
Distributed Asynchronous Algorithms and
Software Systems for Wide-Area Monitoring of

Power Systems

NSF	 CPS	 PI	 Mee*ng	
November 16, 2015, Arlington, VA

Aranya	 Chakrabor,y*,	 Frank	 Mueller*,	 Rakesh	 Bobba+,	 Ni:n	 Vaidya+	 and	 Yufeng	 Xin++	 	

*	 North	 Carolina	 State	 University,	 +University	 of	 Illinois	 Urbana	 Champaign,	
	 ++RENCI,	 University	 of	 North	 Carolina	

NYC before blackout

NYC after blackout

2 Main Lessons Learnt from the 2003 Blackout:

Hauer, Zhou & Trudnowsky, 2004
Kosterev & Martins, 2004

Main trigger: 2003 Northeast Blackout

1.  Need significantly higher resolution measurements

2.  Local monitoring & control can lead to disastrous results

From traditional SCADA (System Control and Data
Acquisition) to PMUs (Phasor Measurement Units)

5 PM 5.15 PM 5.30 PM 5.45 PM 6 PM 6.15 PM 6.30 PM1

1.005

1.01

1.015

1.02

1.025

1.03
Vo

lta
ge

 (p
er

 u
ni

t)
SCADA Data

SCADA
Kramer (220 KV)

SCADA
Kramer (115 KV)

5.21 PM 5.21.12 PM 5.21.30 PM 5.21.42 PM 5.21.54 PM 5.22.06 PM1

1.001

1.0015

1.0016

1.0017

1.002

Vo
lta

ge
 (p

er
 u

nit
)

PMU Data

Source: Anthony
Johnson, SCE

SCADA Data from Kramer substation in California

PMU Data

“It's like going from an X-
ray to a MRI of the grid.”
Terry Boston, CEO, PJM
Interconnection

Increasing Volumes of PMU Data

2008: Only 40 PMUs in the entire east coast
2015: More than 1200 PMUs across USA
(Nearly 52 PMUs only in North Carolina)

•  Massive volumes of PMU
•  Centralized processing will not be tenable

Outline	

Large	 #	
Distributed	
Date	 Sources	
(PMU)	

Distributed	
Op;miza;on	
	

Fault-‐Tolerant	
Op;miza;on	
	

Fault-‐tolerant	
Real-‐;me	
Storage	
	

Outline	

Large	 #	
Distributed	
Date	 Sources	
(PMU)	

Distributed	
Op;miza;on	
	

Fault-‐Tolerant	
Op;miza;on	
	

Fault-‐tolerant	
Real-‐;me	
Storage	
	

Centralized vs Distributed Algorithms

Area 1

PMU	

θ11b(t) θ21b(t)

PMU	

θ11a(t) θ21a(t)

θ11c(t)

θ21c(t)

PMU	

θ13b (t) θ23b (t)

PMU	

θ13a (t) θ23a (t)

θ13c(t)

θ23c (t)

PMU	

θ22a(t) θ12a(t)

PMU	

θ22b(t) θ12b(t)

PMU	

θ24a (t) θ14a(t)

PMU	

θ14b (t) θ24b (t)

θ24c(t)

θ14c(t)

θ22c(t)

θ12c(t)

Central	 PDC	
	 at	 ISO	

Area 3

Area 2 Area 4

a a

a a
1
ka

2
ka

3
ka

4
ka

(Hierarchically) Distributed

Specific application of interest for this talk:	

Wide-area oscillation monitoring	

Centralized WAMS

PDC	 2

PMU

PDC	 3

PMU

PDC	 4

PMU

Centralized	
Data	

Processing

Unidirectional
Communication

PDC	 1

PMU

Super	
PDC

Area 1 Area 2 Area 3 Area 4

Control Room

Distributed Computation
Montreal	 NYC	

Newark	
u3(t)	
	 x3(t)	

	

x2(t)	
	
	

x1(t)	

Heavy online
computation with
volumes of data

transfer in
unsecured network

connecting
generation sites

directly

L(G) = fully connected network graph Controllable inputs

Swing equation model:

Computation of control signal in Exo-GENI cloud
Montreal NYC

Newark
x3(t)

x2(t)

x1(t)

VM1

VM2

Move	 the	
control	

computations	 to	
the	 cloud

Exo-‐GENI	 cloudVM1 VM3

Local	 in	 Montreal

Local	 in	 Newark

Local	 in	 NYC

Computation	 can	 happen	 in	 local	 clouds	 with	
cloud-‐to-‐cloud	 communication	 instead	 of	

gen-‐to-‐gen	 communication

Distributed Computation in the Cloud

Multiple Computational Areas	

30 30
1 30 66 1 1

66 66

ˆ ˆ ˆArea 1: { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

16 16
2 16 53 1 1

53 53

ˆ ˆ ˆArea 2 : { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

3 68 3 68 3 68
ˆ ˆ ˆArea 3: { } (,)H Hθ θ= → = =c c

4 56 4 56 4 56
ˆ ˆ ˆArea 4 : { } (,)H Hθ θ= → = =c c

1

2

, , , 1 2

1 ˆ ˆminimize
2

subject to 0, for 1, ,
N

N

i i i
i

i

H

i N
=

−

− = = …

∑a a z
a c

a z

K

Solve using	

Alternating Direction Method of Multipliers (ADMM)	

Global	 Op*miza*on	 Problem:	

Distributed:	

Wide-Area Oscillation Estimation

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t) θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

Distributed Optimization Using ADMM

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t)
θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

Iteration k+1	

•  Step 1 Update a↓𝒊  and w↓𝒊 

locally at PDC i 	

1 1

1 1 1

(()) (())

()

k k T k k T k k k
i i i i i i
k k k k
i i i

H H I Hρ ρ

ρ

+ −

+ + +

= + − +

= + −

a c w a

w w a a

•  Step 3 Take the average of a↓𝒊 ↑𝒌+𝟏 	

•  Step 2 Gather the values of a↓𝒊 ↑𝒌+𝟏 
at the central PDC 	

•  Step 5 Check the convergence	

•  Step 4 Broadcast the average value
(a ↓𝒊 ↑𝒌+𝟏 ) to local PDCs	

•  Final Step Find the frequency Ω↓𝑖 , and
damping 𝜎↓𝑖  at each local PDC using a ↓𝒊 
↑𝒌+𝟏 	

Privacy of PMU data between
companies guaranteed

Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	

2 21 2 2()
21 (1)() [erf() + erf()] [erf() + erf()]

2 2 2 2 2
t p tP t e

N
λ σ µλµ µ λσ µ λσ µ

σ σ σ σ

+− − + − −
= +

Traffic Models for Internet Delays:

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t)
θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	

2 21 2 2()
21 (1)() [erf() + erf()] [erf() + erf()]

2 2 2 2 2
t p tP t e

N
λ σ µλµ µ λσ µ λσ µ

σ σ σ σ

+− − + − −
= +

Traffic Models for Internet Delays:

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t)
θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a ()
1

(1) (1) ()
()
1

1 1()
| | k

N
k k k

i ik
i S

z a w
S ρ

+ +

∈

= +∑

If a message doesn’t arrive at ISO by a
delay threshold d1*

•  Strategy 1:

Can easily lead to divergence

Cyber-Physical Coupling:	

Incorporating Asynchronous Wide-Area Communication	

2 21 2 2()
21 (1)() [erf() + erf()] [erf() + erf()]

2 2 2 2 2
t p tP t e

N
λ σ µλµ µ λσ µ λσ µ

σ σ σ σ

+− − + − −
= +

Traffic Models for Internet Delays:

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t)
θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

If a message doesn’t arrive at ISO by a
delay threshold d1*

•  Strategy 2:

() ()
1 1

(1) (1) () () (1)1 1 1(() ())
k k

N N
k k k k k

i i i i
i S i S

z a w a w
N ρ ρ

+ + −

∈ ∉

= + + +∑ ∑

Substitute values from
previous iteration

Convergent, but slow

Hybrid	 Update	 Strategies	 for	 A-‐ADMM	

15	

Uplink:	 Central	 PDC	 uses	 strategies	 for	
delayed	 message	 from	 local	 PDCs	 	

Downlink:	 Each	 local	 PDC	 uses	 strategies	
for	 delayed	 message	 from	 central	 PDC	 	

Strategy	 I:	 Skipping	

()
1

(1) (1) ()
()
1

1 ((1/))
| | k

k k k
i ik

i S

z a w
S

ρ+ +

∈

= +∑

Strategy	 II:	 Using	 Previous	 Messages	

() ()
1 1

(1) ()(1) (1) ()1 (((1/)) ((1/)))i i

k k

l lk k k
i i i i

i S i S

z a w a w
N

ρ ρ++ +

∈ ∉

= + + +∑ ∑

(1, 2,...)il k k∈ − − index	 of	 the	 latest	 message	 that	 arrived	 at	
the	 central	 PDC	 for	 	 	 	 	 local	 PDC	 thi

Strategy	 II	 with	 Gradient	 Method	

() ()
1 1

() () (1) ()(1) (1) ()1 (((1/)) (() (1/)))i i i i

k k

u u u uk k k
i i i i i i i

i S i S

z a w a a a w
N

ρ β ρ−+ +

∈ ∉

= + + + − +∑ ∑

Strategy	 I:	 Skipping	

Strategy	 II:	 Using	 Previous	 Messages	

(1, 2,...)il k k∈ − − index	 of	 the	 latest	 message	 that	 arrived	 at	
the	 	 	 	 	 	 local	 l	 PDC	

Strategy	 II	 with	 Gradient	 Method	

µ µ µ

()() (1) ()

() () () () ()(1) 1 ()

()

(()) (())

i

i

lk k k
i i i

k k k k lk T T k
i i i ii i

w w a z

a H H I H c w z

ρ

ρ ρ

−

+ −

= + −

= + − +$

thi

Retransmits	 the	 previous	 local	 updates	 to	 the	 central	 PDC	

µ µ µ

() () (1)() (1) ()

() () () () () () (1)(1) 1 ()

((()))

(()) (() (()))

i i i

i i i

l l lk k k
i i i i

k k k k l l lk T T k
i i i ii i i

w w a z z z

a H H I H c w z z z

ρ γ

ρ ρ γ

−−

−+ −

= + − + −

= + − + + −$

Outline	

Large	 #	
Distributed	
Date	 Sources	
(PMU)	

Distributed	
Op;miza;on	
	

Fault-‐Tolerant	
Op;miza;on	
	

Fault-‐tolerant	
Real-‐;me	
Storage	
	

Multiple Computational Areas	

30 30
1 30 66 1 1

66 66

ˆ ˆ ˆArea 1: { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

16 16
2 16 53 1 1

53 53

ˆ ˆ ˆArea 2 : { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

3 68 3 68 3 68
ˆ ˆ ˆArea 3: { } (,)H Hθ θ= → = =c c

4 56 4 56 4 56
ˆ ˆ ˆArea 4 : { } (,)H Hθ θ= → = =c c

1

2

, , , 1 2

1 ˆ ˆminimize
2

subject to 0, for 1, ,
N

N

i i i
i

i

H

i N
=

−

− = = …

∑a a z
a c

a z

K

Global	 Op*miza*on	 Problem:	

Distributed:	

Wide-Area Oscillation Estimation

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t) θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

Distributed	 Op*miza*on

	
Node	 i	 has	 local	 objec;ve	 hi(x)	

	
	
minimize	 	
	
	
	
	 	
	

h(x) = 1
n

hi (x)
i=1

n

∑

X1	

X3	

X2	

X3	 ç	 	 ⅓	 (X1+X2+X3)	 	 -‐	 	 λt	 	 grad	 h3(X3)	

Many	 Other	 Applica*ons	

•  Distributed	 robo;cs	

•  Machine	 learning	

X1	

X3	

X2	

X3	 ç	 	 ⅓	 (X1+X2+X3)	 	 -‐	 	 grad	 h3(X3)	

Fault-‐Tolerance	

h(x) = 1
n

hi (x)
i=1

n

∑

Not	 meaningful	 to	 op;mize	
	
	
	
	
since	 faulty	 costs	 included	 	

Alterna*ve	 Goal

N	 	 =	 non-‐faulty	 nodes	
	

Op;mize	 non-‐faulty	 cost	 func;ons:	
	
	
	
	
…	 but	 this	 is	 provably	 impossible	
	
	

h(x) = 1
N

hi (x)
i ∈ N
∑ .

Byzan*ne	 Fault-‐Tolerant	 Op*miza*on

Instead	 of	 uniform	 weights	 in	
	
	
	

allow	 unequal	 weights	
	
	

	 …	 but	 as	 close	 to	 uniform	 as	 possible	
	

h(x) = αi hi (x)i∈N∑ ,

h(x) = 1
N

hi (x)
i ∈ N
∑ .

Byzan*ne	 Fault-‐Tolerant	 Op*miza*on	

• Op;mal	 algorithms	
– How	 many	 weights	 non-‐zero?	
– How	 large	 can	 they	 be?	

h(x) = αi hi (x)i∈N∑ ,

Byzan*ne	 Fault-‐Tolerant	 Op*miza*on	

•  Op;mal	 algorithms	 for	 complete	 networks	

•  Many	 related	 problems	 open	 …	

Multiple Computational Areas	

30 30
1 30 66 1 1

66 66

ˆ ˆ ˆArea 1: { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

16 16
2 16 53 1 1

53 53

ˆ ˆ ˆArea 2 : { , } (,)
H

H
H

θ θ θ
⎡ ⎤ ⎡ ⎤

= → = =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

c
c

c

3 68 3 68 3 68
ˆ ˆ ˆArea 3: { } (,)H Hθ θ= → = =c c

4 56 4 56 4 56
ˆ ˆ ˆArea 4 : { } (,)H Hθ θ= → = =c c

1

2

, , , 1 2

1 ˆ ˆminimize
2

subject to 0, for 1, ,
N

N

i i i
i

i

H

i N
=

−

− = = …

∑a a z
a c

a z

K

Global	 Op*miza*on	 Problem:	

Distributed:	

Wide-Area Oscillation Estimation

PMU	 PMU	

PMU	 PMU	

Central	 PDC	
	 at	 ISO	

θ11(t) θ12(t) θ31(t) θ32(t)

θ21(t) θ22(t) θ41(t) θ42(t)

Area 1 Area 3

Area 2 Area 4

4
ka

3
ka1

ka

2
ka

aa

a a

Outline	

Large	 #	
Distributed	
Date	 Sources	
(PMU)	

Distributed	
Op;miza;on	
	

Fault-‐Tolerant	
Op;miza;on	
	

Fault-‐tolerant	
Real-‐;me	
Storage	
	

Resilient	 Real	 Time	 Data	 Middleware	
RT-‐DHT:	 real-‐;me	 distributed	 hash	 table	
•  Decouple	 strong	 dependency	 between	 PDCs	 and	 PMU	 sources	
•  Chord-‐like	 ring	 +	 finger	 pointers	
•  mul;ple	 replicas	 of	 data	 à	 faults	 OK	
•  Network	 control	 à	 determinis;c	 wide	 –area	 networks	
	

our storage layer employs a DHT algorithm to implement a
distributed storage that replicates data across its nodes. As a
result, the storage system can serve requests even after node
failures without data loss (self-recoverability).

We implement an earliest-deadline-first (EDF) task sched-
uler and an EDF packet scheduler to prioritize requests by their
deadlines within the real-time distributed storage abstraction.
The EDF scheduler reduces the time required for failure
recovery, since an application can increase the priority of
requests by shortening deadlines in recovery mode (after a
node/link failure). In addition, we employ a schedulability test
for our EDF task scheduler. Knowing the data lookup request
demands a priori, the schedulability test provides a check to
determine if these requests can be served by their deadlines.

In experiments, we deploy our distributed storage system on
a virtual platform and deploy a distributed electro-mechanical
oscillation modes estimation application, which is based on the
Prony and ADMM algorithms [7], [8]. Experiments demon-
strate how the storage system is utilized by a distributed power
grid application and how the design of distributed algorithms is
facilitated by our storage abstraction. In addition, we simulate
different failures and demonstrate the resilience of our system,
which current centralized power grid monitor and control
infrastructure cannot provide.

II. A RESILIENT DISTRIBUTED INFRASTRUCTURE

A. The Centralized Measurement System

Fig. 1 depicts the infrastructure of current centralized mea-
surement systems. A PMU is connected with its local PDC
and transmits monitoring data periodically to the local PDC.
In one iteration of the ADMM algorithm, the local PDCs
run the estimation algorithm based on their PMU data and
send the local estimates to the central PDC. Then, the central
PDC estimates the global state based on the data received
from local PDCs and transmits its result back to the local
PDCs. Subsequently, the local PDCs start a new iteration of
the estimation algorithm based on the global estimation and
new PMU data. These iterations continue until the estimation
on all PDCs converge. Section III describes this algorithm in
detail.

PDC1

Central
PDC

PDC2 PDC3

PMU

PDC4

Fig. 1. Centralized Measurement System Example

The general ADMM algorithm has been well studied.
However, several details have to be considered in the imple-
mentation for a real estimation system. First, the stability of
the network channel between the local PDCs and the central
PDC has a significant impact on the accuracy of estimations.
For example, if the network channel between PDC1 and the
central PDC has failed, the data from the corresponding PMUs
are unknown to other PDCs. Second, the central PDC has to
consider the data transmission time on each link to determine
when to estimate the global state in the current iteration. When

some PDC data has not arrived at the central PDC within a
time threshold, it is difficult for the central PDC to determine
whether the long delay is due to a failed PDC, a network link
failure, or temporary network congestion. We address these
challenges in our resilient distributed software infrastructure
for wide-area measurement systems in the next section.

B. A Resilient Real-time Storage System

We designed and implemented a real-time storage system
as the core component of our resilient wide-area measurement
systems. As shown in Fig. 2, the storage system acts as a
middleware between local PDCs and the central PDC to cache
the estimation data.

PDC1

Central
PDC

PDC2 PDC3

PMU

PDC4

Distributed Storage
System

Fig. 2. Measurement System with Real-time Storage System

Externally, the real-time distributed storage system provides
two fundamental cloud services: get and put. PDCs and
WAMS applications utilize the put service to store monitoring
data or intermediate power grid estimation results. PDCs and
WAMS applications further use the get service to obtain
relevant data from the storage system. Thus, this distributed
storage system provides an additional protocol layer between
data providers (PMUs/PDCs) and data consumers (PDCs and
WAMS applications).

Internally, we utilize a distributed hash table (DHT) over a
set of storage nodes (chosen to also be the PDCs) so that
the power grid data can be disseminated in a distributed
manner and subsequently accessed by monitoring and control
applications. Fig. 3 illustrates how the DHT protocol orga-
nizes PDCs as storage nodes in a virtual Chord-like ring
structure [5]. This ring structure provides a natural way to
orchestrate power estimates and, optionally, actuation tasks of
disjoint PDCs based on key/value pairs. The storage system
can store raw PMU data, memorize state estimates, and even
actuation intentions. In Fig. 3, PMUs, PDCs, and WAMS
applications logically access our distributed storage system and
coordinate actions with one another. In this example, 9 PDCs
are mapped onto the Chord ring and utilized as DHT storage
nodes. A PMU sends raw monitoring data periodically to the
distributed storage system via a connection with its local PDC.
However, the raw PMU data are not necessarily stored in the
local PDC. Our storage system utilizes a consistent hashing
algorithm [9] to map data to virtual nodes. For example, the
data with key 14 is located on virtual node 15 according to the
Chord algorithm. The WAMS application may send requests
to any PDC in the Chord ring to fetch the data on demand. It
is sufficient to locate any data by maintaining the nodes in a
wrap-around circular list such that each node has a reference
to its successor node, i.e., a ring traversal can always locate
the data. However, this linear search algorithm is not scalable
with increasing numbers of PDCs. Chord utilizes a finger
table structure to reduce the number of intermediate nodes

to log(N) for any data request, where N denotes the number
of DHT nodes (see our previous work for a more detailed
explanation of the Chord finger table [3]).

PDC

PDC

PDC

PDC PDC

PMU

PDC

PDC

PDC

PDC

N4

N1

N7

N9

N12

N15

N20

N24

N30
"Where is key 14?"

"Key 14 is at N15."

WAMS
App1

WAMS
App2

Fig. 3. PDC, PMU, and Chord Ring Mapping Example
This storage system improves the stability of the overall

system in three ways. First, since the data are disseminated in
a distributed manner on these storage nodes, any network link
failure between a PDC and a storage node will not result in the
data loss that a centralized measurement system experiences.
Instead, the PDC chooses an alternative node to put/get data.
We further adopt a real-time task scheduler on storage nodes
so that the response time of data transmission is predictable.
Third, since these storage nodes run autonomously and create
replicas of data in different storage nodes, a single storage
node failure will not result in data loss.

Data security needs to be considered in the storage system
since the data are disseminated among different storage nodes.
Since the put and get provided by our storage system are
general cloud services without any requirement for the format
of the data content, PDCs and WAMS can easily integrate
a public-key cryptography with the storage system to secure
data. For example, PDCs can utilize RSA, an asymmetric
encryption algorithm, to encode data before transmitting it
to storage nodes. Then only the central PDC, which has the
corresponding private key, can decode the data.

One important part of our distributed storage system is to
provide QoS for the response time of any data access. To
this end, we adopt a hybrid EDF scheduler so that urgent
data requests are served at higher priority, i.e., ahead of
lower priority requests that were issued earlier but have not
yet been processed. This hybrid EDF scheduler includes two
components: the EDF task scheduler, which schedules data
requests in EDF order, and the EDF packet scheduler, which
transmits IP packets that carry data request messages in EDF
order. As a result, the deadlines carried in data messages are
considered at the application layer as well as the network layer
of the storage abstraction.

We have extended the Linux kernel to implement this hybrid
EDF scheduler. Since the Linux traffic control layer does not
support task deadlines embedded in data messages, which
are encapsulated by the application layer, we extended the
data structure for IP packets in the Linux network stack by
adding new fields to store timestamps. We also extended the
setsockopt system call so that it supplies these timestamps
upon request. The most significant changes to Linux to support
this functionality are as follows:

(1) We added a new field in the kernel data structure to store
the deadline of a socket transmission. (2) We extended the ker-

nel function sock setsockopt with option SO DEADLINE,
so that applications can specify message deadlines associated
with messages via setsockopt in user mode. (3) When the
application transmits a message, the kernel stores the message
data including the deadline of the socket. After this, the
deadline of the message is passed down to the transport layer.
(4) We implemented an EDF packet scheduler, which provides
the standard interface of Linux traffic control queue disci-
plines [10]. The EDF packet scheduler utilizes a prioritized
queue to maintain messages in a min-heap data structure as a
linked list.

These novel extensions provide the capability of specifying
message deadlines for real-time tasks (applications). With
these provision, our EDF packet scheduler utilizes the message
deadlines to transmit packets in EDF order.

III. WAMS ON REAL-TIME DISTRIBUTED STORAGE

We extend our electro-mechanical oscillation modes estima-
tion algorithm, Prony with ADMM [8], by utilizing the real-
time storage system to deposit/retrieve data and communicate
between PDCs. Let us describe the communication patterns
between PDCs and the storage system.
A. Prony and ADMM Algorithms

The problem of estimating the wide-area electro-mechanical
oscillation modes can be cast in discrete-time domain as least-
squares estimation of the common characteristic polynomial of
the transfer functions between the incoming disturbance input
and the measured outputs available from PMUs. For example,
consider a set of N PMUs. The following recursion equation
(Eq. 1) can be written from the transfer functions:2

6664

yi(n)
yi(n+ 1)

...
yi(n+ `)

3

7775

| {z }
ci

=

2

6664

yi(n� 1) · · · yi(0)
yi(n) · · · yi(1)

...
...

yi(n+ `� 1) · · · yi(`)

3

7775

| {z }
Hi

2

6664

�b1
�b2

...
�bn

3

7775

| {z }
b

(1)

where yi(t) are the sample data available at time t =
0, 1, . . . ,M for PMU i, i = 0, 1, . . . , N . ` is an integer
satisfying n + ` M � 1, where M � 1 is the time index
of the most recent measurement. The problem is to compute
the vector b, and thereafter solve the roots of the characteristic
polynomial (whose coefficients are given by the entries of b)
to obtain the desired oscillation modes.

We use linear regression to calculate the coefficients b, i.e.,
we calculate the b that results in the least sum of squares, as
expressed in Equation 2:

min
b

1

2
||Hib� ci||2 (2)

Next, following [11], we enhance the centralized algorithm
by replacing the centralized PDC with multiple distributed
PDCs organized in tree topology. In the distributed algorithm,
regional PMUs transmit a data stream to their local PDCs.
PDCs at the same level in the tree topology estimate the
oscillation modes using the data within their own domains.
Thus, this problem becomes a global consensus problem over
a network of N regional utility companies, which can be

Outline	

Large	 #	
Distributed	
Date	 Sources	
(PMU)	

Distributed	
Op;miza;on	
	

Fault-‐Tolerant	
Op;miza;on	
	

Fault-‐tolerant	
Real-‐;me	
Storage	
	

ExoGeni TestBed

#Experiments:
31564	
#Users:	 	 930	

Virtual Networked System: Provisioning, Recovering, and Modifying

32	

Ø  Create	 customized	 OS	 image	 for	 Virtual	 Machines	 and	 C	 source	 code	 for	 algorithms.	
Ø  Create	 virtual	 network	 topologies	 on	 ExoGENI	 using	 a	 web-‐start	 app	 Flukes	 or	 GENI	 tools	
Ø  VM,	 Baremetal,	 storage,	 P2P	 or	 Mul;cas;ng	 networks	

ExoGENI-WAMS Testbed at NC State & RENCI/UNC Chapel Hill

Middleware is being developed
currently by Green Energy

Corporation and RTI

ExoGENI-‐WAMS	

Thank You	

