

P.I.: Donatello Materassi, Electrical Engineering and Computer Science Department, University of Minnesota

Linear Dynamic Influence Networks: an I/O model for noninvasively sensed systems

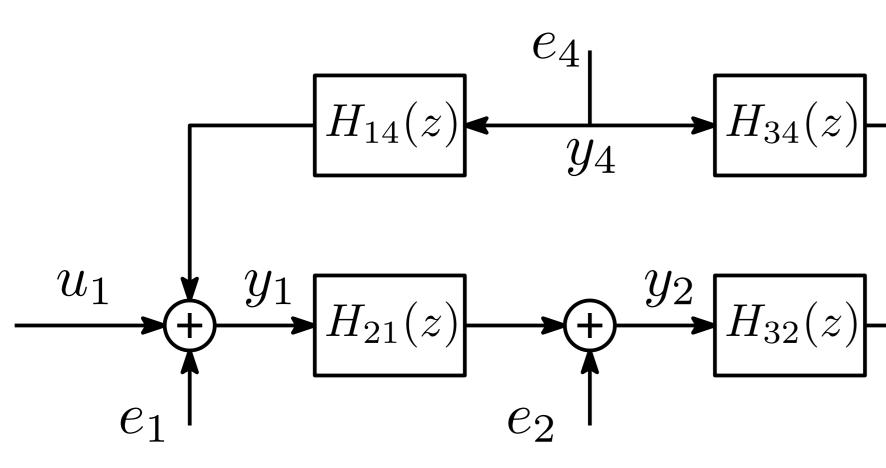
$$\begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} H_{11}(z) \dots H_{1n}(z) \\ \vdots \\ H_{n1}(z) \dots H_{nn}(z) \end{pmatrix}$$

• The inputs y_i are observable

• The inputs u_i are unknown

• u_i and u_j are independent, for $i \neq j$

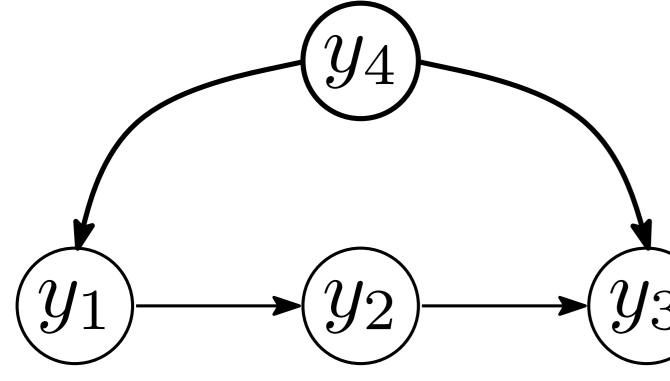
A graphical model interpretation



Given a block diagram

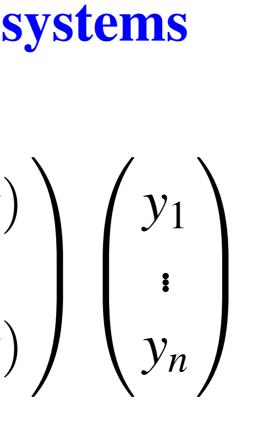
• the outputs are nodes

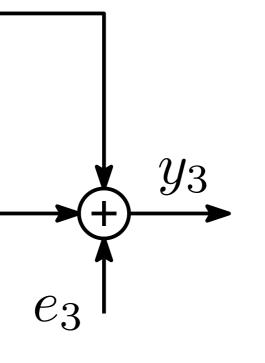
• if $H_{ii}(z) \neq 0$ draw, a link from y_i to y_i .



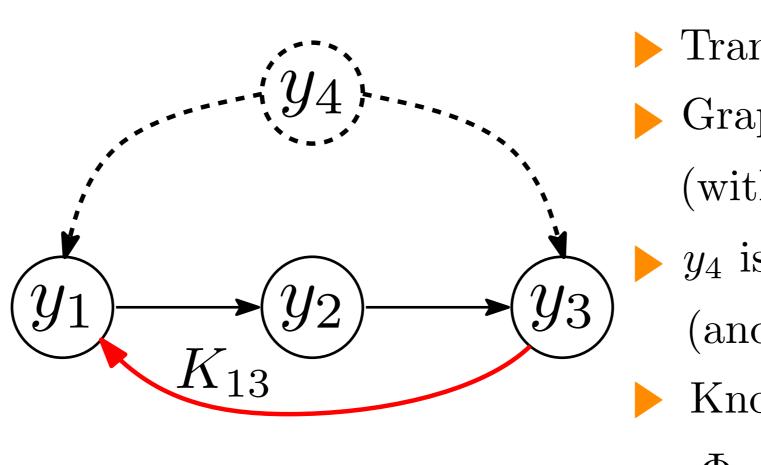
This representation extends graphical models of random variables to describe stochastic processes

Nesign of in-line controllers for continuously operating networks with structural uncertainty (CAREER #1553504)





Design Control Challenge I



Find the closed loop behavior

In the absence of *y*⁴ **the solution is easy**

$$H_{32}(z)H_{21}(z) = \frac{\Phi}{\Phi}$$

$$G_{y_1 \to y_3} = \frac{H_{32}H_{21}}{1 - H_{32}H_{21}} = \frac{\frac{\Phi_{y_3 y_2}}{\Phi_{y_2}}}{1 - K_{13}\frac{\Phi_{y_3 y_2}}{\Phi_{y_2}}}$$

In the presence (or absence) of y₄ (see [?])

$$G_{y_1 \to y_3} = \frac{\frac{\Phi_{y_2 y_1}}{\Phi_{y_1}} \left(\Phi_{y_3 y_1} \Phi_{y_3 y_2} \right) \left(\begin{array}{c} \Phi_{y_1} & \Phi_{y_1 y_2} \\ \Phi_{y_2 y_1} & \Phi_{y_2} \end{array} \right)^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}{1 - K_{13} \frac{\Phi_{y_2 y_1}}{\Phi_{y_1}} \left(\Phi_{y_3 y_1} \Phi_{y_3 y_2} \right) \left(\begin{array}{c} \Phi_{y_1} & \Phi_{y_1 y_2} \\ \Phi_{y_2 y_1} & \Phi_{y_2} \end{array} \right)^{-1} \begin{pmatrix} 0 \\ 1 \end{pmatrix}}$$

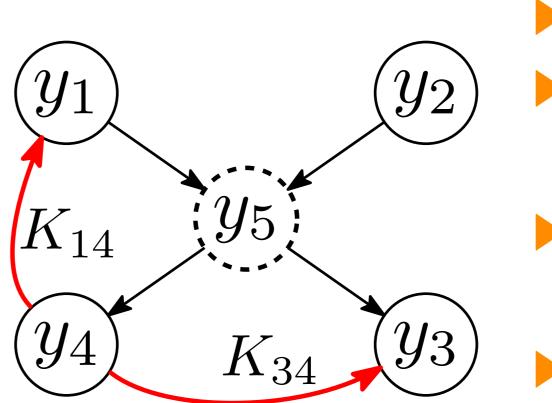
This formula is robust with respect to uncertainties in the structure: a novel notion of robustness!

► Transfer functions are unknown ▶ Graph is partially known (with unknown structure) y_4 is not measurable (and not known if it is present) Known Power Spectral Densities $\Phi_{y_i y_j}, \, i, j = 1, 2, 3$

 $\Phi_{y_3y_2}\Phi_{y_2y_1}$ $\Phi_{y_2} \Phi_{y_1}$

$\Phi_{y_3y_1}$
Φ_{y_1}
$-K_{13} \frac{\Phi_{y_3y_1}}{\Phi_{y_1}}$

Design Control Challenge II



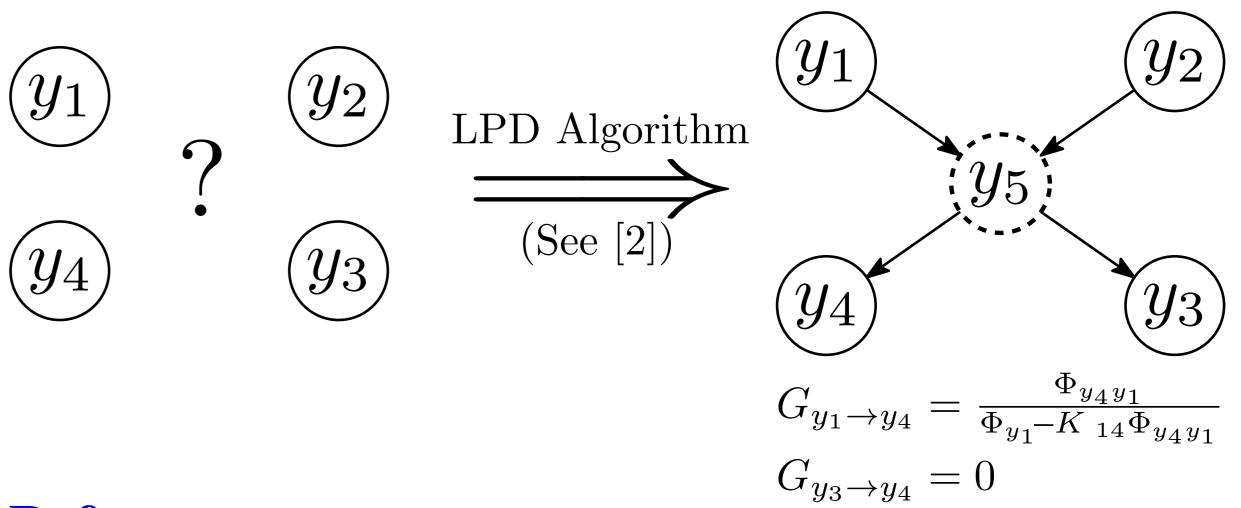
A distance that is additive along paths of a rooted tree, such as

$$d(y_i, y_j) = -\int_0^{2\pi} \log\left(\frac{|\Phi_{e_i e_j}|^2}{|\Phi_{e_i}| |\Phi_{e_j}|}\right) d\omega,$$

enables the detection of hidden nodes (see [?])

 y_5 is present $\Leftrightarrow d(y)$

enables the inference of skeleton and link orientations (see [?])



References

- NeurIPS, 2019

- ► Transfer functions are unknown
- Graph is a tree (with unknown structure)
- \triangleright y_5 is not measurable and it is not known if it is present
- Known Power Spectral Densities $\Phi_{y_i y_j}, i, j = 1, 2, 3, 4$

Find the closed loop behavior

$$(1, y_4) - d(y_4, y_3) \neq d(y_1, y_3)$$

[1] F. Sepeher, D. Materassi, Inferring the structure of polytree networks of dynamic systems with hidden nodes, IEEE Transactions on Automatic Control, 2019 [2] F. Sepeher, D. Materassi, An Algorithm to Learn Polytree Networks with Hidden Nodes,

[3] J. Constanzo, D. Materassi, B. Sinopoli, Using Viterbi and Kalman to detect topological changes in dynamic networks, American Control Conference, 2017