Designing Effective Behaviors in a Social Robot that Supports Collaborative Learning in Middle School Mathematics

Erin Walker^{1,2}, Diane Litman^{1,2}, Adriana Kovashka¹, Timothy Nokes-Malach^{2,3} School of Computing and Information¹, Learning Research and Development Center², Department of Psychology³; University of Pittsburgh

Key Challenge

How can a teachable robot learn to use dialogue, gesture, and gaze to support the dyadic collaborations of middle school mathematics students? Addressing this problem requires work in human-computer interaction, natural language processing, machine learning, and cognitive psychology.

Data Collection and Analysis

28 undergraduate students worked in pairs to teach a Nao robot how to solve ratio problems.

Used exploratory analyses, qualitative coding, & automated metrics to understand which factors produce more learning & rapport.

Emma:	So step one was to figure out how much of my batter, is used in one hour . How do I figure out how much of my battery is used up in three hours?
Student:	because we know the ratio we <mark>can</mark> now apply this to the three hours that the battery is used
Emma:	Ratios. <mark>Can</mark> you tell me how that works?
Student:	because we know three fortieths of the batteries power is used in one hour we can apply that to three hours
Emma:	So I am thinking it makes sense to multiply. What do you think about multiplying?
Student:	yes <mark>you</mark> should <mark>multiply</mark> three fortieths by three

sions that has not been established as shared expressions yet. Yellow: newly initiated shared expressions Dialogue between Emma and a student, with shared expressions annotated.

to their partners felt more rapport with Emma (r=.58). Learners who initiated shared expressions with Emma felt more rapport with Emma (Spearman's rho = .529).

Next Steps

Bring together project strands to run RL experiments on factors identified as important in data collection. Add gesture and gaze as modalities for interaction.

2022 NRI & FRR Principal Investigators' Meeting April 19-21, 2022

Two undergraduate students teach Emma about mathematics content over Zoom.

Learners with similar knowledge

Reinforcement Learning Simulations and Experiments

Built an environment to simulate student teaching Emma. Permutes collected data to create larger dataset of responses, & models how Emma's actions affect cooperation between the students.

-0.2

-0.4

Tuned and validated using policy that mirrors actions taken by Emma during data-collection.

Learned RL policy outperforms baseline "Mirror" policy and random policy.

Learned RL achieves more consistent results across student groups.

Proposed Computer Science Impacts

Apply reinforcement learning to human-robot interactions to automatically acquire social behaviors. Success paves the way for co-robots in school environments.

Results of evaluation comparing learned policy to mirror policy and random policy.

Proposed Learning Sciences Impacts

Understand how robot multimodal communication influences collaboration and learning. Success informs best practices for human facilitation of collaboration.

