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NYC before blackout 

NYC after blackout 

2 Main Lessons Learnt from the 2003 Blackout:  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hauer, Zhou & Trudnowsky, 2004 
Kosterev & Martins, 2004 

Main trigger: 2003 Northeast Blackout 

1.  Need significantly higher resolution measurements 

2.  Local monitoring & control can lead to disastrous results 

From traditional SCADA  (System Control and Data 
Acquisition)  to PMUs (Phasor Measurement Units) 
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SCADA Data from Kramer substation in California 

PMU Data 

“It's like going from an X-
ray to a MRI of the grid.”  
Terry Boston, CEO, PJM 
Interconnection 



Increasing Volumes of PMU Data 

2008: Only 40 PMUs in the entire east coast 
2015: More than 1200 PMUs across USA 
(Nearly 52 PMUs only in North Carolina) 

•  Massive volumes of PMU  
•  Centralized processing will not be tenable 
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Centralized vs Distributed Algorithms 
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(Hierarchically) Distributed 

Specific application of interest for this talk:	

Wide-area oscillation monitoring	


Centralized WAMS 
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Distributed Computation 
Montreal	   NYC	  

Newark	  
u3(t)	  
	  x3(t)	  

	  

x2(t)	  
	  
	  

x1(t)	  

Heavy online 
computation with 
volumes of data 

transfer in 
unsecured network 

connecting 
generation sites 

directly 

L(G) = fully connected network graph  Controllable inputs 

Swing equation model: 



Computation of control signal in Exo-GENI cloud
Montreal NYC

Newark
x3(t)

x2(t)

x1(t)

VM1

VM2

Move	  the	  
control	  

computations	  to	  
the	  cloud

Exo-‐GENI	  cloudVM1 VM3

Local	  in	  Montreal

Local	  in	  Newark

Local	  in	  NYC

Computation	  can	  happen	  in	  local	  clouds	  with	  
cloud-‐to-‐cloud	  communication	  instead	  of	  

gen-‐to-‐gen	  communication

Distributed Computation in the Cloud 



Multiple Computational Areas	
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Solve using	

Alternating Direction Method of Multipliers (ADMM)	
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Distributed Optimization Using ADMM 
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Iteration k+1	

•  Step 1  Update a↓𝒊  and w↓𝒊  

locally at PDC i 	
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•  Step 3  Take the average of a↓𝒊 ↑𝒌+𝟏 	


•  Step 2  Gather the values of a↓𝒊 ↑𝒌+𝟏  
at the central PDC 	


•  Step 5  Check the convergence	


•  Step 4  Broadcast the average value 
(a ↓𝒊 ↑𝒌+𝟏 )  to local PDCs	


•  Final Step  Find the frequency Ω↓𝑖 , and 
damping 𝜎↓𝑖  at each local PDC using a ↓𝒊 
↑𝒌+𝟏 	


Privacy of PMU data between 
companies guaranteed 



Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	
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Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	
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If a message doesn’t arrive at ISO by a  
delay threshold d1* 

•  Strategy 1: 

Can easily lead to divergence 



Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	
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If a message doesn’t arrive at ISO by a  
delay threshold d1* 

•  Strategy 2: 
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Substitute values from  
previous iteration 

Convergent,  but slow 



Hybrid	  Update	  Strategies	  for	  A-‐ADMM	  

15	  

Uplink:	  Central	  PDC	  uses	  strategies	  for	  
delayed	  message	  from	  local	  PDCs	  	  

Downlink:	  Each	  local	  PDC	  uses	  strategies	  
for	  delayed	  message	  from	  central	  PDC	  	  

Strategy	  I:	  Skipping	  
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Strategy	  II:	  Using	  Previous	  Messages	  
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Strategy	  II	  with	  Gradient	  Method	  
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Multiple Computational Areas	
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Distributed	  Op*miza*on 

	  
Node	  i	  has	  local	  objec;ve	  hi(x)	  

	  
	  
minimize	  	  
	  
	  
	  
	  	  
	  

h(x) = 1
n

hi (x)
i=1

n

∑



X1	  

X3	  

X2	  

X3	  ç	  	  ⅓	  (X1+X2+X3)	  	  -‐	  	  λt	  	  grad	  h3(X3)	  



Many	  Other	  Applica*ons	  

•  Distributed	  robo;cs	  

•  Machine	  learning	  



X1	  

X3	  

X2	  

X3	  ç	  	  ⅓	  (X1+X2+X3)	  	  -‐	  	  grad	  h3(X3)	  



Fault-‐Tolerance	  

h(x) = 1
n

hi (x)
i=1

n

∑

Not	  meaningful	  to	  op;mize	  
	  
	  
	  
	  
since	  faulty	  costs	  included	  	  



Alterna*ve	  Goal 

N	  	  =	  non-‐faulty	  nodes	  
	  

Op;mize	  non-‐faulty	  cost	  func;ons:	  
	  
	  
	  
	  
…	  but	  this	  is	  provably	  impossible	  
	  
	  

h(x) = 1
N

hi (x)
i ∈ N
∑ .



Byzan*ne	  Fault-‐Tolerant	  Op*miza*on 

Instead	  of	  uniform	  weights	  in	  
	  
	  
	  

allow	  unequal	  weights	  
	  
	  

	  …	  but	  as	  close	  to	  uniform	  as	  possible	  
	  

h(x) = αi hi (x)i∈N∑ ,

h(x) = 1
N

hi (x)
i ∈ N
∑ .



Byzan*ne	  Fault-‐Tolerant	  Op*miza*on	  

• Op;mal	  algorithms	  
– How	  many	  weights	  non-‐zero?	  
– How	  large	  can	  they	  be?	  

h(x) = αi hi (x)i∈N∑ ,



Byzan*ne	  Fault-‐Tolerant	  Op*miza*on	  

•  Op;mal	  algorithms	  for	  complete	  networks	  

•  Many	  related	  problems	  open	  …	  
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Resilient	  Real	  Time	  Data	  Middleware	  
RT-‐DHT:	  real-‐;me	  distributed	  hash	  table	  
•  Decouple	  strong	  dependency	  between	  PDCs	  and	  PMU	  sources	  
•  Chord-‐like	  ring	  +	  finger	  pointers	  
•  mul;ple	  replicas	  of	  data	  à	  faults	  OK	  
•  Network	  control	  à	  determinis;c	  wide	  –area	  networks	  
	  

our storage layer employs a DHT algorithm to implement a
distributed storage that replicates data across its nodes. As a
result, the storage system can serve requests even after node
failures without data loss (self-recoverability).

We implement an earliest-deadline-first (EDF) task sched-
uler and an EDF packet scheduler to prioritize requests by their
deadlines within the real-time distributed storage abstraction.
The EDF scheduler reduces the time required for failure
recovery, since an application can increase the priority of
requests by shortening deadlines in recovery mode (after a
node/link failure). In addition, we employ a schedulability test
for our EDF task scheduler. Knowing the data lookup request
demands a priori, the schedulability test provides a check to
determine if these requests can be served by their deadlines.

In experiments, we deploy our distributed storage system on
a virtual platform and deploy a distributed electro-mechanical
oscillation modes estimation application, which is based on the
Prony and ADMM algorithms [7], [8]. Experiments demon-
strate how the storage system is utilized by a distributed power
grid application and how the design of distributed algorithms is
facilitated by our storage abstraction. In addition, we simulate
different failures and demonstrate the resilience of our system,
which current centralized power grid monitor and control
infrastructure cannot provide.

II. A RESILIENT DISTRIBUTED INFRASTRUCTURE

A. The Centralized Measurement System

Fig. 1 depicts the infrastructure of current centralized mea-
surement systems. A PMU is connected with its local PDC
and transmits monitoring data periodically to the local PDC.
In one iteration of the ADMM algorithm, the local PDCs
run the estimation algorithm based on their PMU data and
send the local estimates to the central PDC. Then, the central
PDC estimates the global state based on the data received
from local PDCs and transmits its result back to the local
PDCs. Subsequently, the local PDCs start a new iteration of
the estimation algorithm based on the global estimation and
new PMU data. These iterations continue until the estimation
on all PDCs converge. Section III describes this algorithm in
detail.

PDC1

Central 
PDC

PDC2 PDC3

PMU

PDC4

Fig. 1. Centralized Measurement System Example

The general ADMM algorithm has been well studied.
However, several details have to be considered in the imple-
mentation for a real estimation system. First, the stability of
the network channel between the local PDCs and the central
PDC has a significant impact on the accuracy of estimations.
For example, if the network channel between PDC1 and the
central PDC has failed, the data from the corresponding PMUs
are unknown to other PDCs. Second, the central PDC has to
consider the data transmission time on each link to determine
when to estimate the global state in the current iteration. When

some PDC data has not arrived at the central PDC within a
time threshold, it is difficult for the central PDC to determine
whether the long delay is due to a failed PDC, a network link
failure, or temporary network congestion. We address these
challenges in our resilient distributed software infrastructure
for wide-area measurement systems in the next section.

B. A Resilient Real-time Storage System

We designed and implemented a real-time storage system
as the core component of our resilient wide-area measurement
systems. As shown in Fig. 2, the storage system acts as a
middleware between local PDCs and the central PDC to cache
the estimation data.

PDC1

Central 
PDC

PDC2 PDC3

PMU

PDC4

Distributed Storage 
System

Fig. 2. Measurement System with Real-time Storage System

Externally, the real-time distributed storage system provides
two fundamental cloud services: get and put. PDCs and
WAMS applications utilize the put service to store monitoring
data or intermediate power grid estimation results. PDCs and
WAMS applications further use the get service to obtain
relevant data from the storage system. Thus, this distributed
storage system provides an additional protocol layer between
data providers (PMUs/PDCs) and data consumers (PDCs and
WAMS applications).

Internally, we utilize a distributed hash table (DHT) over a
set of storage nodes (chosen to also be the PDCs) so that
the power grid data can be disseminated in a distributed
manner and subsequently accessed by monitoring and control
applications. Fig. 3 illustrates how the DHT protocol orga-
nizes PDCs as storage nodes in a virtual Chord-like ring
structure [5]. This ring structure provides a natural way to
orchestrate power estimates and, optionally, actuation tasks of
disjoint PDCs based on key/value pairs. The storage system
can store raw PMU data, memorize state estimates, and even
actuation intentions. In Fig. 3, PMUs, PDCs, and WAMS
applications logically access our distributed storage system and
coordinate actions with one another. In this example, 9 PDCs
are mapped onto the Chord ring and utilized as DHT storage
nodes. A PMU sends raw monitoring data periodically to the
distributed storage system via a connection with its local PDC.
However, the raw PMU data are not necessarily stored in the
local PDC. Our storage system utilizes a consistent hashing
algorithm [9] to map data to virtual nodes. For example, the
data with key 14 is located on virtual node 15 according to the
Chord algorithm. The WAMS application may send requests
to any PDC in the Chord ring to fetch the data on demand. It
is sufficient to locate any data by maintaining the nodes in a
wrap-around circular list such that each node has a reference
to its successor node, i.e., a ring traversal can always locate
the data. However, this linear search algorithm is not scalable
with increasing numbers of PDCs. Chord utilizes a finger
table structure to reduce the number of intermediate nodes

to log(N) for any data request, where N denotes the number
of DHT nodes (see our previous work for a more detailed
explanation of the Chord finger table [3]).
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Fig. 3. PDC, PMU, and Chord Ring Mapping Example
This storage system improves the stability of the overall

system in three ways. First, since the data are disseminated in
a distributed manner on these storage nodes, any network link
failure between a PDC and a storage node will not result in the
data loss that a centralized measurement system experiences.
Instead, the PDC chooses an alternative node to put/get data.
We further adopt a real-time task scheduler on storage nodes
so that the response time of data transmission is predictable.
Third, since these storage nodes run autonomously and create
replicas of data in different storage nodes, a single storage
node failure will not result in data loss.

Data security needs to be considered in the storage system
since the data are disseminated among different storage nodes.
Since the put and get provided by our storage system are
general cloud services without any requirement for the format
of the data content, PDCs and WAMS can easily integrate
a public-key cryptography with the storage system to secure
data. For example, PDCs can utilize RSA, an asymmetric
encryption algorithm, to encode data before transmitting it
to storage nodes. Then only the central PDC, which has the
corresponding private key, can decode the data.

One important part of our distributed storage system is to
provide QoS for the response time of any data access. To
this end, we adopt a hybrid EDF scheduler so that urgent
data requests are served at higher priority, i.e., ahead of
lower priority requests that were issued earlier but have not
yet been processed. This hybrid EDF scheduler includes two
components: the EDF task scheduler, which schedules data
requests in EDF order, and the EDF packet scheduler, which
transmits IP packets that carry data request messages in EDF
order. As a result, the deadlines carried in data messages are
considered at the application layer as well as the network layer
of the storage abstraction.

We have extended the Linux kernel to implement this hybrid
EDF scheduler. Since the Linux traffic control layer does not
support task deadlines embedded in data messages, which
are encapsulated by the application layer, we extended the
data structure for IP packets in the Linux network stack by
adding new fields to store timestamps. We also extended the
setsockopt system call so that it supplies these timestamps
upon request. The most significant changes to Linux to support
this functionality are as follows:

(1) We added a new field in the kernel data structure to store
the deadline of a socket transmission. (2) We extended the ker-

nel function sock setsockopt with option SO DEADLINE,
so that applications can specify message deadlines associated
with messages via setsockopt in user mode. (3) When the
application transmits a message, the kernel stores the message
data including the deadline of the socket. After this, the
deadline of the message is passed down to the transport layer.
(4) We implemented an EDF packet scheduler, which provides
the standard interface of Linux traffic control queue disci-
plines [10]. The EDF packet scheduler utilizes a prioritized
queue to maintain messages in a min-heap data structure as a
linked list.

These novel extensions provide the capability of specifying
message deadlines for real-time tasks (applications). With
these provision, our EDF packet scheduler utilizes the message
deadlines to transmit packets in EDF order.

III. WAMS ON REAL-TIME DISTRIBUTED STORAGE

We extend our electro-mechanical oscillation modes estima-
tion algorithm, Prony with ADMM [8], by utilizing the real-
time storage system to deposit/retrieve data and communicate
between PDCs. Let us describe the communication patterns
between PDCs and the storage system.
A. Prony and ADMM Algorithms

The problem of estimating the wide-area electro-mechanical
oscillation modes can be cast in discrete-time domain as least-
squares estimation of the common characteristic polynomial of
the transfer functions between the incoming disturbance input
and the measured outputs available from PMUs. For example,
consider a set of N PMUs. The following recursion equation
(Eq. 1) can be written from the transfer functions:2
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where yi(t) are the sample data available at time t =
0, 1, . . . ,M for PMU i, i = 0, 1, . . . , N . ` is an integer
satisfying n + `  M � 1, where M � 1 is the time index
of the most recent measurement. The problem is to compute
the vector b, and thereafter solve the roots of the characteristic
polynomial (whose coefficients are given by the entries of b)
to obtain the desired oscillation modes.

We use linear regression to calculate the coefficients b, i.e.,
we calculate the b that results in the least sum of squares, as
expressed in Equation 2:

min
b

1

2
||Hib� ci||2 (2)

Next, following [11], we enhance the centralized algorithm
by replacing the centralized PDC with multiple distributed
PDCs organized in tree topology. In the distributed algorithm,
regional PMUs transmit a data stream to their local PDCs.
PDCs at the same level in the tree topology estimate the
oscillation modes using the data within their own domains.
Thus, this problem becomes a global consensus problem over
a network of N regional utility companies, which can be
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