NSF CMMI #1527016 & #1526835 Robot-Assisted Pedestrian Regulation Based on Deep Reinforcement Learning

Yi Guo¹ (PI), Haibo He² (PI), Chao Jiang¹, Zhiqiang Wan² ¹Stevens Institute of Technology, ²University of Rhode Island

Introduction

- Pedestrian crowd regulation is of great importance for avoiding crowd accident in densely-populated areas or during the emergency evacuation;
- We introduce an autonomous mobile robot to dynamically interact with evacuating pedestrians;
- We propose an end-to-end solution which directly inputs the raw image of the environment and outputs real-time robot motion decisions to regulate pedestrian flow.

Learning Process

Algorithm 1 Training Process

1:	Initialize the deep neural network (DNN) with random parameters θ .
2:	for Epoch=1:N do
3:	Initialize the robot position.
4:	for Time step $t = 1$:T do
5:	Input the image captured by the surveillance camera into the DNN.
6:	Calculate the action-value $Q(\boldsymbol{x}_t, \boldsymbol{u}; \theta_t)$ with the DNN.
7:	Output the robot motion decision $\boldsymbol{u}_t = \operatorname{argmax}_u Q(\boldsymbol{x}_t, \boldsymbol{u}; \theta_t)$.
8:	Update the robot position and observe the reward q_t .
9:	Advance to the next state x_{t+1} .
10:	Store the experience tuple $(\boldsymbol{x}_t, \boldsymbol{u}_t, q_t, \boldsymbol{x}_{t+1})$ in a buffer \mathcal{B} .
11:	Sample M tuples $\{(\boldsymbol{x}_j, \boldsymbol{u}_j, q_j, \boldsymbol{x}_{j+1})\}_{j=1}^M$ from \mathcal{B} .
12:	Set the target action-value $y_j = q_j + \gamma \max_{u'} Q\left(\boldsymbol{x}_{j+1}, \boldsymbol{u}'; \theta_t \right)$.
13:	Calculate the loss function $L(\theta_t) = \sum_{j=1}^{M} (y_j - Q(x_j, u_j; \theta_t))^2$.
14:	Update DNN with mini-batch gradient descent $\theta_{t+1} = \theta_t - \eta \bigtriangledown_{\theta_t} L(\theta_t)$
15:	end for
16:	end for
• After the training process, the parameters of the DI	

• After the training process, the parameters of the DNN will be saved for the online deployment.

Fig. 1: The schematic diagram of merging pedestrian flows with robotassisted regulation

- State x_t : the pedestrian position and the robot position.
- Action u_t : the robot motion decision which represents its moving directions, that is, "up", "down", "left", "right".
- State transition $x_{t+1} = f(x_t, u_t)$: determined by human interaction and human-robot interaction (HRI).
- Reward q_t : the instantaneous outflow.
- Action-value function:

$$Q_{\boldsymbol{\pi}}(\boldsymbol{x}, \boldsymbol{u}) = \mathbb{E}_{\boldsymbol{\pi}} \left[\sum_{k=0}^{K} \gamma^{k} \cdot q_{t+k} \middle| \boldsymbol{x}_{\boldsymbol{t}} = \boldsymbol{x}, \boldsymbol{u}_{\boldsymbol{t}} = \boldsymbol{u} \right]$$

• <u>*Problem statement*</u>: Determine the optimal robot motion decisions *u* such that the accumulated pedestrian outflow is maximized under the robot-assisted regulation.

$$\begin{array}{ll} \underset{\boldsymbol{u}}{\text{maximize}} & J = \sum_{t=0}^{T} q_t \end{array}$$

End-to-End Flow Regulation

Fig. 3: HRI characteristics for inflow rate $q_1/q_2 = 1/3$: (a) top-view; (b) 3D-view. The color indicates the quantity of the accumulated outflow, $\sum_{t=0}^{T} q_t$, at T=400s. The rectangle in (a) highlights the robot positions with the highest accumulated outflow.

• Robot position converges to the rectangular region in Fig. 3 (a)

Fig. 2: The overall control diagram. The end-to-end approach uses the raw image obtained by the surveillance camera as input, observes the reward q_t , accordingly, and outputs robot motion decision u_t in real time.

- that maximizes the accumulated outflow.
- The accumulated outflow is improved by about 8.1% in comparison with no-robot case.
- The proposed approach achieves best regulation performance.

Conclusion

- We proposed to regulate merging pedestrian flow in a T-shaped junction through HRI;
- We presented an end-to-end approach based on deep Qlearning to solve this problem with offline training and online deployment;
- Various simulation results demonstrated promising regulation performances.