
NRI: FND: COLLAB:
Distributed, Semantically-Aware Tracking and Planning for Fleets of Robots

https://sites.temple.edu/trail https://msl.stanford.edu/
Lead PI: Philip Dames (Temple University) PI: Mac Schwager (Stanford University)

Award ID#: IIS-1830419 (Temple)
IIS-1830402 (Stanford)

2022 NRI & FRR Principal Investigators' Meeting
March 19-21, 2022

1. Classify and track stationary, dynamic,
and reactive objects in fast-paced dense
urban environments

– CNN-Based “Front End”
– Investigate

Three Semantic,
Multi-Target
Estimation
“Back End”
Architectures

2. Partition the environment and use this
to distribute information across the team

– Visibility-Aware Partition
– Low-Bandwidth

Communication
– Robust Strategies

for Data Integrity

3. Predict a range of possible future target
behaviors in order to plan safe actions

– Planning For Reactive
Interaction

– Learning for
Reactive
Prediction

Goal
Enable safe and dependable operation of
large-scale autonomous robotic fleets, such
as autonomous vehicles and delivery drones,
in complex and dynamic environments

Key Problems

Distributed Multi-target Tracking Using
Distributed Optimization
• Networked AVs

communicate an
optimize iteratively
to track targets

• Faster convergence
than distributed
Kalman Filter
algorithms

O. Shorinwa, T. Halsted, and M. Schwager, "Scalable Distributed Optimization with Separable
Variables in Multi-Agent Networks," In Proc. of ACC 2020.

Significant Contributions Broader Impacts
Societal Impact
• Potential for greater mobility of

people and goods
• Reduction in traffic congestion
• Increased safety in human-filled

environments

Education and Outreach
• Student mentorship in lab at UG,

MS, and PhD levels
• Senior design capstone projects
• Laboratory tours for K-12 students,

visiting faculty, industry workers,
etc.

• Inclusion in courses at Temple and
Stanford

Game Theoretic Planning for Interactive
Autonomus Vehicles
• Planning framework

built on game
theory to
simultaneously
predict
trajectories of other vehicles and plan
trajectory for own vehicle

• Fast numerical algorithm to re-solve
trajectories online

• Inverse game theoretic planning for learning
objectives of other players during interaction

S. Le Cleac’h, M. Schwager, and Z. Manchester, “ALGAMES: A Fast Augmented
Lagrangian Solver for Constrained Dynamic Games,” Autonomous Robots, 2022.

S. Le Cleac’h, M. Schwager, and Z. Manchester, “LUCIDGames: Online Unscented
Inverse Dynamic Games for Adaptive Trajectory Prediction and Planning,” IEEE
Robotics and Automation Letters, vol. 6, no. 3, pp. 5485–5492, 2021.

Distributed Multi-Target Tracking for Autonomous Vehicle Fleets

Ola Shorinwa1, Javier Yu2, Trevor Halsted1, Alex Koufos2, and Mac Schwager2

Abstract— We present a scalable distributed target track-
ing algorithm based on the alternating direction method of
multipliers that is well-suited for a fleet of autonomous cars
communicating over a vehicle-to-vehicle network. Each sensing
vehicle communicates with its neighbors to execute iterations
of a Kalman filter-like update such that each agent’s estimate
approximates the centralized maximum a posteriori estimate
without requiring the communication of measurements. We
show that our method outperforms the Consensus Kalman
Filter in recovering the centralized estimate given a fixed
communication bandwidth. We also demonstrate the algorithm
in a high fidelity urban driving simulator (CARLA), in which 50
autonomous cars connected on a time-varying communication
network track the positions and velocities of 50 target vehicles
using on-board cameras.

I. INTRODUCTION

A key challenge in integrating autonomous vehicles into
the transportation infrastructure is ensuring their safe opera-
tion in the presence of potential hazards, such as human-
operated vehicles and pedestrians. However, tracking the
paths of these safety-critical targets using on-board sensors
is difficult in urban environments due to the presence of
occlusions. Collaborative estimation among networked au-
tonomous vehicles has the potential to alleviate the limi-
tations of each vehicle’s individual perception capabilities.
Networked fleets of autonomous vehicles operating in urban
environments can collectively improve the safety of their
planning and decision-making by collaboratively tracking the
trajectories of nearby vehicles in real-time.

Constraints on communication and computation impose
fundamental challenges on collaborative tracking. Given
limited communication bandwidth, information communi-
cated between vehicles must be succinct and actionable.
Communication channels must also be free to form and
dissolve responsively given the highly dynamic nature of
urban traffic. Relying on centralized computation is neither
robust to single points of failure, nor communication-efficient
in disseminating information to those vehicles to whom it
is relevant. Rather, a fully-distributed scheme that exploits
the computational and communication resources of an au-
tonomous fleet is crucial to reliable tracking.

*This project was funded in part by DARPA YFA award D18AP00064,
NSF NRI award 1830402. Toyota Research Institute (“TRI”) provided funds
to assist the authors with their research but this article solely reflects the
opinions and conclusions of its authors and not TRI or any other Toyota
entity. The second author was funded on an NSF GRF, and the third on an
NDSEG Fellowship.

1Department of Mechanical Engineering, Stanford University, Stanford,
CA 94305, USA, {shorinwa, halsted}@stanford.edu

2Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305, USA {javieryu, akoufos,
schwager}@stanford.edu

Fig. 1. Autonomous vehicles (in green) track the trajectory of target
vehicles (in blue and red) with images from on-board cameras at a four-way
intersection using our algorithm.

In this paper, we consider the problem of distributed target
tracking in a fleet of vehicles collaborating over a dynamic
communication network, posed as a Maximum A Posteri-
ori (MAP) optimization problem. Our key contribution is
a scalable Distributed Rolling Window Tracking (DRWT)
algorithm derived from the Alternating Direction Method
of Multipliers (ADMM) distributed optimization framework.
The algorithm consists of closed-form algebraic iterations
reminiscent of the Kalman filter and Kalman smoother, but
guarantees that the network of vehicles converge to the
centralized MAP estimate of the targets’ trajectories over
a designated sliding time window. We show in extensive
simulations that our DRWT algorithm converges to the
centralized estimate orders of magnitude faster than a state-
of-the art Consensus Kalman Filter for the same bandwidth.
We demonstrate our algorithm in a realistic urban driving
scenario in the CARLA simulator, in which 50 autonomous
cars track 50 target vehicles in real time using only seg-
mented images from their on-board cameras.

The paper is organized as follows. We give related work
in Sec. II and pose the distributed estimation problem in
Sec. III. In Sec. IV, we formulate the centralized MAP
optimization problem, and we derive our DRWT algorithm
in Sec. V. Sec. VI presents results comparing our DRWT
to the Consensus Kalman Filter, and describes large-scale
simulations in a CARLA urban driving scenario.

II. RELATED WORK

Several approaches have previously been applied to solv-
ing distributed estimation problems. In distributed filtering
methods, consensus techniques enable the asymptotic diffu-
sion of information throughout the communication network,

Algorithm 1 Distributed Rolling Window Tracking
1: function DRWT(x̄i,t�T :t�1, P̄i,t�T :t�1,yi,t 8i 2 V 0

t)
2: for i 2 V 0

t do
3: x̂

(0)
i,t�T :t argminxi,t�T :t

Ji(xi,t�T :t)

4: p
(0)
i 0

5: P̂i,t�T :t
�
H

>
i,tW

�1
i,t Hi,t

��1

6: end for
7: while stopping criterion is unmet do
8: for i 2 V 0

t do
9: p

(k+1)
i Equation (13) . dual update

10: x̂
(k+1)
i,t�T :t Equation (14) . primal update

11: end for
12: k k + 1
13: end while
14: for i 2 V 0

t /2 V 0
t+1, j 2 Ni,t \ V 0

t+1 do
15: P̂j,t�T :t

⇣
P̂

�1
i,t�T :t + P̂

�1
j,t�T :t

⌘�1
. hand-off

16: end for
17: return x̂i,t�T :t, P̂i,t�T :t 8i 2 V 0

t

18: end function

Algorithm 2 DRWT Primal Update (T = 1)

1: function PRIMALUPDATE(p(k)
i , x̂i, x̂j 8j 2 Ni,t)

2: initialization
3: �t�1 P̂

�1
i,t�1 + ⇢ |Ni|

4: ���i,t�1 ⇢
2

P
j2Ni

⇣
x̂
(k)
i,t�1 + x̂

(k)
j,t�1

⌘
� 1

2p
(k)
i,t�1

5: ��� 1
|V0

t|
Q

�1
t�1 +C

T
t R

�1
i,t Ct + ⇢ |Ni|

6: forward pass
7: Lt�1L

>
t�1 �t�1 +

1
|V0

t|
A

>
t�1Q

�1
t�1At�1

8: Lt,t�1L
>
t�1 � 1

|V0
t|
Q

�1
t�1At�1

9: Lt�1���t�1 P̂
�1
i,t�1x̄i,t�1 + ���i,t�1

10: LtL
>
t �Lt,t�1L

>
t,t�1 + ���

11: Lt���t �Lt,t�1���t�1 +C
>
t R

�1
i,t yi,t + ���i,t

12: x̂
(k+1)
i,t L

�>
t ���t

13: backward pass
14: x̂

(k+1)
i,t�1 �L

�>
t�1Lt,t�1x̂

(k+1)
i,t + ���t�1

15: return x̂
(k+1)
i,t�1 , x̂(k+1)

i,t
16: end function

Kalman smoothing equations while fusing estimates from
each sensor’s neighbors.

VI. SIMULATION RESULTS

A. Performance Comparison
We compare the performance of the DRWT method in

Algorithm 1 to the CKF in a distributed estimation problem
involving a static network with |V| = 100 and |E| = 400.
All sensors acquire noisy measurements of the target at
each time step, and perform DRWT with T = 1. During
each estimation phase, the same bandwidth limitations are
imposed on the CKF and DRWT. We benchmark both
distributed methods against the centralized MAP estimate.

Fig. 2. Convergence of distributed estimation methods to the centralized
estimate as a function of bits of communication passed on a 100 node, 400
edge network for a single timestep’s estimate.

Fig. 3. Mean squared error of estimation methods on a 100 node, 400
edge network with respect to ground truth, averaged over 2000 Monte Carlo
simulations. Solid lines show the indicate mean squared error, while dashed
lines represent estimated covariances, computed as trace(P̂).

Results from 2000 Monte Carlo simulations of this sce-
nario show that DRWT method outperforms the CKF. DRWT
is significantly more communication-efficient, as sensors
communicate only their target estimates. From Figure 2,
DRWT yields better convergence to the centralized estimate
compared to the CKF method as a function of the total
number of communication bits per node. As Figure 3 shows,
the improved convergence of the DRWT contributes to im-
proved estimation performance over entire trajectories. The
estimated trajectories and covariances of the DRWT method
closely match the centralized estimates. The CKF does not
track the centralized estimate as closely and is also more
significantly overconservative in its estimate.

B. CARLA Simulations
We demonstrate our algorithm in a scenario involving

a network of 50 sensor vehicles and 50 target vehicles
within CARLA, a simulation test-bed for autonomous driving
systems. For the simulation trials, each sensor vehicle is
equipped with a forward and a backward-facing camera,
each with a 90� field of view. As shown in Figure 4, sensor

2022 NRI & FRR Principal Investigators' Meeting
April 19-21, 2022

Results

Detection, Segmentation,
Classification

Distributed Target
Tracking Game Theoretic Planning

Algorithm 1 Distributed Rolling Window Tracking
1: function DRWT(x̄i,t�T :t�1, P̄i,t�T :t�1,yi,t 8i 2 V 0

t)
2: for i 2 V 0

t do
3: x̂

(0)
i,t�T :t argminxi,t�T :t

Ji(xi,t�T :t)

4: p
(0)
i 0

5: P̂i,t�T :t
�
H

>
i,tW

�1
i,t Hi,t

��1

6: end for
7: while stopping criterion is unmet do
8: for i 2 V 0

t do
9: p

(k+1)
i Equation (13) . dual update

10: x̂
(k+1)
i,t�T :t Equation (14) . primal update

11: end for
12: k k + 1
13: end while
14: for i 2 V 0

t /2 V 0
t+1, j 2 Ni,t \ V 0

t+1 do
15: P̂j,t�T :t

⇣
P̂

�1
i,t�T :t + P̂

�1
j,t�T :t

⌘�1
. hand-off

16: end for
17: return x̂i,t�T :t, P̂i,t�T :t 8i 2 V 0

t

18: end function

Algorithm 2 DRWT Primal Update (T = 1)

1: function PRIMALUPDATE(p(k)
i , x̂i, x̂j 8j 2 Ni,t)

2: initialization
3: �t�1 P̂

�1
i,t�1 + ⇢ |Ni|

4: ���i,t�1 ⇢
2

P
j2Ni

⇣
x̂
(k)
i,t�1 + x̂

(k)
j,t�1

⌘
� 1

2p
(k)
i,t�1

5: ��� 1
|V0

t|
Q

�1
t�1 +C

T
t R

�1
i,t Ct + ⇢ |Ni|

6: forward pass
7: Lt�1L

>
t�1 �t�1 +

1
|V0

t|
A

>
t�1Q

�1
t�1At�1

8: Lt,t�1L
>
t�1 � 1

|V0
t|
Q

�1
t�1At�1

9: Lt�1���t�1 P̂
�1
i,t�1x̄i,t�1 + ���i,t�1

10: LtL
>
t �Lt,t�1L

>
t,t�1 + ���

11: Lt���t �Lt,t�1���t�1 +C
>
t R

�1
i,t yi,t + ���i,t

12: x̂
(k+1)
i,t L

�>
t ���t

13: backward pass
14: x̂

(k+1)
i,t�1 �L

�>
t�1Lt,t�1x̂

(k+1)
i,t + ���t�1

15: return x̂
(k+1)
i,t�1 , x̂(k+1)

i,t
16: end function

Kalman smoothing equations while fusing estimates from
each sensor’s neighbors.

VI. SIMULATION RESULTS

A. Performance Comparison
We compare the performance of the DRWT method in

Algorithm 1 to the CKF in a distributed estimation problem
involving a static network with |V| = 100 and |E| = 400.
All sensors acquire noisy measurements of the target at
each time step, and perform DRWT with T = 1. During
each estimation phase, the same bandwidth limitations are
imposed on the CKF and DRWT. We benchmark both
distributed methods against the centralized MAP estimate.

Fig. 2. Convergence of distributed estimation methods to the centralized
estimate as a function of bits of communication passed on a 100 node, 400
edge network for a single timestep’s estimate.

Fig. 3. Mean squared error of estimation methods on a 100 node, 400
edge network with respect to ground truth, averaged over 2000 Monte Carlo
simulations. Solid lines show the indicate mean squared error, while dashed
lines represent estimated covariances, computed as trace(P̂).

Results from 2000 Monte Carlo simulations of this sce-
nario show that DRWT method outperforms the CKF. DRWT
is significantly more communication-efficient, as sensors
communicate only their target estimates. From Figure 2,
DRWT yields better convergence to the centralized estimate
compared to the CKF method as a function of the total
number of communication bits per node. As Figure 3 shows,
the improved convergence of the DRWT contributes to im-
proved estimation performance over entire trajectories. The
estimated trajectories and covariances of the DRWT method
closely match the centralized estimates. The CKF does not
track the centralized estimate as closely and is also more
significantly overconservative in its estimate.

B. CARLA Simulations
We demonstrate our algorithm in a scenario involving

a network of 50 sensor vehicles and 50 target vehicles
within CARLA, a simulation test-bed for autonomous driving
systems. For the simulation trials, each sensor vehicle is
equipped with a forward and a backward-facing camera,
each with a 90� field of view. As shown in Figure 4, sensor

Distributed Multi-Target Tracking for Autonomous Vehicle Fleets

Ola Shorinwa1, Javier Yu2, Trevor Halsted1, Alex Koufos2, and Mac Schwager2

Abstract— We present a scalable distributed target track-
ing algorithm based on the alternating direction method of
multipliers that is well-suited for a fleet of autonomous cars
communicating over a vehicle-to-vehicle network. Each sensing
vehicle communicates with its neighbors to execute iterations
of a Kalman filter-like update such that each agent’s estimate
approximates the centralized maximum a posteriori estimate
without requiring the communication of measurements. We
show that our method outperforms the Consensus Kalman
Filter in recovering the centralized estimate given a fixed
communication bandwidth. We also demonstrate the algorithm
in a high fidelity urban driving simulator (CARLA), in which 50
autonomous cars connected on a time-varying communication
network track the positions and velocities of 50 target vehicles
using on-board cameras.

I. INTRODUCTION

A key challenge in integrating autonomous vehicles into
the transportation infrastructure is ensuring their safe opera-
tion in the presence of potential hazards, such as human-
operated vehicles and pedestrians. However, tracking the
paths of these safety-critical targets using on-board sensors
is difficult in urban environments due to the presence of
occlusions. Collaborative estimation among networked au-
tonomous vehicles has the potential to alleviate the limi-
tations of each vehicle’s individual perception capabilities.
Networked fleets of autonomous vehicles operating in urban
environments can collectively improve the safety of their
planning and decision-making by collaboratively tracking the
trajectories of nearby vehicles in real-time.

Constraints on communication and computation impose
fundamental challenges on collaborative tracking. Given
limited communication bandwidth, information communi-
cated between vehicles must be succinct and actionable.
Communication channels must also be free to form and
dissolve responsively given the highly dynamic nature of
urban traffic. Relying on centralized computation is neither
robust to single points of failure, nor communication-efficient
in disseminating information to those vehicles to whom it
is relevant. Rather, a fully-distributed scheme that exploits
the computational and communication resources of an au-
tonomous fleet is crucial to reliable tracking.

*This project was funded in part by DARPA YFA award D18AP00064,
NSF NRI award 1830402. Toyota Research Institute (“TRI”) provided funds
to assist the authors with their research but this article solely reflects the
opinions and conclusions of its authors and not TRI or any other Toyota
entity. The second author was funded on an NSF GRF, and the third on an
NDSEG Fellowship.

1Department of Mechanical Engineering, Stanford University, Stanford,
CA 94305, USA, {shorinwa, halsted}@stanford.edu

2Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305, USA {javieryu, akoufos,
schwager}@stanford.edu

Fig. 1. Autonomous vehicles (in green) track the trajectory of target
vehicles (in blue and red) with images from on-board cameras at a four-way
intersection using our algorithm.

In this paper, we consider the problem of distributed target
tracking in a fleet of vehicles collaborating over a dynamic
communication network, posed as a Maximum A Posteri-
ori (MAP) optimization problem. Our key contribution is
a scalable Distributed Rolling Window Tracking (DRWT)
algorithm derived from the Alternating Direction Method
of Multipliers (ADMM) distributed optimization framework.
The algorithm consists of closed-form algebraic iterations
reminiscent of the Kalman filter and Kalman smoother, but
guarantees that the network of vehicles converge to the
centralized MAP estimate of the targets’ trajectories over
a designated sliding time window. We show in extensive
simulations that our DRWT algorithm converges to the
centralized estimate orders of magnitude faster than a state-
of-the art Consensus Kalman Filter for the same bandwidth.
We demonstrate our algorithm in a realistic urban driving
scenario in the CARLA simulator, in which 50 autonomous
cars track 50 target vehicles in real time using only seg-
mented images from their on-board cameras.

The paper is organized as follows. We give related work
in Sec. II and pose the distributed estimation problem in
Sec. III. In Sec. IV, we formulate the centralized MAP
optimization problem, and we derive our DRWT algorithm
in Sec. V. Sec. VI presents results comparing our DRWT
to the Consensus Kalman Filter, and describes large-scale
simulations in a CARLA urban driving scenario.

II. RELATED WORK

Several approaches have previously been applied to solv-
ing distributed estimation problems. In distributed filtering
methods, consensus techniques enable the asymptotic diffu-
sion of information throughout the communication network,

Le Cleac’h et Al, AURO 22

Le Cleac’h et Al, RAL 21
Shorinwa et Al, ICRA 20

Yu et Al, ICRA 22

2022 NRI & FRR Principal Investigators' Meeting
April 19-21, 2022

Results

Detection, Segmentation,
Classification

Distributed Target
Tracking Game Theoretic Planning

Algorithm 1 Distributed Rolling Window Tracking
1: function DRWT(x̄i,t�T :t�1, P̄i,t�T :t�1,yi,t 8i 2 V 0

t)
2: for i 2 V 0

t do
3: x̂

(0)
i,t�T :t argminxi,t�T :t

Ji(xi,t�T :t)

4: p
(0)
i 0

5: P̂i,t�T :t
�
H

>
i,tW

�1
i,t Hi,t

��1

6: end for
7: while stopping criterion is unmet do
8: for i 2 V 0

t do
9: p

(k+1)
i Equation (13) . dual update

10: x̂
(k+1)
i,t�T :t Equation (14) . primal update

11: end for
12: k k + 1
13: end while
14: for i 2 V 0

t /2 V 0
t+1, j 2 Ni,t \ V 0

t+1 do
15: P̂j,t�T :t

⇣
P̂

�1
i,t�T :t + P̂

�1
j,t�T :t

⌘�1
. hand-off

16: end for
17: return x̂i,t�T :t, P̂i,t�T :t 8i 2 V 0

t

18: end function

Algorithm 2 DRWT Primal Update (T = 1)

1: function PRIMALUPDATE(p(k)
i , x̂i, x̂j 8j 2 Ni,t)

2: initialization
3: �t�1 P̂

�1
i,t�1 + ⇢ |Ni|

4: ���i,t�1 ⇢
2

P
j2Ni

⇣
x̂
(k)
i,t�1 + x̂

(k)
j,t�1

⌘
� 1

2p
(k)
i,t�1

5: ��� 1
|V0

t|
Q

�1
t�1 +C

T
t R

�1
i,t Ct + ⇢ |Ni|

6: forward pass
7: Lt�1L

>
t�1 �t�1 +

1
|V0

t|
A

>
t�1Q

�1
t�1At�1

8: Lt,t�1L
>
t�1 � 1

|V0
t|
Q

�1
t�1At�1

9: Lt�1���t�1 P̂
�1
i,t�1x̄i,t�1 + ���i,t�1

10: LtL
>
t �Lt,t�1L

>
t,t�1 + ���

11: Lt���t �Lt,t�1���t�1 +C
>
t R

�1
i,t yi,t + ���i,t

12: x̂
(k+1)
i,t L

�>
t ���t

13: backward pass
14: x̂

(k+1)
i,t�1 �L

�>
t�1Lt,t�1x̂

(k+1)
i,t + ���t�1

15: return x̂
(k+1)
i,t�1 , x̂(k+1)

i,t
16: end function

Kalman smoothing equations while fusing estimates from
each sensor’s neighbors.

VI. SIMULATION RESULTS

A. Performance Comparison
We compare the performance of the DRWT method in

Algorithm 1 to the CKF in a distributed estimation problem
involving a static network with |V| = 100 and |E| = 400.
All sensors acquire noisy measurements of the target at
each time step, and perform DRWT with T = 1. During
each estimation phase, the same bandwidth limitations are
imposed on the CKF and DRWT. We benchmark both
distributed methods against the centralized MAP estimate.

Fig. 2. Convergence of distributed estimation methods to the centralized
estimate as a function of bits of communication passed on a 100 node, 400
edge network for a single timestep’s estimate.

Fig. 3. Mean squared error of estimation methods on a 100 node, 400
edge network with respect to ground truth, averaged over 2000 Monte Carlo
simulations. Solid lines show the indicate mean squared error, while dashed
lines represent estimated covariances, computed as trace(P̂).

Results from 2000 Monte Carlo simulations of this sce-
nario show that DRWT method outperforms the CKF. DRWT
is significantly more communication-efficient, as sensors
communicate only their target estimates. From Figure 2,
DRWT yields better convergence to the centralized estimate
compared to the CKF method as a function of the total
number of communication bits per node. As Figure 3 shows,
the improved convergence of the DRWT contributes to im-
proved estimation performance over entire trajectories. The
estimated trajectories and covariances of the DRWT method
closely match the centralized estimates. The CKF does not
track the centralized estimate as closely and is also more
significantly overconservative in its estimate.

B. CARLA Simulations
We demonstrate our algorithm in a scenario involving

a network of 50 sensor vehicles and 50 target vehicles
within CARLA, a simulation test-bed for autonomous driving
systems. For the simulation trials, each sensor vehicle is
equipped with a forward and a backward-facing camera,
each with a 90� field of view. As shown in Figure 4, sensor

Distributed Multi-Target Tracking for Autonomous Vehicle Fleets

Ola Shorinwa1, Javier Yu2, Trevor Halsted1, Alex Koufos2, and Mac Schwager2

Abstract— We present a scalable distributed target track-
ing algorithm based on the alternating direction method of
multipliers that is well-suited for a fleet of autonomous cars
communicating over a vehicle-to-vehicle network. Each sensing
vehicle communicates with its neighbors to execute iterations
of a Kalman filter-like update such that each agent’s estimate
approximates the centralized maximum a posteriori estimate
without requiring the communication of measurements. We
show that our method outperforms the Consensus Kalman
Filter in recovering the centralized estimate given a fixed
communication bandwidth. We also demonstrate the algorithm
in a high fidelity urban driving simulator (CARLA), in which 50
autonomous cars connected on a time-varying communication
network track the positions and velocities of 50 target vehicles
using on-board cameras.

I. INTRODUCTION

A key challenge in integrating autonomous vehicles into
the transportation infrastructure is ensuring their safe opera-
tion in the presence of potential hazards, such as human-
operated vehicles and pedestrians. However, tracking the
paths of these safety-critical targets using on-board sensors
is difficult in urban environments due to the presence of
occlusions. Collaborative estimation among networked au-
tonomous vehicles has the potential to alleviate the limi-
tations of each vehicle’s individual perception capabilities.
Networked fleets of autonomous vehicles operating in urban
environments can collectively improve the safety of their
planning and decision-making by collaboratively tracking the
trajectories of nearby vehicles in real-time.

Constraints on communication and computation impose
fundamental challenges on collaborative tracking. Given
limited communication bandwidth, information communi-
cated between vehicles must be succinct and actionable.
Communication channels must also be free to form and
dissolve responsively given the highly dynamic nature of
urban traffic. Relying on centralized computation is neither
robust to single points of failure, nor communication-efficient
in disseminating information to those vehicles to whom it
is relevant. Rather, a fully-distributed scheme that exploits
the computational and communication resources of an au-
tonomous fleet is crucial to reliable tracking.

*This project was funded in part by DARPA YFA award D18AP00064,
NSF NRI award 1830402. Toyota Research Institute (“TRI”) provided funds
to assist the authors with their research but this article solely reflects the
opinions and conclusions of its authors and not TRI or any other Toyota
entity. The second author was funded on an NSF GRF, and the third on an
NDSEG Fellowship.

1Department of Mechanical Engineering, Stanford University, Stanford,
CA 94305, USA, {shorinwa, halsted}@stanford.edu

2Department of Aeronautics and Astronautics, Stanford
University, Stanford, CA 94305, USA {javieryu, akoufos,
schwager}@stanford.edu

Fig. 1. Autonomous vehicles (in green) track the trajectory of target
vehicles (in blue and red) with images from on-board cameras at a four-way
intersection using our algorithm.

In this paper, we consider the problem of distributed target
tracking in a fleet of vehicles collaborating over a dynamic
communication network, posed as a Maximum A Posteri-
ori (MAP) optimization problem. Our key contribution is
a scalable Distributed Rolling Window Tracking (DRWT)
algorithm derived from the Alternating Direction Method
of Multipliers (ADMM) distributed optimization framework.
The algorithm consists of closed-form algebraic iterations
reminiscent of the Kalman filter and Kalman smoother, but
guarantees that the network of vehicles converge to the
centralized MAP estimate of the targets’ trajectories over
a designated sliding time window. We show in extensive
simulations that our DRWT algorithm converges to the
centralized estimate orders of magnitude faster than a state-
of-the art Consensus Kalman Filter for the same bandwidth.
We demonstrate our algorithm in a realistic urban driving
scenario in the CARLA simulator, in which 50 autonomous
cars track 50 target vehicles in real time using only seg-
mented images from their on-board cameras.

The paper is organized as follows. We give related work
in Sec. II and pose the distributed estimation problem in
Sec. III. In Sec. IV, we formulate the centralized MAP
optimization problem, and we derive our DRWT algorithm
in Sec. V. Sec. VI presents results comparing our DRWT
to the Consensus Kalman Filter, and describes large-scale
simulations in a CARLA urban driving scenario.

II. RELATED WORK

Several approaches have previously been applied to solv-
ing distributed estimation problems. In distributed filtering
methods, consensus techniques enable the asymptotic diffu-
sion of information throughout the communication network,

Le Cleac’h et Al, AURO 22

Le Cleac’h et Al, RAL 21
Shorinwa et Al, ICRA 20

Yu et Al, ICRA 22

Distributed Neural Network Training for Robot
Networks
• ADMM based

framework for
training deep
nets in a multi-
robot network

• Integrated with existing SGD training tools
(e.g. in PyTorch)

• Achieves performance similar to centralized
training

• Preserves data privacy
• Tested on distributed visual recognition,

mapping, and multi-agent RL tasks.
J. Yu, J. Vincent, M. Schwager, “DINNO: Distributed Neural Network Optimization
for Multi-Robot Collaborative Learning,” RA-L, 2022.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3142402, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

(a) (b)
Fig. 4: (a) Ground truth map. Highlighted is a single robot’s trajectory and a
single lidar scan is shown with high (gold) and low (blue) density points. (b)
Average validation loss versus communication iteration for the neural implicit
mapping experiment with maximum and minimum values plotted in a lighter
shade (DSGD and DSGT have high agreement throughout so these bounds are
not visible). Both baseline algorithms DSGT and DSGD appear to consistently
converge to a poor quality minima while DiNNO (ours) converges to a model
with validation loss matching that of the centralized solution. Though DSGT
and DSGD appear to converge to a similar local minimum, Figure 5 shows
that the reconstructions are different.

Fiedler values larger than 1 have little increase in performance
suggesting that consensus no longer is a limiting factor in the
convergence rate.

B. Neural Implicit Mapping

In robotics there is growing interest in using neural networks
to represent functions which implicitly define the geometry of
an environment [38], [39]. In their basic form, implicit density
field networks take as input an (x, y, z) spatial coordinate and
output a single density value between 0 and 1. Such networks
are able to represent complicated 3D scenes in a single
memory-efficient function. In this example we use DiNNO to
learn the density field of a two dimensional environment where
data collection and computation is distributed across multiple
robots. The robots also have access to a global coordinate
frame which enables cooperative mapping, but a future line
of research would be to implement this same pipeline in
conjunction with a distributed pose optimization algorithm.

The environment we seek to map is a 2D building floorplan
environment from the CubiCasa5K data set [40]. This data
set does not include the scale of the floorplans, thus we treat
each pixel as one unit. Seven robots are deployed, and each
robot gathers data from the environment by collecting lidar
scans as it traverses a closed loop, precomputed trajectory. To
simulate data streaming the robots update their local networks
at regular intervals from data sets of their last 400 collected
lidar scans (one trajectory has 3000-4000 scans). Figure 4a
shows the ground truth environment with seven robot paths
and one lidar scan. There is some overlap in the locations
traversed by each robot, but many locations, especially at the
borders, are only viewed by one robot.

We train a feedforward network with four hidden layers of
size 256, 64, 64, 64 where the first hidden layer has sinusoidal
activation, the remaining hidden layers have ReLU activation,
and the output layer has sigmoid activation to restrict our
density estimates to (0, 1). The sinusoidal activations are
common in implicit mapping [41]. We use binary cross entropy
loss between the sampled and predicted density.

The validation set is composed of novel lidar scans from
uniformly sampled locations across the entire map, and this
ensures that the validation data reflects loss only on areas
where the robots have can gather data (not inside walls). For
the communication graph, we use a geometric graph based
on the positions of the robots, where the radius is set to 1500
units. The motion of the robots results in a time-varying graph
which we observe is always connected.

Figure 4b shows the validation loss for our method as well
as DSGD and DSGT. DiNNO best minimizes the validation
loss, once again approaching the performance of centralized
training whereas DSGD and DSGT train less effectively,
converging to poor quality solutions. Figure 5 shows the map
learned by each method, and maps from individual robots
training on only their local data. As suggested by Figure
4b, when using DiNNO robots are able to provide a faithful
reconstruction of the ground truth environment whereas with
DSGD and DSGT robots converge to incoherent maps.

To verify the performances of DSGT and DSGD we reran
this experiment several times, and both methods always con-
verged to poor performing local minima. Additionally, we
emphasize that the implementation for these two methods is
unchanged between this experiment and Section V-A where
both methods learn acceptable classifiers. We speculate that
this is a challenging problem where only a small amount of
suboptimality is allowable to achieve a useful representation.
DSGT and DSGD may be unable to either fine tune their
weights, escape poor local minima, or handle streaming data.

C. Multi-Agent Reinforcement Learning
For the final example we use DiNNO for distributed learning

of a decentralized policy applied to a standard continuous
state and action, multi-robot, predator-prey problem that was
first introduced in [42]. MARL is known to be an especially
hard learning task due to the inherent nonstationarity of the
environment. That is, the environment changes during learning
because other agents also have evolving policies. For more
background on deep MARL see [43] and [44].

In our learning environment three robots must work
together to pursue a faster evader robot in the presence
of fixed obstacles, as shown in Figure 6a. Implemented in
PettingZoo [45], the environment operates according to the
Actor Environment Cycle Game model in which pursuers
make observations, act, and receive rewards sequentially
before the environment as a whole is updated. The pursuers
have actions a = [none, right, left, up, down]
2 A ⇢ R5 and observations o =[self_vel, self_pos,
other_pursuers_rel_pos, evader_rel_pos,
evader_rel_vel] 2 O ⇢ R12. Actions are clipped to
be on the interval [0, 1]. The evader obeys a heuristic policy,
moving opposite the nearest pursuer. To prevent unfair
evasion, the evader cannot propel itself outside a square of
radius 1.2. The reward function penalizes pursuing robots
based on their distance from the evader and pursuers receive
a positive reward for tagging the evader.

To solve this problem we extend the PPO actor-critic
algorithm [46] with DiNNO to train a shared, decentralized

Authorized licensed use limited to: Stanford University. Downloaded on January 15,2022 at 16:38:53 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3142402, IEEE Robotics
and Automation Letters

6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022

(a) (b)
Fig. 4: (a) Ground truth map. Highlighted is a single robot’s trajectory and a
single lidar scan is shown with high (gold) and low (blue) density points. (b)
Average validation loss versus communication iteration for the neural implicit
mapping experiment with maximum and minimum values plotted in a lighter
shade (DSGD and DSGT have high agreement throughout so these bounds are
not visible). Both baseline algorithms DSGT and DSGD appear to consistently
converge to a poor quality minima while DiNNO (ours) converges to a model
with validation loss matching that of the centralized solution. Though DSGT
and DSGD appear to converge to a similar local minimum, Figure 5 shows
that the reconstructions are different.

Fiedler values larger than 1 have little increase in performance
suggesting that consensus no longer is a limiting factor in the
convergence rate.

B. Neural Implicit Mapping

In robotics there is growing interest in using neural networks
to represent functions which implicitly define the geometry of
an environment [38], [39]. In their basic form, implicit density
field networks take as input an (x, y, z) spatial coordinate and
output a single density value between 0 and 1. Such networks
are able to represent complicated 3D scenes in a single
memory-efficient function. In this example we use DiNNO to
learn the density field of a two dimensional environment where
data collection and computation is distributed across multiple
robots. The robots also have access to a global coordinate
frame which enables cooperative mapping, but a future line
of research would be to implement this same pipeline in
conjunction with a distributed pose optimization algorithm.

The environment we seek to map is a 2D building floorplan
environment from the CubiCasa5K data set [40]. This data
set does not include the scale of the floorplans, thus we treat
each pixel as one unit. Seven robots are deployed, and each
robot gathers data from the environment by collecting lidar
scans as it traverses a closed loop, precomputed trajectory. To
simulate data streaming the robots update their local networks
at regular intervals from data sets of their last 400 collected
lidar scans (one trajectory has 3000-4000 scans). Figure 4a
shows the ground truth environment with seven robot paths
and one lidar scan. There is some overlap in the locations
traversed by each robot, but many locations, especially at the
borders, are only viewed by one robot.

We train a feedforward network with four hidden layers of
size 256, 64, 64, 64 where the first hidden layer has sinusoidal
activation, the remaining hidden layers have ReLU activation,
and the output layer has sigmoid activation to restrict our
density estimates to (0, 1). The sinusoidal activations are
common in implicit mapping [41]. We use binary cross entropy
loss between the sampled and predicted density.

The validation set is composed of novel lidar scans from
uniformly sampled locations across the entire map, and this
ensures that the validation data reflects loss only on areas
where the robots have can gather data (not inside walls). For
the communication graph, we use a geometric graph based
on the positions of the robots, where the radius is set to 1500
units. The motion of the robots results in a time-varying graph
which we observe is always connected.

Figure 4b shows the validation loss for our method as well
as DSGD and DSGT. DiNNO best minimizes the validation
loss, once again approaching the performance of centralized
training whereas DSGD and DSGT train less effectively,
converging to poor quality solutions. Figure 5 shows the map
learned by each method, and maps from individual robots
training on only their local data. As suggested by Figure
4b, when using DiNNO robots are able to provide a faithful
reconstruction of the ground truth environment whereas with
DSGD and DSGT robots converge to incoherent maps.

To verify the performances of DSGT and DSGD we reran
this experiment several times, and both methods always con-
verged to poor performing local minima. Additionally, we
emphasize that the implementation for these two methods is
unchanged between this experiment and Section V-A where
both methods learn acceptable classifiers. We speculate that
this is a challenging problem where only a small amount of
suboptimality is allowable to achieve a useful representation.
DSGT and DSGD may be unable to either fine tune their
weights, escape poor local minima, or handle streaming data.

C. Multi-Agent Reinforcement Learning
For the final example we use DiNNO for distributed learning

of a decentralized policy applied to a standard continuous
state and action, multi-robot, predator-prey problem that was
first introduced in [42]. MARL is known to be an especially
hard learning task due to the inherent nonstationarity of the
environment. That is, the environment changes during learning
because other agents also have evolving policies. For more
background on deep MARL see [43] and [44].

In our learning environment three robots must work
together to pursue a faster evader robot in the presence
of fixed obstacles, as shown in Figure 6a. Implemented in
PettingZoo [45], the environment operates according to the
Actor Environment Cycle Game model in which pursuers
make observations, act, and receive rewards sequentially
before the environment as a whole is updated. The pursuers
have actions a = [none, right, left, up, down]
2 A ⇢ R5 and observations o =[self_vel, self_pos,
other_pursuers_rel_pos, evader_rel_pos,
evader_rel_vel] 2 O ⇢ R12. Actions are clipped to
be on the interval [0, 1]. The evader obeys a heuristic policy,
moving opposite the nearest pursuer. To prevent unfair
evasion, the evader cannot propel itself outside a square of
radius 1.2. The reward function penalizes pursuing robots
based on their distance from the evader and pursuers receive
a positive reward for tagging the evader.

To solve this problem we extend the PPO actor-critic
algorithm [46] with DiNNO to train a shared, decentralized

Authorized licensed use limited to: Stanford University. Downloaded on January 15,2022 at 16:38:53 UTC from IEEE Xplore. Restrictions apply.

2377-3766 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/LRA.2022.3142402, IEEE Robotics
and Automation Letters

IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2022 1

DiNNO: Distributed Neural Network Optimization

for Multi-Robot Collaborative Learning

Javier Yu,1 Joseph A. Vincent,1 Mac Schwager1

Abstract—We present DiNNO, a distributed algorithm that en-

ables a group of robots to collaboratively optimize a deep neural

network model while communicating over a mesh network. Each

robot only has access to its own data and maintains its own

version of the neural network, but eventually learns a model

that is as good as if it had been trained on all the data centrally.

No robot sends raw data over the wireless network, preserving

data privacy and ensuring efficient use of wireless bandwidth. At

each iteration, each robot approximately optimizes an augmented

Lagrangian function, then communicates the resulting weights

to its neighbors, updates dual variables, and repeats. Eventually,

all robots’ local model weights reach a consensus. For convex

objective functions, this consensus is a global optimum. Unlike

many existing methods we test our algorithm on robotics-related,

deep learning tasks with nontrivial model architectures. We

compare DiNNO to two benchmark distributed deep learning

algorithms in (i) an MNIST image classification task, (ii) a multi-

robot implicit mapping task, and (iii) a multi-robot reinforcement

learning task. In these experiments we show that DiNNO per-

forms well when faced with nonconvex deep learning objectives,

time-varying communication graphs, and streaming data. In all

experiments our method outperforms baselines, and was able to

achieve validation loss equivalent to centrally trained models. See

msl.stanford.edu/projects/dist nn train for videos and code.

Index Terms—Multi-Robot Systems; Deep Learning Methods;

Distributed Robot Systems

I. INTRODUCTION

A
group of collaborating robots has the ability to explore,

interact with, and experience their environment as a
collective much faster than a single robot acting alone. This
ability to rapidly gather a large volume and variety of data
makes multi-robot systems especially well suited for tasks
that involve training deep neural networks using data gathered
by the robots. In a cloud robotics scenario, one can imagine
thousands of robots networked over a cloud server, able
to collectively gather and process vast volumes of data for
a common task (e.g. manipulation, autonomous driving, or
human behavior prediction). In a mesh network scenario, one
can similarly imagine a team of robots collaborating to map
an environment, learn a control policy, or learn to visually
recognize threats in the environment. A central unsolved prob-
lem in collaborative robotics, therefore, is how to train neural

Manuscript received: September, 9, 2021; Revised November, 3, 2021;
Accepted January, 3, 2022.

This paper was recommended for publication by Editor M. Ani Hsieh upon
evaluation of the Associate Editor and Reviewers’ comments. This work was
funded by NASA ULI grant 80NSSC20M0163, NSF NRI grant 1925030,
and NSF NRI grant 1830402. The first author was also supported on a NSF
Graduate Research Fellowship, and the second author was supported on a
Dwight D. Eisenhower Transportation Fellowship.

1Department of Aeronautics and Astronautics, Stanford Uni-
versity, Stanford, CA 94305, USA, {javieryu, josephav,
schwager}@stanford.edu

Digital Object Identifier (DOI): see top of this page.

Fig. 1: DiNNO allows robots to cooperatively optimize local copies of a neural
network model without explicitly sharing data. In this figure (representative
of Section V-B), three robots use DiNNO to cooperatively optimize a building
occupancy map represented as a neural network. Each robot only sees part of
the building, collecting a local lidar data set (colored cylinders). The robots
communicate over a wireless network (dashed lines) to cooperatively optimize
their local neural network copies. The resulting model is as good as if it were
trained centrally with all data at once.

network models on the robots through local communication
such that each robot benefits from the data collected by the
entire multi-robot system.

To solve this problem, we propose Distributed Neural
Network Optimization (DiNNO), an algorithm built on the
alternating direction method of multipliers (ADMM) [1]. We
demonstrate the effectiveness of DiNNO on experiments which
require optimizing nonconvex deep learning loss functions
which may be subject to time-varying communication graphs
and streaming data. In addition, unlike similar approaches,
DiNNO is shown to match centralized performance on dif-
ficult, multi-robot deep learning tasks while integrating easily
with standard tools and optimizers such as PyTorch [2] and
Adam [3]. Using DiNNO, robots alternate between local
optimization of an objective function, and communication of
intermediate model weights over the wireless network. The
robots eventually reach a consensus on their model weights,
with each robot learning a neural network that is as good
as if it had been trained centrally with the data from all
robots, as illustrated graphically in Figure 1. DiNNO inherits
the strong convergence properties of ADMM—for convex
objective functions we prove that all robots obtain globally
optimal parameters. However, neural network training is rarely
convex. Using standard deep learning tools within DiNNO
we retrieve state-of-the-art deep learning performance, but
in a distributed, multi-robot implementation. Finally, DiNNO
operates by sharing model weights over the communication
network, not raw data. Therefore, robots using DiNNO pre-
serve the privacy and integrity of their own local data set.
This is crucial in scenarios where user data or observations

Authorized licensed use limited to: Stanford University. Downloaded on January 15,2022 at 16:38:53 UTC from IEEE Xplore. Restrictions apply.

