Design of an Agile and Smart Manufacturing Exchange: Enabling Small Businesses through Standardized Protocols and

Distributed Optimization

Challenge:

 Enable low-sot manufacture of small batches of complex devices

Solution:

 Agile manufacturing exchange (ME): Suppliers, assemblers, transporters, etc., participate through standardized protocols to fulfill orders

Scientific Impact:

- Production planning and performance prediction
- Distributed optimization under uncertainty
- Distributed online optimization and scheduling

Broader Impacts:

- Intelligent mass customization systems for manufacturing
- Dynamic resource deployment, graceful recovery from failures, scalability

ECCS-1543872, Duke University, Krishnendu Chakrabarty (PI), Bruce Maggs (Co-PI), Michael Zavlanos (Co-PI), Jun Zeng (HP Labs collaborator), E-mail: krish@duke.edu

Manufacturing Enterprise System (MES)

Smart Manufacturing Network

- Users: Generate product requests
- Product requests translated to job sequences by MES based on provider status
- Providers: Bid for jobs, process jobs, route for further processing
- 4. Last provider in the sequence delivers final product

Goals:

- Learn from data
- Accommodate multiple product flows
- Dynamic and uncertain user demands
- Uncertain network components

Users

Background: Collaboration with HP Labs Open Innovation Office on Digital Print Factory Optimization (2010-2014)

Qing Duan · Krishnendu Chakrabarty Jun Zeng

Data-Driven
Optimization and
Knowledge Discovery
for an Enterprise
Information System

Address system complexity by studying the information system as a mass-customization enterprise

Non-Uniform Order Arrivals

Order Admission Framework Sixth Annual Cyber-Physical Systems Principal Investigators' Meeting Arlington, VA – November 16-17, 2015

"Front End": Manufacturing Apps

- Protocols for interoperability and resilience
- Manufacturing "apps": Open-source initiative for specifying, provisioning, and fulfilling orders

"Front End" Predictive Analysis

Prediction framework

Proposed Proposed time-prediction status-prediction method

Status	Probability
Completed	98%
Completed	82%
In-progress	75%
In-progress	60%

"Back End": Production Scheduler

"Back End": Distributed Optimization

Distributed, finite-horizon, optimization: Predictions about future state of the system

Distributed and robust optimization: Handle uncertainty in network parameters and user demands

Distributed online optimization: Utilities and constraints change with time and the decision makers rely on historical data

Distributed scheduling algorithms:

- Large-scale systems: Model products as flows manufacturing system (jobs per unit time)
- Smaller systems: Discrete formulations that schedule finite numbers of jobs over the available providers

Visual Analytics

SimCloud: Cloud-Computing Platform from HP Labs

