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Distributed coordination using local measurements

(aggregators and commercial HVAC)

Idea: Restrict loads’ control actions to specific frequency bands.
* Provides strict bounds on QoS.
* Collectively, loads can negate fluctuations in net load.

Each load type can account for a different frequency range
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Solution: Local feedback + predictions from BA.

k+N—1 Use local frequency measurements to scale disturbance prediction:
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Distributed coordination using randomization

(on/off loads)

e 2 possible control commands for every load: on or off
6
* For 1 million loads: 2" possible control commands AT EVERY INSTANT!

Idea: Use randomization to turn loads on and off to track net load in the aggregate
while maintaining consumer QoS.
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