
[1] S. Sefton et al. "GARUDA: Designing energy-efficient hardware monitors from high-level policies for secure information flow," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2018

[2] G. Stewart et al. "Ziria: A DSL for wireless systems programming," Proceedings of the 20th International Conference on Architectural Support for Programming Languages and Operating Systems, 2015

[3] J. Yu et al. "Speculative taint tracking (STT): A comprehensive protection for speculatively accessed data," Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture, 2019

Dynamic GARUDA: Securing Programs with
Hardware Monitors Using Higher Language
Abstractions
Garett Cunningham, Gordon Stewart, David Juedes and Avinash Karanth
School of Electrical Engineering and Computer Science, Ohio University

References

Low-level embedded systems are especially vulnerable 

to attacks that exploit flaws in either software or 

hardware to gain control of program behavior. Hardware 

monitors have shown promise toward attacking the issue 

by catching malicious instructions and enforcing some 

expert-defined policy at runtime. However, the efficiency 

of monitors comes at the cost of ease of implementation. 

To bridge the abstraction gap, we define a high-level 

language for writing dynamically reconfigurable security 

policies, named Dynamic GARUDA, alongside a Verilog 

compiler to support realizing policies as hardware 

monitors.

Introduction

This research was sponsored by NSF 

SaTC program CCF-1936794

Prior Work & Motivation

Previously, the GARUDA language1 attempted to close 

the abstraction gap by introducing a high-level language 

for simple policies with a compiler to synthesizable 

Verilog code. The simplicity plus the software-to-

hardware compilation yielded efficient monitors that saw 

minimized overhead compared to other approaches.

The language is composed of a simple list of commands:

pol := PId // Do nothing
| PDrop // Fail
| PTest e p // If e, then do p
| PUpd e // Update data with e
| PChoice p1 p2 // Do p1 or p2
| PConcat p1 p2 // Do p1 then p2

Policies consist of compositions of these commands. The 

resulting language is simple, but powerfully expressive in 

the policies it can encode. However, policies cannot be 

reconfigured once they are written. Experts may wish to 

change behavior on demand in response to runtime flags, 

such as in preventing data leakage or checking shadow 

stacks. This motivates our rework of GARUDA to support 

dynamically reconfiguring policies.

Dynamic GARUDA Applications

Semantics:

We redefine GARUDA's semantics using inspiration from 

the bitstream processing language Ziria2:

stream := upd e // Update data with e
| done e // Update and return e
| ite e s1 s2 // Conditional branch
| x <- s1; s2 // Stream staging
| s1 >> s2 // Stream composition
| loop s // Stream looping

Stream staging (x <- s1; s2) best demonstrates how 

policies can dynamically change behavior. The command 

runs the policy s1 until it returns a value to x. s2 is then 

run with the value of x passed as additional input. Loops 

allow this behavior for the same stream, emulating an 

internal register that stores the value of x.

Synthesizing Hardware Monitors:

To produce low-overhead hardware monitors, we rework 

the original Verilog compiler to support our new semantics.

We modularize staged streams and introduce lines for 

control and data transfer. This enforces that policies only 

run when specified and have access to passed variables 

represented in the high-level code.

Dynamic GARUDA can express a much wider range of 

policies than prior work. For example, Speculative Taint 

Tracking3 (STT) enacts security measures when pre-

computing code. The following Dynamic GARUDA code 

snippet implements STT:

Definition stt :=
loop (fun vp =>
taint_track vp >>
ite (unsafe)
(done (fun _ => vp))
(upd (fun e => e))).

stt controls the flow of pre-computed instructions. If the 

logic in taint_track shows that the instruction is not safe, 

then the computation stalls by fixing the visibility point vp

and changing the instruction to a no-op. Else, instructions 

pass unchanged. As a hardware monitor, the policy is as 

follows:

Future Work

We are continuing to evaluate the performance and 

effectiveness of Dynamic GARUDA for security 

applications, including:

• Benchmarking policies to estimate overhead.

• Optimizing compilation to Verilog to minimize power and 

area consumption.

• Formally verifying our compiler toolchain in Coq and 

supporting formal verification of policies.


