomolov, M. Forets, G. Frehse, F. Viry, A. Podelski, and C. Schilling. Reach set approximation

through decomposition with low-dimensional sets and high-dimensional matrices. In Proceedings of the

21st International Conference on Hybrid Systems: Computation and Control (part of CPS Week), pages

41–50. ACM, 2018.

[14] S. Bouraine, T. Fraichard, and H. Salhi. Provably safe navigation for mobile robots with limited

field-of-views in dynamic environments. Autonomous Robots, 32(3):267–283, 2012.

[15] S. I. Dudov and E. A. Meshcheryakova. Method for finding an approximate solution of the asphericity

problem for a convex body. Computational Mathematics and Mathematical Physics, 53(10):1483–1493,

2013.

[16] J. Eilbrecht and O. Stursberg. Cooperative driving using a hierarchy of mixed-integer programming and

tracking control. In Intelligent Vehicles Symposium (IV), 2017 IEEE, pages 673–678. IEEE, 2017.

[17] C. Ericson. Real-time collision detection. CRC Press, 2004.

[18] A. Falsone, K. Margellos, and M. Prandini. A decentralized approach to multi-agent milps: finite-time

feasibility and performance guarantees. Automatica, 2018. Provisionally accepted as a regular paper.

[19] G. Frehse, C. L. Guernic, A. Donzé, R. Ray, O. Lebeltel, R. Ripado, A. Girard, T. Dang, and O. Maler.

SpaceEx: Scalable verification of hybrid systems. In G. Gopalakrishnan and S. Qadeer, editors, CAV,

LNCS. Springer, 2011.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

68 of 70

REFERENCES

[20] A. M. Geoffrion. Lagrangean relaxation for integer programming. Mathematical Programming Study 2,

pages 82–114, 1974.

[21] A. Girard, C. Le Guernic, and O. Maler. Efficient computation of reachable sets of linear time-invariant

systems with inputs. In HSCC’06. Springer, 2006.

[22] F. Gruber and M. Althoff. Anytime safety verification of autonomous vehicles. In IEEE 21st International

Conference on Intelligent Transportation Systems (ITSC), 2018. Accepted.

[23] W. Heemels, B. D. Schutter, and A. Bemporad. Equivalence of hybrid dynamical models. Automatica,

37(7):1085–1091, July 2001.

[24] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, 2012.

[25] M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank, G. Reinelt, G. Rinaldi, and

L. A. Wolsey. 50 Years of Integer Programming 1958-2008: From the Early Years to the State-of-the-art.

Springer Science & Business Media, 2009.

[26] J. T. Klosowski, M. Held, J. S. B. Mitchell, H. Sowizral, and K. Zikan. Efficient collision detection using

bounding volume hierarchies of k-DOPs. IEEE Transactions on Visualization and Computer Graphics,

4(1):21–36, 1998.

[27] D. Kontny and O. Stursberg. Online adaption of motion paths to time-varying constraints using homotopies.

IFAC-PapersOnLine, 50(1):3331–3337, 2017.

[28] M. Koschi and M. Althoff. SPOT: A tool for set-based prediction of traffic participants. In IEEE Intelligent

Vehicles Symposium, pages 1686–1693, 2017.

[29] G. Lafferriere, G. J. Pappas, and S. Yovine. Symbolic reachability computation for families of linear vector

fields. Symbolic Computation, 32:231–253, 2001.

[30] J. Löfberg. Oops! i cannot do it again: Testing for recursive feasibility in mpc. Automatica, 48(3):550–555,

2012.

[31] A. V. Lotov and A. I. Pospelov. The modified method of refined bounds for polyhedral approximation of

convex polytopes. Computational Mathematics and Mathematical Physics, 48(6):933–941, 2008.

[32] S. Magdici and M. Althoff. Fail-safe motion planning of autonomous vehicles. In Proc. of the 19th

International IEEE Conference on Intelligent Transportation Systems, pages 452–458, 2016.

[33] T. Manrique, T. Fiacchini, Mand Chambrion, and G. Millérioux. Mpc tracking under time-varying

polytopic constraints for real-time applications. In Control Conference (ECC), 2014 European, pages

1480–1485. IEEE, 2014.

[34] D. Mayne, J. Rawlings, C. Rao, and P. Scokaert. Constrained model predictive control: Stability and

optimality. Automatica, 36(6):789–814, 2000.

[35] N. J. Redondo and A. Conejo. Short-term hydro-thermal coordination by lagrangian relaxation: solution

of the dual problem. IEEE Transactions on Power Systems, 14(1):89–95, 1999.

[36] A. Rizaldi, S. Söntges, and M. Althoff. On time-memory trade-off for collision detection. In Proc. of the

IEEE Intelligent Vehicles Symposium, pages 1173 – 1180, 2015.

[37] H. Roehm, J. Oehlerking, M. Woehrle, and M. Althoff. Reachset conformance testing of hybrid automata.

In Proc. of Hybrid Systems: Computation and Control, pages 277–286, 2016.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

69 of 70

REFERENCES

[38] B. Schürmann, D. Heß, J. Eilbrecht, O. Stursberg, F. Köster, and M. Althoff. Ensuring drivability of

planned motions using formal methods. In Proc. of the 20th IEEE International Conference on Intelligent

Transportation Systems, pages 1–8, 2017.

[39] P. Scokaert, D. Mayne, and J. Rawlings. Suboptimal model predictive control (feasibility implies stability).

IEEE Transactions on Automatic Control, 44(3):648–654, 1999.

[40] N. Shor. Minimization Methods for Non-Differentiable Functions. Springer, 1985.

[41] G. Söderlind. The logarithmic norm. history and modern theory. BIT Numerical Mathematics, 46(3):631–

652, 2006.

[42] R. Vignali and M. Prandini. Input design for a cascading system: An approach based on system

decomposition and non-influential input detection. In 2014 IEEE Multi-Conference on Systems and

Control, Antibes, France, October 2014.

[43] R. Vignali and M. Prandini. Model reduction of discrete time hybrid systems: A structural approach based

on observability. In 2016 International Workshop on Symbolic and Numerical Methods for Reachability

Analysis (SNR), pages 1–6, April 2016.

[44] R. Vujanic, P. M. Esfahani, P. J. Goulart, S. Mariéthoz, and M. Morari. A decomposition method for

large scale MILPs, with performance guarantees and a power system application. Automatica, 67:144–156,

2016.

[45] N. Wada, H. Tomosugi, and M. Saeki. Model predictive tracking control for a linear system under

time-varying input constraints. International Journal of Robust and Nonlinear Control, 23(9):945–964,

2013.

[46] M. Werling, J. Ziegler, S. Kammel, and S. Thrun. Optimal trajectory generation for dynamic street

scenarios in a frenét frame. In IEEE Conference on Robotics and Automation, pages 987–993, 2010.

[47] S. Zilberstein. Using anytime algorithms in intelligent systems. AI magazine, 17(3):73–83, 1996.

Deliverable D3.3 – Report on compositional verification and incremental
verification in interaction with online controller adaptation

70 of 70

