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ABSTRACT ALGORITHM AND METHODOLOGY
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while not done do
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arget size
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research proposes a linear Cow Cro
time, dynamic algorithm

using  Boolean logic S
representation. Static Query
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ANALYSIS AND SAMPLE RESULTS

We generate and analyze replacement circuits by choosing from pre-
generated static libraries and RBLE expansion. The goal is to determine
whether RBLE creates circuit distributions consistent with static choices, which
are uniformly random. Generated/studied 13,360,000 circuit variants as
semantically equivalent replacements for simple 62-1-1 and 62-1-3 circuits
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