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Managing volatility of renewable energy sources in the future power grid at low cost

Distributed coordination of loads to provide grid support

A hurdle in greening the power grid
• Solar and wind energy are intermittent
• This requires energy storage.
• But, batteries are expensive.
Alternative to expensive batteries:
• Power demand of most loads is flexible 

and can be manipulated to provide 
virtual energy storage (VES).

• Low cost: no new equipment, only 
change in software

Products:
Ø 25 peer-reviewer journal articles and Conference proceedings published.
Ø Partially supported 5 (graduated) PhDs and 10 (current) Ph.D. students; two from minority and under-represented groups.
Ø 5 undergraduate researchers involved in the research, some through REU supplements.
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Goal: Coordinate actions of many loads to provide reliable VES

Concerns:

Key Innovations: • Randomization to break the complexity barrier
• Global information from local measurements for 

coordination
• Optimal measurement location considering gross 

errors and costs

• Decentralized decision-making (communication, privacy)
• Consumers’ quality of service (QoS)
• Robustness to uncertainty (weather, human behavior, etc.)
• Computational complexity at loads must be small
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Novel reinforcement learning algorithm

Distribution system support 
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Distribution system support 

Question: How to control and improve monitoring of distribution systems with pervasive residential PV penetration?

Solution:
• Volt/VAR control to mitigate fast voltage variations 
using ON/OFF loads and reduce on-load tap changer 
actuations.
• Allocation of automatic switching devices and 
distributed generation to improve distribution system 
reliability.
• Autonomous secondary voltage network control by 
updating Volt/VAR curves of residential PV inverters.
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Planning phase: Compute reference for demand variation that is feasible for load ensemble
Novel Contribution: account for device cycling QoS of individual in planning phase.

Real time control: randomized local control for coordination
Novel Contribution: scalable and distributed control algorithm 

Grid’s total need

Control of commercial building HVAC load

Individual load’s QoS
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Grid’s needs must be consistent with individual loads’ QoS!

Feasible for loads

Zap Q-learning: Fastest Q-learning algorithm & stable under very general conditions.

Creating a virtual battery out of 60,000 AC’s
Planning a feasible reference for loads

Grid’s needs
Reference without 
cycling QoS

Reference with
cycling QoS

Operation: scalable distributed control
Randomized controller at load

Tracking results
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