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Many safety-critical cyber-physical systems rely on advanced sensing
capabilities to react to changing environmental conditions. However,
cost-effective deployments of such capabilities have remained
elusive. Such deployments will require software infrastructure that
enables multiple sensor-processing streams to be multiplexed onto a
common hardware platform at reasonable cost, as well as tools and
methods for validating that required processing rates can be
maintained.

Currently,	advanced	driver	assistance	system	(ADAS)	capabilities	
have	only	been	implemented	in	prototype	vehicles	using	hardware,	
software,	and	engineering	infrastructure	that	is	very	expensive.	
Prototype	hardware	commonly	includes	multiple	high-end	CPU	and	
GPU	chips	and	expensive	LIDAR	sensors.
Focusing	directly	on	judicious	resource	allocation,	this	project	seeks	
to	enable	more	economically	viable	implementations.	Such	
implementations	can	reduce	system	cost	by	utilizing	cameras	in	
combination	with	low-cost	embedded	multicore	CPU+GPU	
platforms.

Motivation

Problem

Supporting	Real-Time	Computer	Vision	Workloads

This	project	focuses	on	three	principal	objectives:
• New	implementation	methods	for	multiplexing	disparate	

image-processing	streams	on	embedded	multicore	platforms	
augmented	with	GPUs.

• New	analysis	methods	for	certifying	required	stream-
processing	rates.

• New	computer-vision	methods	for	constructing	image-
processing	pipelines.

Objectives

• Automotive	Cyber-Physical	Systems	graduate-level	course	at	UNC	Chapel	Hill.	
(http://www.cs.unc.edu/~anderson/teach/comp790a/)

• Autonomous	Driving:	Moving	from	Theory	to	Practice	graduate-level	course	at	
UNC	Chapel	Hill.	(http://need4speed.web.unc.edu,	
https://cs.unc.edu/~anderson/teach/comp790car/)
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Activities

http://roboticsandautomationnews.com/wp-content/uploads/2016/09/adas-illustration.gif

Implicit	Synchronization

• GPU	synchronization	blocks	GPU	operations,	resulting	in	
capacity	loss.

• The	CUDA	API	can	cause	unexpected implicit synchronization.
• Future	middleware	may	reduce	blocking	by	re-scheduling	some	

implicit-sync	API	calls.
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•Methodology:	Run	GPU-using	
programs	in	separate	processes,	
record	start	and	end	times	of	
thread	blocks.
• Observations:
• GPU	coscheduling can reduce	

total	time	compared	to	
sequential	execution.

• Block	times	are	minimally	
affected	by	coscheduling in	
this	case.

• Coscheduled processes	do	
not	truly	share	the	GPU,	but	
are	multiprogrammed.

• Our	observations	imply	that	using	
multiple	threads	within	a	single	
process	have	more	potential	to	
improve	utilization.

Case	Study:	Pedestrian-Detection	Tasks

Choice	of	Software:	Histogram	of	oriented	gradients	(HOG)
Methodology:	 	We	transformed	HOG	in	OpenCV into	a	DAG.	We	
compared	the	response	times	of	successively	finer-grained	notions	
of	DAG	scheduling,	corresponding	to	monolithic,	coarse-grained,	
and	fine-grained	HOG	DAGs,	while	supporting	six	cameras.
Observations:
• With	respect	to	schedulablity,	the	monolithic	and	coarse-

grained	variants	could	not	even	come	close	to	supporting	all	six	
cameras	(i.e.,	DAGs),	while	both	fine-grained	variants	can.

To	produce	response-time	bound	for	concurrently-executed	
sporadic	GPU-using	tasks	on	NVIDIA	GPUs,	we:
• Adapted	our	prior	work	on	scheduling	processing	graphs	and	

determining	end-to-end	graph	response	time	bounds	to	apply	to	
our	fine-grained	OpenVX graph,	in	which	each	node	accesses	
either	a	CPU	or	a	GPU.

• Provided	new	analysis	for	determining	response-time	bounds	for	
GPU	computations.	We	showed	how	to	compute	such	bounds	
for	recent	NVIDIA	GPUs	by	leveraging	recent	work	by	our	group	
on	the	functioning	of	these	GPUs.

SchedulabilityTheory

Platform

We	are	focusing	on	real-time	systems	
where	significant	computing	capacity	
must	be	provided	with	minimum	
monetary	cost	and	size,	weight,	and	
power	(SWaP).	NVIDIA’s	Jetson TX2	
fits	these	constraints.

Jetson TX2:
• 600	USD
• A	leading	multicore+GPU

solution.
• Marketed	by	NVIDIA	as	

“The	embedded	platform	
for	autonomous	
everything.”

• A	single-board	computer	
containing:
• Quad-core	64-bit	ARM	

CPU	+	dual-core	Denver	
CPU.

• 8GB	of	DRAM.
• An	integrated	GPU.

• The	DRAM	is	shared	
between	the	host	CPU	and	
GPU.
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Inferring	GPU	Scheduling	Behavior

Motivation:
• Scheduling	of	GPU	programs	

can	result	in	wasted	capacity.
Methodology:
• Designed	an	experimentation	

framework	to	infer	GPU	
scheduling	behavior.

• Developed	rules	to	describe	
scheduling	behavior	seen	in	
experiments.

Future	work:
• Write	middleware	to	reorder	

GPU	work.

• The	average	(resp.,	worst-
case)	observed	response	
time	under	the	fine-
grained	variants	was	
around	66	ms (resp.,	130	
ms),	which	is	substantially	
lower	than	the	non-fine	
grained	variants.

Monolithic Monolithic Coarse-Grained Coarse-Grained Fine-Grained Fine-Grained

G-EDF C-EDF G-EDF C-EDF G-FL C-FL

Analytical Bound (ms) N/A N/A N/A N/A 542.39 477.25

Observed Maximum Response Time (ms) 170091.06 243745.21 427.07 428.50 125.66 131.43

Observed Average Response Time (ms) 84669.47 121748.05 136.57 121.52 65.99 66.06

Table 1: Analytical and observed response times. A bound of N/A indicates unschedulability, so no bound could be computed.
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• Showed	that	
allowing	invocations	
of	the	same	graph	
node	to	execute	in	
parallel	is	crucial	in	
avoiding	extreme	
capacity	loss.
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