NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection Nikolay Atanasov¹ Sicun Gao² Tajana Rosing²

¹ECE, ²CSE, University of California San Diego

Motivation

- equipped with visual, thermal, and chemical sensors and adaptive wireless comms
- constraints, that generalize to other areas of CPS research

Task A: Online Metric-Semantic-Thermal Mappi

- Implicit surface representation via signed distance fie
- SDF approximation via Gaussian Process (GP) regress
- Mean and covariance of sparse support point set upo for each semantic class. Octree data structure mainta independent GPs with overlapping regions

Task B: Distributed Multi-robot Localization

Distributed stochastic mirror descent (DSMD) algorit allows agents to store and communicate probability functions only over local variables (agent's own state neighbors' states) and achieve efficient team localization

Task C: Nonlinear System Control with Safety Constraints

- attraction for several important nonlinear control problems over LQR and SOS methods

Broader Impact (Education and Outreach)

- UCSD-SDSU collaboration to increase participation in re-
- Activities: develop small racecar robot with RGBD cam sim of 3-D environment; implement baseline algorithm mapping, particle filter localization, path planning
- **Outreach:** presentations at SDSU Student Research Syr 2020), UCSD Research Expo (April 2020); tutorials in Sp

2020 National Robotics Initiative (NRI) Principal Investi FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

Baris Aksanli³

³ECE, San Diego State University

Early detection is a critical factor in mitigating wildfire damages to ecological systems and human infrastructure Aid wildfire prevention through continuous surveillance and early fire detection using autonomous aerial robots,

Scientific impact: develop fundamental autonomy capabilities, including multi-modal environmental understanding, collaborative inference over robot networks, and multi-objective navigation with safety, communication, and energy

ing	Ta	sk B: Persistent Monitoring
eld (SDF) sion dated ains	•	Static path velocity controller to minimize an bound on the maximum Kalman filter eigenva a set of interest points Two-level optimization for B-spline generation dynamically feasible, uncertainty reducing UA trajectories subject to control effort constraint
hm	Та	sk B: Adaptive RF Spectrum Utilization
density e and	•	UAV assignment and path optimization to ma link quality (range, TX power, modulation, da

Given nonlinear system dynamics, learn a Lyapunov and associated controller jointly. Alternate between gradientdescent on the Lyapunov function parameters and SMT-driven search of counterexamples to the Lyapunov conditions Significance: first general framework for neural-network Lyapunov control design, significantly increasing the region of

	Broader Impact (Society)
robotics research nera and python	 Supply critical real-time data to weater fire spread simulators such as WIFIF
ns for occupancy	 Provide early fire warning and impr situational awareness to first responsion
mposium (Feb pring 2020	 Impact on environmental monitorir and rescue, and transportation app
• igators' Meeting	UC San Diego

Electrical and Computer Engineering

SAN DIEGO STATE **UNIVERSITY**

Award ID#: CNS 1830399 erl.ucsd.edu

