Dissipating Stop-And-Go Waves with One Robot: Framework and Details F. Wu, X. Zhai, L. Yu, C. Zhang, Y. Zhou, X. Cao, and A. Bayen November 2019

Problem Statement

To dissipate the stop-and-go waves formed by a group of greedy mobile robots in a circular track by only controlling speed of one robot.

Proposed Solution

• *Decouple*: Slow down to 40% speed limit.

• *Recover*: Once the wave is decoupled, speed up to 60% speed limit.

• Resume: If the gap persists, slowly speed up to until vehicles are evenly spaced or to full speed limit.

Implications

 Stop-and-go traffic could be dampened by controlling a few vehicles.

• The control law can be a simple finite state machine.

Robotics Framework

Technical Details

The details of computer vision, vehicle actuation, and communication modules are outlined below.

Computer Vision

 \rightarrow Perspective transform → Background subtraction based on color thresholding \rightarrow Objection detection using k-means clustering \rightarrow Data association using nearest neighbor search

Vehicle Actuation

 \rightarrow Discretize control into five modes, i.e., 0%, 20%, 40%, 60%, 80%, 100% max speed. \rightarrow A human cooperator selects the mode with a keyboard.

Communication

- to ROS

 \rightarrow Establish a local area network \rightarrow Open a ROS localhost \rightarrow Publish camera data to ROS → Publish keyboard command

→ Subscribe vehicle to ROS