Distributed Asynchronous Algorithms & Software Systems For Wide-Area

Monitoring of Power Systems

Distributed LS problem

subject to $\mathbf{a}_i - \mathbf{z} = 0$, for i = 1, ..., N

 $\underset{\mathbf{a}_{1}, \mathsf{K}, \mathbf{a}_{N}, \mathbf{z}}{\operatorname{minimize}} \sum_{i=1}^{N} \frac{1}{2} \left\| \hat{H}_{i} \mathbf{a}_{i} - \hat{\mathbf{c}}_{i} \right\|$

CPS PROJECT NUMBERS: 1329780, 1329745, 1329681

Project Goal

centralized current state-of-art processing algorithms for wide-area monitoring of power grids using large volumes of Synchrophasor data to a completely distributed cyber-physical architecture.

Intellectual Merits:

- . Distributed oscillation monitoring
- 2. Distributed voltage monitoring
- 3. Distributed middleware
- 4. Fault-tolerance
- 5. Experimental verification using Exo-GENI network
- 6. Real-time testing of QoS and cyber-security

Distributed Oscillation Monitoring

Problem statement: Compute power flow oscillation frequencies (eigenvalues), mode shapes (eigenvectors), damping, and residue from PMU measurements using distributed algorithms implemented via DRCP and DLAP.

Power System Dynamic Model

$$\begin{bmatrix} \Delta \dot{\delta} \\ M \Delta \dot{\omega} \\ \Delta \dot{E} \end{bmatrix} = \begin{bmatrix} 0 & I & 0 \\ -L(G) & -D & -P \\ K & 0 & J \end{bmatrix} \begin{bmatrix} \Delta \delta \\ \Delta \omega \\ \Delta E \end{bmatrix} + \underbrace{\begin{bmatrix} 0 \\ \operatorname{col}_{i=1}(1)n}(\gamma_i) \\ \operatorname{col}_{i=1}(1)n}(\rho_i) \end{bmatrix}}_{\text{due to load}} + \begin{bmatrix} 0 & 0 \\ 0 & I \\ I & 0 \end{bmatrix} \begin{bmatrix} \Delta P_m \\ \Delta E_F \end{bmatrix}$$

$$\Delta \theta_i(t) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + L + b_{2n} z^{-2n}}{1 + a_1 z^{-1} + a_2 z^{-2} + L + a_{2n} z^{-2n}}$$

Sparse distributed optimization:

- ADMM, Stochastic Gradient
- Round-Robbin ADMM for fault tolerant optimization

Distributed Middleware

Integrated two classes of important applications into Resilient Real Time Distributed System (R2TDS):

- Single server measurement for electromechanical oscillation mode parameter estimate

- ➤ Alternative access points of R2TDS guarantee continual data storage and retrieval
- The decreasing of convergence accuracy and speed or even divergence can be avoided by using R2TDS

Technical Approach

Proposed Distributed Cyber-Physical Architecture for PMU-PDC Communication:

- Dynamic Rate Control Problem (DRCP):
- Find optimal PMU data exporting rates, and frequency of information exchange between local PDCs and interregional PDCs to minimize computation error between centralized and distributed estimation
- Dynamic Link Assignment Problem (DLAP):
- Find optimal communication topologies in real-time connecting local and interregional PDCs to maximize computational speed for the overall global estimation/monitoring/control problem.

New Algorithms and Results using ADMM

1: Update both primal and dual estimation variables at every local control center:

$$\beta_{i}^{(k+1)} = ((H_{i}^{(k)})^{T} H_{i}^{(k)} + \rho I)^{-1} ((H_{i}^{(k)})^{T} c_{i}^{(k)} - w_{i}^{(k)} + \rho \overline{\beta}^{(k)})$$

$$w_{i}^{(k+1)} = w_{i}^{(k)} + \rho (\beta_{i}^{(k+1)} - \overline{\beta}^{(k+1)})$$

- **2**: Gather the values of $\beta_i^{(k+1)}$ at the central ISO
- **3**: Compute the average of $\beta_i^{(n+1)}$ at the central ISO
- 4: Broadcast the average to local control centers and iterate to Step 1

Timing diagram of message arrival

 $t_3^{(k)}(t_{3,i}^{(k)}) \qquad t_4^{(k)}$

Mitigating Asynchrony in Wide-Area Communication

If a message doesn't arrive at ISO by a delay threshold d_1^*

- Strategy 1: Skip missing data $z^{(k+1)} = \frac{1}{|S^{(k)}|} \sum_{i=0}^{N} \left(a_i^{(k+1)} + \frac{1}{2} w_i^{(k)} \right)$
- Strategy 2: Use zero-order hold

Fault-Tolerance & Cyber-Security

- Design application specific fault-tolerance mechanisms to meet real-time needs of the DRCP and DLAP monitoring algorithms
- Crash failures
- > Byzantine failures *Graph designs* to prevent arbitrary byzantine faults
- Leverage the redundancy of sensors and the correlation among sensor data to reduce the cost of fault-tolerance
- Protecting a small subset of PMU data may be necessary and sufficient to detect false data injection attacks
- Leverage application characteristics to design approximate or safe algorithms that can tolerate asynchrony and message loss

Experimental Testbed

- Participated in US Ignite Application Summits 2013-2017, and in Smart America Challenge 2014 Initiative of NIST and US White House
- Federated ExoGENI-WAMS: Multi-vendor PMU-based hardware-in-loop simulation testbed at NCSU to showcase wide-area oscillation monitoring and control

Broader Impacts

- Smart America Challenge 2014, US Ignite 2013-2017 demos
- Undergraduate, K-12 and minority education via Science House and FREEDM ERC programs at NC State
- Undergraduate summer internship at Information Trust Institute at UIUC
- Industry collaborations with power utilities and vendors such as SCE