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Introduction

Problem Formulation

Pedestrian crowd regulation Is of great importance for
avolding crowd accident in densely-populated areas or
during the emergency evacuation;

We Introduce an autonomous mobile robot to dynamically
Interact with evacuating pedestrians;

We propose an end-to-end solution which directly inputs
the raw Image of the environment and outputs real-time
robot motion decisions to regulate pedestrian flow.
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Fig. 1: The schematic diagram of merging pedestrian flows with robot-
assisted regulation

State X, : the pedestrian position and the robot position.

Action u, : the robot motion decision which represents Its

moving directions, that 1s, “up”, “down”, “left”, “right”.

State transition z:+1 = f (z+,u:). determined by human

Interaction and human-robot interaction (HRI).

Reward g, : the instantaneous outflow.

Action-value function:
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Problem statement: Determine the optimal robot motion
decisions u such that the accumulated pedestrian outflow
IS maximized under the robot-assisted regulation.
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Fig. 2: The overall control diagram. The end-to-end approach uses the raw image
obtained by the surveillance camera as input, observes the reward g, , accordingly,
and outputs robot motion decision u, in real time.

_earning Process

Algorithm 1 Training Process

1: Initialize the deep neural network (DNN) with random parameters 6.

2: for Epoch=1:N do

3: Initialize the robot position.

for Time step £ = 1:T do
Input the image captured by the surveillance camera into the DNN.
Calculate the action-value @) (x,, u; 6;) with the DNN.
Output the robot motion decision w; = argmax,, @ (x;, u; 0;).
Update the robot position and observe the reward g;.

0: Advance to the next state @, 1.

10: Store the experience tuple (x;, us, ¢, @41 1) in a buffer B.

S A

11: Sample M tuples {(x,,u;, qj,:nj+1)};i1 from B.

12: Set the target action-value y; = q; + vy max - ) (3’3‘};4_1? u'; ﬁt).

13: Calculate the loss function L (6;) = Zjil (y; — Q (x;, uy; 0.))° .

14 Update DNN with mini-batch gradient descent 0,1 = 6; — 1 ~7p, L (0;) .
15: end for

16: end for

 After the training process, the parameters of the DNN will
be saved for the online deployment.
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Fig. 3: HRI characteristics for inflow rate q,/q, = 1/3 : (a) top-view; (b) 3D-
view. The color indicates the quantity of the accumulated outflow, ¥7, 4 , at
T=400s. The rectangle in (a) highlights the robot positions with the highest
accumulated outflow.
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Fig. 6 Time history of robot
position with 10 robot initial
positions.

Fig. 4. (a) Robot trajectory; (b) Time
history of robot position in x and vy
directions; (c) Instantaneous outflow, g,.

* Robot position converges to the rectangular region in Fig. 3 (a)
that maximizes the accumulated outflow.

« The accumulated outflow Is improved by about 8.1% In
comparison with no-robot case.

* The proposed approach achieves best regulation performance.

Conclusion

* \We proposed to regulate merging pedestrian flow in a T-
shaped junction through HRI;

* We presented an end-to-end approach based on deep Q-
learning to solve this problem with offline training and
online deployment;

e Various simulation results
regulation performances.

demonstrated promising




