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Objective Arbitrary Lagrangian Eulerian (ALE) Framework Fluid-Particle, Particle-Particle Interactions
Towards the development of a high-throughput DNA synthesizer, ALE solves the set of Navier-Stokes and structural mechanics Particle trajectories were evaluated for two square particles
we perform computational fluid dynamic (CFD) simulations to equations in a mesh frame with mathematical mapping to the flowing through the microfluidic channel.
predict the trajectories of p-Chips in fluid flow and evaluate the spatial and material frames. The ALE mesh is automatically - , . m/s .  mm \ . mis .
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In this study, we investigate the transport of fluid-immersed, flat, angle were 104 mm and 0.43 degrees, respectively. [Re,=2.8] > - 6ot
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element CFD model of two-way coupled fluid-structure 2-D FSI studies were performed for square, micron-sized particles
interaction that takes into account solid bodies using COMSOL. (diagonal length, D = 0.85 mm; sphericity: 0.55) flowing through a
straight microchannel in DI water (inlet flow velocity, v, = 0.1 m/s) Discussion and Future Work
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