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Tensegrity Robots

Figure 1: A 6 Strut Vibrational 
Tether-Free Tensegrity Robot

Quality Diversity Algorithms are a class of  
algorithm that seek out novelty instead of  
a singular optimality in a given space [2]. 
When applied to robotics, this translates 
to generating mappings between a robot’s 
parameter space and its behavior space 
(Figure 2). When run on a soft robot 
QDAs produce a behavioral repertoire, 
which contains a diverse variety of  
behaviors the robot is capable of. QDAs 
have been successful when tested on both 
virtual agents [3] and physical robots [4]. 
 

 

Quality Diversity Algorithms (QDA)

Figure 2: QDAs find a mapping between parameter space: the features a 
robot’s controller manipulates, and its discretized behavior space: a 
description of  the outcome of  the controller’s action.

Methods

Tensegrities (Figure 1) are relatively simple mechanical systems, 
consisting of  several rigid elements (struts) joined at their 
endpoints by tensile elements (springs), and kept stable through a 
synergistic interplay of  pre-stress forces [1].  

Unlike many other soft robots, tensegrity structures are inherently 
modular and are therefore relatively easy to design and build, while 
still exhibiting many of  the complex properties of  more fully soft 
robots. They are therefore a compelling platform with which to 
explore the challenges of  soft robot control.
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Abstract  Developing control systems for soft robots is challenging: the dynamics of soft materials often produce behaviors that are counter-intuitive and hard to model or predict. As a consequence, 
most behaviors for soft robots are discovered through the time-consuming process of  empirical trial and error. This work seeks to develop data-efficient methods of  exploring and exploiting the full 

range of  soft robotic dynamical behaviors. 

Results
These results [5] were generated by first running an initial 100 trials of  the robot 
with random parameters. This was then used as the ‘seed’ behavioral repertoire 
that MapElites mutated. Then 400 trials of  MapElites were run and  400 more 
random trials were run to produce a control.

Figure 3: Four markers are placed on 
each of  the three tracked tensegrity 
struts. These markers are tracked using 
a 20-camera Qualisys Oqus 700+ 
system and the QTM Tracking 
Software at a frame rate of  300 frames 
per second, which provides 6DOF 
position and rotation data for each 
marked strut.

We use a QDA called MAP-Elites [4] to construct a behavioral repertoire for our 
tensegrity robot. The parameter space is composed of  the three speeds for the 
vibrating motors, and the behaviors are described by the robot's displacement in 
the x-y coordinate plane along with its rotation around the z axis (yaw).  Formally 
a behavior b = (Δx, Δy, ΔΦ). 

Then we discretized the behavior space into twelve bins on the Δx and Δy axes 
with a 6cm width (-36cm:36cm), and six bins on the ΔΦ axis with a 60° width  
(-180°:180°). We empirically determined these values by running tests to 
determined to what precision behaviors were repeatable.  

  For MAP-Elites, we needed to determine a fitness metric that ranked the 
‘goodness’ of  a behavior. When multiple configurations of  parameters map to 
behaviors in the same behavior bin, we keep the behavior with a better fitness 
score. Our fitness metric is f(b)= |Δx| + |Δy| + |ΔΦ|. This metric prefers 
behaviors with greater absolute displacement, as this guarantees the most active 
behaviors of  the robot are not discarded.

Key Takeaways:
• MapElites Behaviors have higher 

average fitness 

• MapElites discovered new behaviors 
twice as fast as random search 

Next Steps
• Behavioral repertoires for voxel-based 

soft robots 

• Policy networks and damage recovery 


