
EVALUATING PROVABLY PRIVATE OBFUSCATIONS FOR EYE AND FACE IMAGES

Nick Reilly, Dr. Liyue Fan
Department of Computer Science, UNC Charlotte

EVALUATING PROVABLY PRIVATE OBFUSCATIONS FOR EYE AND FACE IMAGES

Nick Reilly, Dr. Liyue Fan
Department of Computer Science, UNC Charlotte

Problem

Privacy of image data is a significant concern in today’s society. A substan-
tial amount of image data is continuously being collected, with much of it
containing sensitive biometrics, such as face and iris, that can be used mali-
ciously if in the hands of an adversary. Therefore, it is imperative to develop
image privacy solutions which do not disclose sensitive information about
participants. Many image obfuscation methods exist and are widely used
(blurring, covering sensitive regions,) but these are primitive approaches,
prone to inference attacks, and do not quantify privacy leakage.

The goal of this project is to provide a comparative analysis of state-of-the-
art differential privacy mechanisms for protecting eye-tracking images and
the creation of software tools to facilitate the adoption of image privacy.

Methodology and Data

In this project, we propose the use of differentially private mechanisms,
namely Snow[1] and SamplingDP[2], to perform private image obfuscation
and analyze the efficacy of these mechanisms against inference attacks
and practical utility. Performance is evaluated using practical metrics for
quantifying privacy and utility on the CASIA-IrisV2 dataset: for privacy
evaluation, we will perform iris re-identification attacks on obfuscated
images; for utility evaluation, we will consider specific tasks, such as gaze
estimation, as well as perceptual quality measures.

Differential Privacy (DP). Differential privacy is a state-of-the-art notion
for quantifying privacy leakage in sensitive datasets and has been adopted
in large-scale by organizations such as Google, Apple, and the Census
Bureau. The goal of differential privacy is to guarantee that the privacy of
any individual participating in a dataset will not be at risk, regardless of any
data that is available or may become available.

Privacy Mechanism - Snow

Snow Mechanism. Given grayscale image I(x), where x denotes the
index of each pixel in the image, and parameter p, we randomly select a
subset of pixels S from I of size p · Iwidth · Iheight. We create a new image
I ′(x) such that:

I ′(x) =

{
127 x ∈ S
I(x) x /∈ S

The fundamental idea of Snow is the introduction of noise to an image by
randomly flipping the intensity of pixels to a constant value. The mechanism
is simple to implement with low computation time, making it an appealing
choice for researchers.

Fig. 1: Snow Mechanism

Privacy Mechanism - SamplingDP

SamplingDP Mechanism. Given grayscale image I, privacy budget ε, and selection rule k, Sam-
plingDP strategically generates a private image that maximizes utility and exhausts the privacy budget.
SamplingDP consists of four broad phases:

1. Select k representative intensities→ 2. Budget allocation→

3. Sample xi pixels from each intensity→ 4. Generate private image through interpolation

Fig. 2: SamplingDP Mechanism

Privacy Guarantees

Privacy Parameters. Two parameters exist that are central to the idea of differential privacy, ε and
δ. ε is known as the privacy budget and bounds the sensitivity of the mechanism. The strongest form
of privacy is ε-DP; however, achieving this level of privacy is not always possible and the addition
of a δ value is required, establishing the need for (ε, δ)-DP. A mechanism that satisfies (ε, δ)-DP will
achieve (ε)-DP with probability (1−δ). Lower values of these parameters give larger privacy guarantees.

Privacy Guarantee of Snow. We define two neighboring grayscale images, X and X ′ that differ by at
most one pixel. The Snow mechanism (M) satisfies (0, δ)-DP if for every X , X ′, and O ∈ range(M):

P [M(X ) = O] ≤ P [M(X ′) = O] + δ

It can be shown that constraining ε to 0 allows us to describe δ in terms of p: δ = 1 − p. Thus, we see
that for any desired δ, Snow can achieve (0, δ)-DP.

Privacy Guarantee of SamplingDP. The privacy guarantee of SamplingDP lies in the pixel sampling
phase. Given two neighboring images I and I ′ that differ by at most one pixel, it can be shown that the
pixel sampling algorithm (A) provides ε-DP if for any I, I ′, and O ∈ range(A):

∀θi ∈ Ψ, e−ε(θi) ≤ P [A(I(θi)) = O(θi)]

P [A(I ′(θi)) = O(θi)]
≤ eε(θi)

Where Ψ denotes the set of representative intensities, θi denotes the ith intensity of Ψ, and ε(θi)
denotes the privacy budget allocated to the θi.

Metrics

We employ various metrics to quantify the privacy and utility achieved by the mechanisms and use
them to compare obfuscated image to their source. Structural Similarity (SSIM) measures percieved
image quality between two images and uniquely considers texture/luminance. Gaze Error measures
the difference in the predicted gaze of the two images. Confident Pupil Rate measures the proportion
of obfuscated images who’s pupil was confidently localized by a convolutional neural network. We
employ an iris authentication algorithm to attack the obfuscated images and measure privacy. Correct
Recognition Rate measures the proportion of obfuscated images that were correctly re-identified to a
held-out target image belonging to the same participant.

Results

SamplingDP

ε RMSE SSIM Gaze Error (◦) Confident Pupil Rate
Correct
Recogniton
Rate

0.1 17.594 0.789 16.109 4.47% 0%
0.3 13.79 0.801 9.741 21.9% 0%
0.5 12.578 0.807 6.242 38.27% 0.26%
0.7 11.796 0.81 5.876 50.55% 0.26%
1 11.147 0.813 5.088 56.63% 0.58%
3 9.464 0.831 3.3 74.78% 1.05%
5 8.847 0.84 2.797 81.11% 1.84%
7 8.459 0.847 2.378 82.89% 4.83%
10 8.093 0.854 2.21 85.78% 10.68%

Table 1: SamplingDP Utility and Attack Evaluations

Snow

δ RMSE SSIM Gaze Error (◦) Confident Pupil Rate
Correct
Recogniton
Rate

0.33 36.436 0.368 4.424 30.09% 0%
0.4 34.365 0.366 2.256 61.95% 0%
0.5 31.372 0.373 1.908 80.09% 0%
0.55 29.76 0.38 1.582 83.63% 0%
0.6 28.056 0.39 1.285 86.5% 0%
0.65 26.243 0.404 1.179 88.27% 0.79%
0.7 24.301 0.421 0.953 91.59% 3.68%
0.75 22.182 0.444 0.802 92.48% 6.87%
0.8 19.839 0.474 0.546 94.47% 11.7%
0.85 17.182 0.517 0.507 95.8% 23.34%

Table 2: Snow Utility and Attack Evaluations

In both tables, blue and orange columns highlight utility and privacy metrics
respectively. We see that as ε increases, utility is monotonically increas-
ing while privacy monotonically decreases. It is important to note that the
privacy parameters between the two mechanisms are not directly compa-
rable (i.e. ε = 0.5 6= δ = 0.5). We note that the values of δ required to
achieve any utility with Snow are widely regarded as poor privacy, while
SamplingDP is able to achieve good utility with respectable values of ε.

Fig. 3: Visual Results. second/third columns: SamplingDP, fourth/fifth: Snow.
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