

CPS: Synergy: Distributed Coordination of Smart Devices to Mitigate Intermittency of Renewable Generation for a Smarter and Sustainable Power Grid

Prabir Barooah, Arturo Bretas, and Sean Meyn (UF)

Managing volatility of renewable energy sources in the future power grid at low cost

- A hurdle in greening the power grid
- Solar and wind energy are intermittent
- This requires energy storage.
- But, batteries are expensive.

Alternative to expensive batteries:

- Power demand of most loads is flexible and can be manipulated to provide virtual energy storage (VES).
- Low cost: no new equipment, only change in software

Goal: Coordinate actions of many loads to provide reliable VES

Concerns:

- Decentralized decision-making (communication, privacy)
- Consumers' quality of service (QoS)
- Robustness to uncertainty (weather, human behavior, etc.)
- Computational complexity at loads must be small

Key Innovations:

- Randomization to break the complexity barrier
- Global information from local measurements for coordination
- Optimal measurement location considering gross errors and costs

Novel reinforcement learning algorithm

Question: How to optimally control without model?

Solution: State of the art reinforcement learning algorithms.

Solution: Use Q-learning, a reinforcement learning algorithm that estimates $Q^*(x, u)$. **Too slow.** Goal in Q-learning: Given a parameterized family of functions $\{Q^{\theta}: \theta \in \mathbb{R}^d\}$, find θ^* such that

One million iterations

 $\overline{f}(\theta^*) = 0, \quad \overline{f}(\theta) := \mathsf{E} \big[\big(c(X_n, U_n) + \beta Q^{\theta}(X_{n+1}) - Q^{\theta}(X_n, U_n) \big) \partial_{\theta} Q^{\theta}(X_n, U_n) \big]$

 $\frac{d}{dt}\xi_t = \overline{f}(\xi_t)$

 $\frac{d}{dt}\overline{f}(\xi_t) = -[A(\xi_t)]^{-1}\overline{f}(\xi_t), \qquad A(\theta) := \partial_{\theta}\overline{f}(\theta)$

- Stable under very general conditions. • Unstable in most settings of interest.
 - Applicable to continuous state and control spaces that is of interest to us.

Zap Q-learning: Fastest Q-learning algorithm & stable under very general conditions.

Control of commercial building HVAC load

Distribution system support

Question: How to control and improve monitoring of distribution systems with pervasive residential PV penetration?

Solution:

- Volt/VAR control to mitigate fast voltage variations using ON/OFF loads and reduce on-load tap changer actuations.
- Allocation of automatic switching devices and distributed generation to improve distribution system reliability.
- Autonomous secondary voltage network control by updating Volt/VAR curves of residential PV inverters.

Houses with Smart Inverters

Distributed coordination of loads to provide grid support

Planning phase: Compute reference for demand variation that is *feasible* for load ensemble Novel Contribution: account for device cycling QoS of individual in planning phase.

Real time control: randomized local control for coordination

Novel Contribution: scalable and distributed control algorithm

Grid's needs *must* be consistent with individual loads' QoS!

Individual load's QoS

- **User Comfort**
- Energy Bill
- Device Cycling

Reference with Reference without cycling QoS cycling QoS Grid's needs Time (Hours)

Products:

- > 25 peer-reviewer journal articles and Conference proceedings published
- > Partially supported 5 (graduated) PhDs and 10 (current) Ph.D. students; two from minority and under-represented groups.
- > 5 undergraduate researchers involved in the research, some through REU supplements.

Selected recent publications:

- Raman, N. S., Devraj, A. M., Barooah, P., Meyn, S. "Reinforcement learning for control of building HVAC systems", under review, ACC 2020.
- Coffman, Guo, and Barooah, "A spectral characterization of aggregate capacity of flexible loads for grid support", submitted, ACC 2020.
- Barooah, P. "Virtual energy storage from flexible loads: distributed control with QoS constraints," in Smart Grid Control: An Overview and Research Opportunities, 2018. Chen, Y., Hashmi, U., Mathias, J., Busic, A., and Meyn, S. "Distributed control design for balancing the grid using flexible loads," in *IMA Volume on the Control of Energy* Markets and Grids, 2019.
- Devraj, A. M., Meyn, S. "Zap Q-learning", NIPS, 2017.
- 6. Coffman, Busic, and Barooah, "Virtual Energy Storage from TCLs using QoS preserving local randomized control", ACM BuildSys, 2018.
- Coffman, Busic, and Barooah, "Aggregate capacity for TCLs providing virtual energy storage with cycling constraints", accepted, IEEE CDC, 2019.
- 8. Dhulipala, S., Monteiro, R., Teixeira, R., Ruben, C., Bretas, A., Guimaraes, G. "Distributed model predictive control strategy for distribution networks volt/VAR control: A smart buildings based approach", IEEE Transactions on Industry Applications, 2019.
- 9. Nader, A., Ruben, C., Dhulipala, S., Bretas, A., Da Silva, R. A. "MILP model for reliability optimization in active distribution networks", NAPS, 2018.

Austin Coffman Adithya Devraj

Surya DhulipalaAnand RadhakrishnanNinad Gaikwad