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Strategic Demand Response and Workload
Management towards Sustainable Data Center

Strategic Participation of Data Centers

Generatlon

Data Center Demand Response (DR)

A Bargaining Approach to Data Center DR (T2)

* Non-cooperative DR with On-site Renewables (T1)
 Data Center DR with Power Network Constraints (T3)
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1) Non-cooperative Data Center Demand Response (DR);
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Adaptive Workload Management

* Dynamic Server Duty Cycling for Minimizing Energy Cost (T4)
* Dynamic Server Duty Cycling in the laaS Framework (T5)
* Distributed Load Balancing for Sustainable Computing (T6)

2 Load Balancing with Data Locality and Dependent Tasks (T7)
Time-varying OPF

Example application: volt/var control

« Control reactive outputs of smart inverters to stabilize voltages

e Can be formulated as OPF

e ... but background loads, real solar power fluctuate

continuously
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In real-time

Track optimal solution of time-varying OPF
Uncertainty will continue to increase
Real-time measurements increasingly become available on seconds timescale
Must, and can, close the loop in the future

Need theory for time-varying optimization

min c(x,t) + h(x,t)
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Time-varying Optimization
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Tracking performance
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Assumptions
B c(x,t), f™(x,t), f¢9(x, t) : twice cont. differentiable
W h(x,t) : closed proper convex
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Jpeq y(x*(2), )| | p*(2)
f(x*(2), 1) € Npm(A¥(2)),
fUx(0),0) =0
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2) Data Center Demand Response (DR); A Bargaining Approach
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The bargaining process

Algorithm 1 The bargaining process

Bid: P, $/KWh
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Figure: An illustration of the bargaining process

demand: d(p) = argmaxh(D) — h(D — q) —

supply:

Y

s(p) = argmax pqg — C(q)
q

Input: arbitrator gives an initial value € ~ exp(pu)

Output: decide: bargaining succeed /fail
iteration: £ =0
while not stable do
if £=odd then
utilities change bids pr.,
in response to data-centers’ asks
else if k=even then
data-centers change asks pp,
in response to utilities’ bids
k+ +;
final spread: Ap=pr — pp
if Ap > ¢ then
return bargaining succeed
else if Ap < € then
return bargaining fail

Resource Allocation in Data Centers

» Efficient resource allocation in data centers can reduce energy usage, thus reducing the load on the
power grid

» We consider the problem of assigning arriving tasks to a server

» Each task has a reward associated with it: Goal: Maximize reward in a given time

» Key Challenge: When a task takes too long to complete, should we interrupt it and lose its reward or

should we continue to process it to completion?

Bandit Problem:
=K job types: Type-k task takes a random completion time X .

= A random reward R (' is obtained once the task is completed.
= For a time budget t, maximize total reward in [O, t]

=" Completion time and reward might be heavy-tailed.

= Existing MAB models do not apply

Algorithm and Performance Analysis
Proposed Algorithm: UCB-Bw!

eEstimate reward-rate, i.e., reward per unit time of each task from empiricz

observations

eAdd an upper confidence bound to the above estimate

eTypically upper confidence bound is based on an exponential concentratio
inequality. Key ldea: since the distributions can be heavy-tailed, use the
median-of-means estimator to obtain a concentration inequality
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Regret(t) < O(K) log(T) + O(K)

e Cayci, Eryilmaz and Srikant (ACM SIGMETRICS
2018)

Theorem 1. (Regret Upper Bound for UCB-BwlI)
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