
CPS – Breakthrough: Development of Novel Architectures for Control 
and Diagnosis of Safety-Critical Complex Cyber-Physical Systems

Stéphane Lafortune and Necmiye Ozay     Department of EECS, University of Michigan

Industrial Collaborators: 
• UTC Aerospace Systems (UTAS)
• Ford Motor Company

Key Results:Overall Objective:
•Scalability of formal methods for synthesis of 
provably-correct controllers

•Development of abstraction techniques that 
lift CPS design problem to synthesis problem 
on discrete state system

•Combination of control and sensor activation

•Synthesis for resilience and adaptivity

•Consideration of the distributed features of 
the system at synthesis step and at 
implementation step

Project Duration:  
January 2015 –
December 2018

Participants:
• Graduate Students: Xiang Yin (PhD graduate 2017), 
Yun Jae Cho (MS graduate 2016), Yunus Sahin, Romulo 
Meira Goes, Yiding Ji, Glen Chou, Liren Yang
• Undergraduate Students: Hector Dominguez, Dylan 
Lawton, Nicholas Recker, Stanley Smith, Siyuan Shen, 
Andrew Wagenmaker, Gregory Willett, Ryan Wunderly, 
Andrew Bourgeois, Isaac Dubuque, William Vandini, Philip 
Sisk

Project Website: 
https://wiki.eecs.umich.edu/complexcps/

• Uniform Synthesis Methodology at the Discrete Level
Ø Controller synthesis: for safety, non-blockingness, 

maximal permissiveness, and minimal behavior
Ø Synthesis of sensor activation policies: for information-

state based properties, such as diagnosability, opacity
Ø Solves synthesis problems that had remained open for 

a long time, using a game approach on suitable 
discrete transition structures: MPO and [NB-]AES

Ø Implemented in Software Tool: DPO-SYNT 
https://gitlab.eecs.umich.edu/M-DES-tools/DPO-SYNT

Ø PhD dissertation of Xiang Yin (2017)

• Massively Scalable Multi-agent Coordination
Ø Structural properties: 
Ø large # of systems

Ø small # of classes

Ø counting constraints (sufficiently 

many/not too many)

Ø identity of individual systems 

is not important

Ø Exploits symmetry (permutation invariance) for scalability 
with the number of agents

Ø Two new logics (counting Linear Temporal Logic and 
counting Linear Temporal Logic Plus) to capture multi-
agent coordination specifications 

Ø Leverages hierarchical planning for scalability with respect 
to the individual agent dynamics

Ø Robustness to asynchrony

• Nonuniform abstractions, refinement

and controller synthesis with novel 
BDD encodings, called split encodings
Ø Implemented in Software Tool: ARCS
https://github.com/pettni/abstr-refinement

Abstraction 
Continuous à Discrete 

Control Synthesis 
DES 

Active Diagnosis 
DES Control Sensing 

Non-Blocking 

No 

Property: 𝝋 System: 𝑮 

NB-AES MPO 

Yes 
Non-blocking? 

Minimal  
Behavior? Yes 

(Safety Only) 

CSR AES 

No 

Control or 
Sensing ? 

Supervisor for 𝝋 
Supervisor  

for 𝝋 
Supervisor for 𝝋 

with Minimal Behavior 
Sensor Activation 

Control or Sensing 
Non-blocking or not? 

Minimal Behavior 
or not 

Policy for 𝝋 

𝐿𝑟 𝑀𝑎𝑥1 𝑀𝑎𝑥2 

ℒ(𝐺) 

𝑀𝑎𝑥3 

Use minimal 
required behavior 
at synthesis time 
to select local 
maximal solution

Motivational Example

We focus our attention on a specific class of problems where the
specifications are given in counting temporal logic plus (cLTL+).

I the identity of the agents is not important for the task to be
completed,

I su�ciently many (or not too many) agents need to satisfy a
certain task.

Sahin, Ozay, Tripakis DARS 2018 October 16, 2018 3 / 22

new states. One of these is numbered by k and the other by |Q| + 1, after
which they are encoded according to (17). The number of variables is also
incremented if |Q| = 2n before refinement, i.e. all encodings for n variables
are used by the present states. With this encoding, the absolute minimum
of dlog2(|Q|)e variables are used to encode the states. As it simply uses the
least amount of variables, it is the encoding to prefer when nothing obvious
can be stated about the structure of the problem. This is the standard
encoding used in some tools [10, 11].

The novel encoding we propose in this paper—denoted the split encod-
ing—is based on the splitting procedure during refinement. As the partition
grows increasingly non-uniform with time, with a possibly small area becom-
ing increasingly fine in contrast to others, we believe that an encoding that
reflects this structure can lead to computational gains.

Eq1 = 00 Eq2 = 01

Eq3 = 10 Eq4 = 11

Eq1 = 000 Eq2 = 010

Eq3 = 100

Eq04
= 110

Eq004
= 111

Eq2 = 010

Eq3 = 100

Eq04
= 110

Eq004
= 111

Eq01
= 000

Eq001
= 001

Initial partition q4 refined q1 refined

Figure 1: Example of change in split encoding after refinement of initial partition
using k = 2 variables. Refinement of q4 also reaches new largest refinement depth.
Bits appended during expansion, but not later assigned, are shown in red.

Starting with a coarse initial abstraction and an encoding E for the
states using k variables, new states created from the splitting procedure
have their encoding chosen based on that of its predecessor and refinement
depth. The refinement depth is a measure of how many refinements have
been performed on the domain the state contains. Every cell resulting from
splitting a cell with depth d has a depth of d + 1, and cells in the initial
partition are defined to have depth zero. When a state q with depth d is split
into two others, q0, q00, the new states keep the encoding of their predecessor,
with a modified bit at position k+ d+ 1. This bit is set to 0 for q0 and to 1
for q00. In the event that the partition reaches a new largest splitting depth,
a new variable first has to be created to describe the new states, e↵ectively
expanding all encodings by one bit. The default value of the appended bit

9

Split encodings 
automatically 
adapt to the 
topology of the 
refined partition.

https://wiki.eecs.umich.edu/complexcps/
https://gitlab.eecs.umich.edu/M-DES-tools/DPO-SYNT
https://github.com/pettni/abstr-refinement

