NRI: FND: COLLAB: Distributed, Semantically-Aware Tracking and **Planning for Fleets of Robots**

Lead PI: Philip Dames (Temple University) https://sites.temple.edu/trail

PI: Mac Schwager (Stanford University) https://msl.stanford.edu/

Goal

Enable safe and dependable operation of large-scale autonomous robotic fleets, such as autonomous vehicles and delivery drones, in complex and dynamic environments

Key Problems

- Classify and track stationary, dynamic, 2. and reactive objects in fast-paced dense
- Partition the environment and use this to distribute information across the

urban environments

- CNN-Based "Front End"
- Investigate Three Semantic, Multi-Target Estimation *"Back End"* Architectures

Significant Contributions To Date

- Introduced Semantic probability 1. hypothesis density (SPHD) filter
- Simultaneously detect, classify, and \bullet track large and time-varying object set

Comparison with MHT: PHD filter

team

- Visibility-Aware Partition
- Low-Bandwidth Communication
- *Robust Strategies* for Data Integrity
- Predict a range of possible future target 3. behaviors in order to plan safe actions
 - Planning For Reactive

Interaction

Learning for Reactive Prediction

- Introduced Distributed Rolling Window 3. 2. Tracker (DRWT)
 - Formulated distributed multi-target tracking as a maximum likelihood optimization
- Derived closed form local update rules for agents based on consensus ADMM
- Tested in high-fidelity driving simulator CARLA - CKF DRWT

- Enabled collaborative target search in mixed air-ground teams
- Create distributed representation that is provably identical to the centralized representation

Achieves higher accuracy in less time

J. Chen and Philip Dames. "Distributed Multi-Target Search and Tracking Using a

Coordinated Team of Ground and Aerial Robots." 2nd IEEE International Symposium

than homogeneous team

on Multi-Robot and Multi-Agent Systems (MRS). 2019.

Broader Impacts

Account for heterogeneity in motion, sensing, and computation

tracks fewer objects but with higher accuracy per object than MHT

J. Chen and P. Dames. "Multi-Class Target Tracking Using the Semantic PHD Filter." International Symposium on Robotics Research (ISRR). 2019.

J. Brodovsky. A Comparison of the Probability Hypothesis Density Filter and the Multiple Hypothesis Tracker for Tracking Targets of Multiple Types. 2019. Temple University, MS Thesis.

- Introduced Augmented Lagrangian 4. GAME-theoretic Solver (ALGAMES)
- Formulate trajectory planning for \bullet multiple interacting robotic agents as a Nash style game
- Developed a fast, online solver for \bullet game-theoretic trajectory optimization (ALGAMES) using augmented Lagrangian and quasi-Newton method
- Finds receding \bullet horizon freeway merging trajectories for three interacting cars at 60Hz

S. Le Cleac'h, M. Schwager, and Z. Manchester, "ALGAMES: A Fast Online Solver for Constrained Dynamic Games," Under Review.

Converges 100x faster than Consensus Kalman filter, to a target estimate with

10% lower MSE

R. N. Haksar, O. Shorinwa, P. Washington, and M. Schwager. "Consensus-based ADMM for Task Assignment in Multi-Robot Teams", International Symposium on Robotics Research (ISRR). 2019.

- Introduced convex uncertainty Voronoi 5. (CUV) diagram
- Extends Voronoi diagram to account for position uncertainty
- Fully distributed algorithm
- Probabilistic guarantee on full coverage of environment by cell tessellation

Probabilistic guarantee on collision-free navigation

Chen and P. Dames. "Distributed and Collision-Free Coverage Control of a Team of Mobile Sensors Using the Convex Uncertainty Voronoi Diagram." American Control Conference (ACC). 2020. Accepted.

CKF DRWT

Average total transmissions per node (kbit) Societal Impact

- Potential for greater mobility of people and goods
- Reduction in traffic congestion \bullet
- Increased safety

Education and Outreach

- Student mentorship in lab at UG, MS, and PhD levels
- Senior design capstone projects
- Laboratory tours for K-12 students, visiting faculty, industry workers, etc.
- Inclusion in courses at Temple and Stanford

Voronoi Cell

CUV Cell

Sensor

UV Cell

2020 NSF National Robotics Initiative Principal Investigators' Meeting

February 27-28, 2020 | Arlington, Virginia

