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Differential Privacy

Imagine that a researcher publicly releases the
maximum income of residents in a particular
town. Anyone viewing the statistic could be
confident that an acquaintance living in that
town has an income no greater than the re-
leased value. In this way, even though the
maximum is a summary statistic and we do
not know who actually has that income, sen-
sitive information has been revealed about ev-
eryone in the town. Differential Privacy pro-
vides a framework for such releases by giving
a probabilistic guarantee that the inclusion of
a particular person’s data will not have a large
effect on the statistic released. The strength of
this guarantee is determined by the analyst’s
choice of the privacy parameter, . In practice,
this typically means randomizing the output
in some way, such as by adding (calibrated)
noise to the true statistic. This process allows
researchers to release informative statistics on
sensitive databases without compromising the
privacy of individuals.

Confidence Intervals

Confidence intervals are a popular technique
for constructing a range in which some value
of interest is likely to fall. When the each el-
ement of a sample (X = X1, ..., Xn) is drawn
independently from a normal distribution, con-
fidence intervals can be constructed using only
the sample mean (X̄) and the sample standard
deviation (s).
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When many intervals are constructed this way,
c(X) will contain the actual mean of the normal
distribution, (1− α)% of the time.

Our Objective

Produce differentially private confidence intervals for normal data that are small enough to be useful.

Making Queries Private

•A query is a function on the database such as
mean or maximum.

•The Laplace mechanism takes the true value
of a query Q and adds calibrated noise from a
Laplace distribution:

Q̂(D) = Q(D) + Lap(∆Q
ε

)

where ∆Q is the sensitivity of the query.
•The exponential mechanism selects a value
based on a utility function U that the analyst
determines. The values are selected with
probability proportional to:

exp
εU(r,D)

2∆U



Simulating Reference Distribution

The standard reference distribution quantiles are
no longer appropriate since we are adding addi-
tional noise. Instead, we simulate the reference
distributed to derive our critical values. With
enough simulations, we can get as close as we
want to the true reference distribution.

Figure: Example of simulated normal-Laplace distribution

‘Noisy’ Algorithms

To construct a differentially private confidence
interval, we first construct private measure of the
center and the spread. We found that the best
measure of center was the sample mean, but that
we could improve on the sample standard devi-
ation. Instead, we calculate the mean absolute
deviation:

s̃ = 1
n

n∑
i=1
|xi − x̄|,

which has lower sensitivity.

Quantile Algorithms

We employed the exponential mechanism and
constructed an algorithm that outputs differen-
tially private estimate of sample quantiles. Be-
cause of the way the exponential mechanism se-
lects the output, we are often able to get much
more accurate estimates than we would with the
Laplace mechanism.

Figure: Expected noise added by Laplace and exponential
mechanisms for estimating the mean

Our best quantile based algorithm estimates two
qunatiles an equal distance away from the me-
dian. Their mean is the estimate of the center
and the difference is used to estimate spread.

Results

All algorithms outperformed previously existed
differentially private confidence interval algo-
rithms for normal data. All algorithms pro-
duce private confidence intervals with correct
coverage and reasonable width that allow the
outputs to be practically useful. We compare
to existing methods (see [1], [2], [3]) in the fig-
ure below:

Figure: Graph of the performance of our methods
against the public.

Acknowledgements

Funding was provided by the Reed College Science Re-
search Fellowship for Faculty-Student Collaborative Re-
search.

References

[1] T. Brawner and J. Honaker.
Bootstrap inference and differential privacy:
Standard errors for free.
Unpublished Manuscript, 2018.

[2] V. D’Orazio, J. Honaker, and G. King.
Differential privacy for social science inference.
SSRN Electronic Journal, 01 2015.

[3] V. Karwa and S. P. Vadhan.
Finite sample differentially private confidence
intervals.
CoRR, abs/1711.03908, 2017.


