NSF-NRI (#1637535): Design of nanorobotics based on FePd allo nanohelices for a new diagnosis and treatment of cancer

• Minoru TAYA¹, Yasuo KUGA², Donghoon LEE³, Sawyer MORGAN¹, Cerwyn CHIEW¹, Satoshi YAMAMOTO¹, Satomi TAKAO¹, Alex Hoffman²

¹Dept. Mechanical Engineering, ²Dept. Electrical Engineering, ³Dept. Radiology, University of Washington

UW FePd Nanorobots: Downsizing the macroscopic FePd spring to FePd nanohelix

Advantages

- (1) Flexible helix, thus, can shrink and expand to apply oscillating forces
- Swims under rotational magnetic field thanks to nanohelical propeller
- MRI enhancer due to large magnetization of FePd (120 emu/g)
- Biocompatible material

We aim to develop a new diagnostic method and treatment based on flexible nanohelix actuators made of FePd.

Two designs

(a) Helix only

Rotating field

Future work (Modelling and clinical trial strategy) Navigate FePd NRs for in situ MSICD clinical treatment $U_M(\mathbf{r}_i, \mathbf{m}_i; \mathbf{r}_j, \mathbf{m}_j) = \frac{1}{4\pi u_0} \frac{1}{r_0^3} \left[(\mathbf{m}_i \cdot \mathbf{m}_j) - \frac{3}{r_0^2} (\mathbf{m}_i \cdot \mathbf{r}_g) (\mathbf{m}_j \cdot \mathbf{r}_g) \right]$ Molecular Lenard-Jones Potential (Inter-atomic repulsion) NRs' swimming | | NRs' at target cells

Potential impact and intellectual merits

- Cancer Marker+ Nanohelix propulsion of FePd NRs = High arrival rate \rightarrow Higher cancer treatment success by MSICD.
- Chemical free cancer treatment with minimum side effects.
- Can potentially pass the Blood Brain Barrier (BBB) with ease allowing access to hard to reach tumor in patient body.

Acknowledgement

- NSF-NRI
- Nabtesco
- UW Center for Intelligence Materials and Systems (CIMS)
- UW Molecular Analysis Facility (MAF)
- UW Washington Nanofabrication Facility (WNF)