
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

• CPS comprised of ordinary people or first responders is
proposed to detect gas vapor in open air.

• This CPS will use low-cost sensors coupled to smart
phones or mobile devices.

• The efficacy of CPS hinges on its ability to address
technical challenges stemming from the fact that sensors
may produce different results under the same conditions
due to sensor drift, noise, and/or resolution errors.

• The proposed system makes use of time-varying signals
produced by sensors to detect gas leaks. Sensors sample
the gas vapor level in a continuous manner

• Time-varying sensor data is processed using deep neural
networks to detect gas vapor leaks.

Abstract

Sensors

• Convolutional Networks (ConvNet) have high generalization capabilities in classification tasks involving time-series data.
• Nevertheless,  ConvNets are computationally expensive

– Millions of add-multiply operations needed during inference
• We replace vector multiplication in artificial neural network by a special operation

Let a and b be two real numbers. We define the multiplication-free operator as follows:
𝑎 ⊕ 𝑏 = 𝑠𝑔𝑛(𝑎)𝑠𝑖𝑔𝑛(𝑏)(|𝑎| + |𝑏|)

Let x and y be two vectors :

𝒙⊕ 𝒚	 = 	0𝑠𝑔𝑛(𝑥2)𝑠𝑖𝑔𝑛(𝑦2)(|𝑥2| + |𝑦2|)
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No multiplication is performed. Instead, regular addition and sign operations are preformed.

In AddNet, feedforwarding pass equation become 
𝑓 𝑤6𝑥 + 𝑏 → 𝑓 𝛼 𝑤 ⊕ 𝑥 + 𝑏

x	is	output	previous	layer,	f	is	non-linear	activation,	b	is	bias	and	w	is	the	weight	vector,	𝛼 is a real-valued scalar. The 
nonlinear activation function f is RELU so 𝛼 is the slope of  RELU.

AddNet:	Multiplication-free	Vector	Product	Based	Neural	Network

Experiment 1
• Data set consists of infrared sensing signals of VOC gas leaks in 

open air and clean air recordings (two classes).
• We trained our model with a greatly imbalanced dataset (8000 clean-

air vs. only 50 gas-leak training samples). 

• Recognition rates

Dataset	and	Experimental	Results

Conclusions
• We analyze the time-varying signal waveforms that sensors generate 

using neural networks to address the problem of gas sensor drift.
• We use the AddNet and the discriminator of a GAN

as a classifier.
• AddNet produces comparable results to a regular deep

neural network without the need to perform vector multiplication
operations, which require energy consuming GPU processing.

• The weights of AddNet are highly compressible, with no resultant 
degradation in performance.

• AddNet can be used in mobile devices forming such CPS systems so as 
to deliver accuracy and frugality at the same time.

• Chemically-sensitive Field Effect Transistors (ChemFETs)
• Electrochemical Impedance Spectroscopy (EIS) based 

sensors
• Chemical sensors suffer from sensor drift: sensor signal 

decay over time in an unpredictable manner.
• Infrared Sensors (some VOC compounds and ammonia 

absorb infrared light at Medium Wave InfraRed (MWIR) 
and Long Wave InfraRed (LWIR) bands).

• It is not possible to fix a threshold to detect gas vapor 
because of sensor drift and IR light reflections

• All of the above sensors produce time-varying signals

Gas vapor detection algorithm should be 
• Energy-efficient
• High accuracy

Proposed Methods:

– Multiplication-free Convolutional Neural 
Network: AddNet

– Discriminator of Generative Adversarial 
Neural Network.
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Challenges

Discriminator	of	Generative	Adversarial	Network	(GAN)	as	Classifier

• GANs has become the benchmark in image synthesis. Typical GAN consists of two networks: generator and discriminator.
– Generator tries to generate data that mimics the real data, whereas the discriminator tries to 

tell whether its input data are real or fake.
• Both networks are trained jointly so as to optimize the following objective function:

max
QR

min
QS

0log 𝐷 𝑥2 +0log 1 − 𝐷 𝐺 𝑧2
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𝑥2 is a real data point, 𝐺 𝑧2 is a fake generated sample, 𝐷(. ) is the discriminator prediction whether the corresponding input is real or fake, 𝜃[is the 
generator parameters, and 𝜃\	is the discriminator parameters

• In our approach, we carry out two-phase training as follows:
• Phase 1 (Unsupervised): Train both generator and discriminator with data corresponding to a specific class. Optimize 

the typical GAN objective function.
• Phase 2 (Supervised): train only the discriminator with data from both classes as a classifier. The objective is to 

minimize binary cross-entropy:

𝐶𝐸 ≔ −
1
𝑁0 1− 𝑡2 log 1 − 𝐷 𝑥2 + 𝑡2 log 𝐷 𝑥2

2
𝑡2	 (=0 or 1) is the true label of the data point	𝑥2 and 𝐷(. ) is the prediction of the now-classifier 𝐷

• We also developed a GANwith AddNet discriminator

Experiment 2
• Publicly available sensor drift dataset collected at UCSD, which is  obtained by 

exposing an array of 16 different chemical sensors to 6 different types of gas 
mixtures (ammonia, acetone, ethylene, ethanol, toluene and acetaldehyde)

• 8 features are extracted for each sensor, thus 128 features constitute each data 
point.  Features are : maxima and minima of exponentially moving average (6), 
(un)normalized maximum resistance change (2).

• dataset  recorded by conducting experiments over 3 years.
• Sensors suffer second-order drift over time. Therefore, distinguishing different 

gas mixtures become very challenging.  

Model No-gas 
Accuracy

Gas-leak 
Accuracy

Total 
Accuracy

ConvNet
(dropout 50%) 98.3% 95.8% 97.1%

ConvNet
(no dropout) 98.0% 94.2% 96.1%

AddNet
(dropout 50%) 98.2% 96.0% 97.1%

AddNet
(no dropout) 99.1% 97.3% 98.2%

Discriminator
of GAN 99.0% 97.1% 98.1%

AddNet
discriminator 99.6% 98.4% 99.0%

Batch ID
SVM

Classifier 
Ensemble

Multi-Layer
Perceptron 

(MLP)

AddNet-
MLP

Discriminator 
of GAN

AddNet
Discriminator

Batch 3 87.8 98.6 98.6 98.3 97.8

Batch 4 90.6 83.8 75.1 71.4 69.6

Batch 5 72.1 99.5 99.4 98.4 98.9

Batch 6 44.5 74.9 75.9 72.3 73.9

Batch 7 42.5 59.8 57.4 61.5 66.3

Batch 8 29.9 34.0 34.0 62.3 58.8

Batch 9 59.8 31.6 38.9 63.2 63.8

Batch 10 39.7 47.3 54.3 43.8 44.5
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VOC gas leak in an IR image

Model
Accuracy

Weight	Compression	(smallest	K%)

0		
(no	compression)

16.1 19.7 67.4 76.8 86.6

AddNet 98.9 97.2 97.9 98.0 97.1 61.3

ConvNet 99.8 67.4 - - - -

Future	Work
• We will collect our own chemical sensor data 
• We will implement AddNet on low-cost microprocessors
• We will investigate domain adaptation techniques by utilizing new sensor 

readings in sensor drift problem.
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