
Detecting Semantic Bugs in Autopilot Software by
Classifying Anomalous Variables

Hu Huang, Liangchun Xu, Samuel Z. Guyer, Jason H. Rife
Tufts University

Jason H. Rife
Tufts University
Email: jason.rife@tufts.edu

Contact
1. Huang, Hu. Detecting Semantic Bugs in Autopilot Software by Classifying Anomalous Variables. PhD thesis.  

References

We construct a bug detector to detect semantic
bugs, which leverages machine learning models as
the method to interpret the data. We formulate the
problem of identifying relevant variables formally as
an optimization problem, which is to locate a set of
variables that minimizes overhead and satisfies our
performance constraints. Our experimental results
show variables identified in the program slice
enable our learning models to perform significantly
better compared to variables comprising the system
inputs and outputs. Additionally, we implement two
methods that select a subset of variables from the
program slice, which attempts to retain bug
detection performance while reducing overhead.
Our results show that we can retain nearly the same
bug detection performance as compared to the full
slice but reduce the overhead of the bug detector
by as much as 80%.

Abstract

• Inject 9 bugs (Bug 0 through 8) and evaluate a
real bug (Bug 7062) in TECS module in Ardupilot.

• The variables from the full program slice
(SliceFull), the inputs and outputs of the program
slice (SliceIO), the nodes in the dominance
frontier within the slice (SliceDF), and the
sensors and actuators (SysIO) are chosen.

• Both Decision Tree and AdaBoost models used
the default starting parameters as in scikit-learn.

Problem

• In order to introduce a concept of time into the
code, we introduce an operation we call
temporal segmentation. The purpose of
temporal segmentation is to annotate key points
in the software where time progression is
relevant.

• In order to create statement groupings with a
clear input-output relationship, we introduce an
operation we call generalized slicing.

Approach

All three slice-based methods (SliceFull, SliceIO, and
SliceDF) outperform SysIO. In addition, the
nonoverlapping confidence intervals for SliceFull
and SliceIO compared with SysIO (for AdaBoost)
suggests that there is a significant difference
between the means. This difference in performance
further supports our assertion that local variables
are better to detect a bug rather than variables
global to the physical system. Furthermore, the
three slice-based methods have very similar
sensitivity, shown by the overlapping 88 error bars.
Though there is a slight reduction for SliceDF,
sensitivity is well above 90%. These results provide
more support to our assertion that the number of
variables (and by extension, overhead) can be
reduced without significantly impacting
performance.

Discussion

This research was supported by National Science
Foundation under grant CNS-1836942.

Acknowledgement

The bug detector depends on selecting an
appropriate set of variables to monitor. The
problem of selecting this set of variables is
nontrivial because of the need to balance design
requirements, which include: overhead, sensitivity,
specificity, coverage and alert-time.

Specificity
Sensitivity
Coverage
Alert time

Computational overhead

Methods

Ap
pl

ic
at

io
n 

Co
ns

tr
ai

nt
s

Sim
plified 

Problem

We used program slicing to identify variables in a
particular region of the code and subsequently
performed graph-based operations to prune the
program slice to a smaller subset to reduce the
operational costs for future implementation of an
online bug detector. We then demonstrated that
reduced variable subsets could achieve high
sensitivity for locating injected and real bugs.

Conclusion

Results

Figure 2. Model sensitivities for Decision Tree and AdaBoost
for the four variable selection methods SliceFull, SliceIO
SliceDF, and SysIO across all 9 injected bugs at 99%
specificity, tolerating 1% false positives.

• Adapted conventional program slicing to apply to
Cyber-Physical Systems. Adaptations include
adding temporal segmentation and generalizing
the slicing operations to account for interfaces
with other software and physical components.

• Demonstrated effectiveness of program slicing
(and specifically of backward slicing) as a basis
for improving bug detector performance, by
reducing overhead while maintaining other
constraints. This demonstration was conducted
by applying our bug detection tool to Ardupilot
and assessing performance for real and injected
bugs.

Contribution

Figure 1. a). obtained by backward slicing on variable pitch
dem starting on line 874 extracted from the update pitch
function in the Total Energy Control Systems (TECS) module.
Nodes are line numbers and edges represent variable
dependencies. In b), a forward flow graph constructed from
inverting the edges of the graph shown in a) and adding a
“source” node. The set of nodes in the dominance frontier is
computed for each node in the forward flow graph and
colored red. Notice that all of the nodes in the dominance
frontier have multiple in-flow edges.

(a). Backward flow graph

(b). Forward flow graph

Figure 3. Model sensitivities for bug 7062 in Ardupilot grouped
by the four variable selection methods SliceFull, SliceIO
SliceDF, and SysIO at 99% specificity, tolerating 1% false
positives.


