Software vulnerabilities originating from insecure code are a leading cause of security
problems. We propose a new approach, interactive static analysis, to integrate the
detection and mitigation of security vulnerabilities into the context of development.

/ Problem \

» Static and dynamic security
tools require significant
knowledge to use and
understand;

+ Why was this line marked?

+ What could happen if this warning is ignored?

1S hine of code 15 nol secure, and a mahoous user could iInpec! code and cause a Cross-sile scnpbn
SS at : e r o b eciert n IMES Srnnls I waholiets wh M ; = A '

request.setAttribute ("ACCOUNT", account):

PrintWriter out = response.getWricer():

This code uses the printin method from the PrintWriter object to
output data returned by ""account.toString()™" to the application.
M If this 1s not sanitized, attackers can insert arbitrary malicious code

» Such tools tend to be run at the
end of development by security

‘? "Potential Security Vulnerability Detected”
“? Read More

W Sanitize HTML | | which will be executed when this data is displayed. This attack is
rt W Sanitize URL t known as a Cross-Site-Scripting attack.
expe s ® Extract to method Use the options below to generate code which will sanitize data

J - e " . s "
Remove surrounding 'if' statement * from ""account.toString()"" or click "Read More" for more
information.

> Thus, developers are kept “out
of the security loop”, and continue

to introduce security
\vinerabilities. /

/ Approach

» Understand how developers interpret
and diagnose security warnings

ASIDE: Application Security in the IDE
Prototype interactive static analysis tool

» Help developers resolve vulnerabilities
through automated code generation and

> Integrate static analysis within the IDE, providing sufficient explanations;

iIncreasing developers’ awareness and
practice of secure programming

» Utilize the programmer’s contextual
knowledge to drive customized static
analysis, detecting additional vulnerabilitiesj

<

Tool Development and Evaluation / Studying existing security tools \
ASIDE is an Eclipse plug-in for Java and PHP that detects * Studied how developers diagnose vulnerabilities in an
and provides security vulnerability warnings alongside open source project using Find Security Bugs.
code 1n the IDE. .

Analyzed the questions developers asked, including
questions surrounding the vulnerabilities and attacks,
but also the software, related resources, and tools.

* Automated code generation of sanitization of
untrusted mput and encoding of output;

* Interactive annotation of application-specific security * Analyzed the strategies they used to answer questions,
decisions, driving detection of access control and and the success and failure of those strategies.
CSRF vulnerabilities.

Evaluation on one large open source project (Moodle) and /
multiple smaller projects:
* 3 zero day vulnerabilities detected

Expanding beyond the IDE \

Study of 30 security professionals who perform security

* Better coverage of known vulnerabilities over other
static analysis methods

Multiple user studies of advanced students and developers
demonstrates that ASIDE is usable, and increases user
awareness and knowledge of security vulnerabilities.

analysis of code, enhancing our understanding of the life
cycle of code analysis.

Additional detection and mitigation of vulnerabilities:
* Automatic unit testing of sanitization functions

* Using interactive static analysis to support security-
\ oriented code review by developers /

Interested 1n meeting the PIs? Attach post-1t note below!

A
\-\Q

D

National Science Foundation
WHERE DISCOVERIES BEGIN

NC STATE
UNIVERSITY

