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Objectives
We aim to develop and assess DP analogs to three
rank-based statistical tests. For each we:
IConstruct a mechanism for the release of a
private statistic and bound its sensitivity.

IIAssess the relative effectiveness of methods by
comparing power curves.

Rank-based Statistics
Rank-based tests were devised as an alternative to
tests with distributional assumptions. Instead of us-
ing the raw data where each obs. has a value (yi),
and group membership (gi), statistics are based on
the ranks (ri) and signs (si) of the yi.

i yi gi
1 3 1
2 2 1
3 -2 2
4 -1 2
5 -1 3
6 4 3
Raw data

→

ri si
5 1
4 1
1 -1
2.5 -1
2.5 -1
6 1

Rank and sign data

Hypothesis Testing
Goal: measure whether a particular data set is con-
sistent with a given theory (H0).
Steps:
1 Select and compute meaningful test statistic t.
2 Determine distribution of T = f (X) when
database X is drawn according to H0.

3 Compute the p-value:

Pr[T ≥ t | T = f (X) and X← H0].

Wilcoxon Signed-Rank
Setting Each observation has two paired values
and their difference di. We evaluate whether these
two values come from the same distribution.
Public statistic Rows with di = 0 are removed,
then the remaining rows are assigned ranks and
signs. The test statistic W is:

W =
∑
i

siri

Our contribution Prior work [2] adds Laplace
noise to W and analytically bounds the reference
distribution. We instead use an alternate statistic
that does not drop di = 0 rows, and simulate the
exact reference distribution.
Results We require between 8% and 40% as much
data as prior work to achieve the same power.

Simulation and Power
After computing the private test statistic, two forms of
simulation are used to find the reference distribution.

• Take many draws from X← H0 directly, calculate
many f (x∗), and add i.i.d. Laplacian to each.

• If distribution of T is known, draw many t, and
add i.i.d. Laplacian to each.

Hypothesis tests are judged by their statistical power :
the probability to detect an effect if it exists.

Pr[T ≥ t∗ | T = f (X) and X← HA].

The empirical power curves above show power as a
function of database size, with an effect size of 1σ.

Mann-Whitney Rank Sum
Setting Testing if two independent sets of data
share the same pop. distribution.
Public statistic For each group j ∈ {1, 2}, de-
fine the rank sum, Rj = ∑

gi=j ri. The statistic U
is:

U = min{R1 −
n1(n1 + 1)

2
, R2 −

n2(n2 + 1)
2

}

Our contribution The sensitivity of U depends
on the group sizes, so we develop a two-stage pri-
vate algorithm to first release the group sizes and
then release U with Laplace noise. We use the nor-
mal approximation to simulate the reference dis-
tribution.
Results Our approach sets a benchmark for
power in this class of tests, requiring n ≈ 102.2

to achieve high power at ε = 1.

Take Aways
• Customizing the traditional public statistics for
the private setting can lead to dramatic
improvements in power.

• Power curves are a useful metric by which to
compare multiple statistics.

• In the private setting, rank-based statistics can
out-perform Gaussian-based statistics, even
when the assumptions of the normal methods
are met.

This material is based upon work supported by the National
Science Foundation under Grant No. SaTC-1817245 and the
Richter Funds.

Kruskal-Wallis
Setting Testing if ≥ 2 independent sets of data
share the same pop. distribution.
Public statistic Let the size of each group j ∈
{1, . . . , k} be nj, its mean rank be r̄j, and the
mean of all ranks r̄ = n+1

2 . The statistic H is:

H = (n− 1)
∑k
j=1 nj(r̄j − r̄)2∑k

j=1
∑nj
i=1(rij − r̄)2

Our contribution We adaptH to use the L1 in-
stead of L2 norm and privatize it with the Laplace
mechanism. We simulate the exact reference dis-
tribution.
Results We find our test requires 20% as much
data as the best existing method [1] to achieve the
same power.
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