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Novel reinforcement learning algorithm

Goal: Obtain a state-feedback policy ¢* : X — U

uel k—0

e X\': state-space. E.g., temperature e [{: control-space. E.g., supply air

and humidity of a building. flow rate and temperature.
e c: cost function. E.g., power refer- e [3: discount factor. How far into the
ence tracking error. future do you care about.

(Q-learning is an approximation of the ODE:
de = f(&)

e Unstable in most settings of interest.

¢* () ;= argmin@Q* (z, u) Q" (z,u) = ZBkE[c(Xk, Ur)| Xo =z ,Uy = u]

Question: How to optimally control without model?
Solution: State of the art reinforcement learning algorithms.

Solution: Use Q-learning, a reinforcement learing algorithm that estimates Q*(x, ). Too slow. 20 |
Goal in Q-learning: Given a parameterized family of functions {Q? : # € R}, find 6* such that ‘Zap 0

F07) =0, f(0):=E[(c(Xn,Un) + BQ"(Xns1) — Q% (X, Un))06Q° (Xn, Up)] One million iterations
Zap Q-learning is an approximation of the ODE:
G f(&) = —[AED (&),  A(9) := s f(0)

e Stable under very general conditions.

e Applicable to continuous state and control spaces that is of interest to us.
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Z.ap Q-learning: Fastest Q-learning algorithm & stable under very general conditions.

HVAC System

Control of commercial building HVAC load
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e Only Q-learning algorithm that worked.

e Maintains QoS constraints.

e Does as well as MPC.

 Allocation of automatic switching devices and
distributed generation to improve distribution system
reliability.

Solution.  FOF v
* Volt/VAR control to mitigate fast voltage variations g”{
using ON/OFF loads and reduce on-load tap changer OLTC
actuations.
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Capacitor Bank

* Autonomous secondary voltage network control by
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updating Volt/VAR curves of residential PV inverters.
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Houses with Smart Inverters

Planning phase: Compute reference for demand variation that is feasible for load ensemble
Novel Contribution: account for device cycling QoS of individual in planning phase.
Real time control: randomized local control for coordination
Novel Contribution: scalable and distributed control algorithm
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Planning a feasible reference for loads

Randomized controller at load
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Products:

» 25 peer-reviewer journal articles and Conference proceedings published.
» Partially supported 5 (graduated) PhDs and 10 (current) Ph.D. students; two from minority and under-represented groups.
» 5 undergraduate researchers involved in the research, some through REU supplements.
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