Distributed Asynchronous Algorithms & Software Systems For Wide-Area Monitoring of Power Systems

Aranya Chakrabortty*, Frank Mueller*, Rakesh Bobba+, Nitin Vaidya+ and Yufeng Xin

North Carolina State University, *University of Illinois Urbana Champaign, **RENCI, University of North Carolina

CPS-1329780

Attention Grabber:

A completely distributed CPS architecture that enables communication and processing of Synchrophasor data for real-time dynamic monitoring and control of next-generation power systems.

Problem:

Majority of current wide-area monitoring algorithms are:

- Executed offline (postmortem), not realtime
- Centralized
- 3. What happens in 3-4 years when 1000s of PMUs in the US power grid?

at CHAPEL HILL

Solution:

- 1. Distributed numerical algorithms
 - i. Oscillation monitoring
 - ii. Transient stability
 - iii. Voltage monitoring
- 2. Fault-tolerant Distributed middleware
 - Cloud computing
 - ➤ Software Defined Networks (SDN)
 - > Experiments: BEN-WAMS testbed at NCSU, Exo-GENI, and GENI

Difference from competition:

- 1. "Real-time" computational constraints
- 2. Stability and convergence problems when executed in the real world
- 3. Software defined networks
- 4. Distributed hash tables for power system middleware
- 5. Real-time testbed implementation

Team:

Aranya Chakrabortty Frank Mueller

Rakesh Bobba Nitin Vaidya

of NORTH CAROLINA Yufeng Xin

Target Market and Growth Prospects:

- 1. Utility companies (eg: Southern California Edison, Duke Energy)
- 2. Software and hardware vendors (eg: Alstom, ABB, Schweitzer, V&R)
- 3. Regional Transmission Operators (RTO) & Independent System Operators (ISO)
- Growth of market will depend on middleware implementation, usability and interoperability of SDNs across utilities, and <u>data-sharing contracts</u>.

How can we make money?

- 1. Collaborate with existing software vendors (ABB, V&R) to sell software packages to RTOs and ISOs
- 2. Monetization will depend on volume of usage (eg. 1000 point use of PI Historian)
- 3. Apply for vendor-driven joint NSF/DOE projects
- 4. Possible start-up company for power system software development
- 5. Work with Tech-transfer office of NSF ERC FREEDM Systems Center at NC State.

Multivendor PMU-PDC Testbench at NCSU

BEN-WAMS Testbed

Joint Work with computer scientists at UNC Chapel Hill & Duke University

