EAGER: Documenting and Analyzing Use of Robots for COVID-19

PI: Dr. Robin R. Murphy Texas A&M University Center for Robot-Assisted Search and Rescue (np)

Co-PI: Dr. Angela Clendenin, School of Public Health Co-PI: Dr. Jason Moats, Texas A&M Engineering Extensive Service GRA: Vignesh Gandudi REU: Trisha Amin

This material is based upon work supported by the National Science Foundation under Grant No. *IIS-2032729*. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.

NRI 2021 PI Meeting

RoboticsForInfectiousDiseases.org started at NRI 2020!

Open Dataset:

- 338 instances of actual robots in use explicitly for COVID-19 between Jan 24, 2020, and Jan 23, 2021
- 48 countries on six continents: Africa, Asia, Australia, Europe, North America, and South America

Good Job, Everyone!

FEBRUARY 27 - 28, 2020 | ARLINGTON, VIRGINIA

Areas of Major Findings

• • •

- International trends
- Policy
- Use Cases
- Robot morphology
- Responsible Innovation
- Ethics

Collection Methodology: Through Jan 23, 2021

338 Instances in 48 Countries

5

© Australian Bureau of Statistics, GeoNames, Microsoft, Navinfo, OpenStreetMap, TomTom, Wikipedia

Top 8 Countries by # of Robot Instances

95
72
33
16
13
12
12
7

Country	Total	Date of Reported Use
US	95	1/24/2020
China	72	1/26/2020
India	33	3/23/2020
Great Britain	16	3/26/2020
Italy	13	3/23/2020
South Korea	12	2/11/2020
Spain	12	3/13/2020
Singapore	7	3/5/2020
Thailand	7	3/19/2020
Japan	6	3/28/2020
Canada	5	3/1/2020*
United Arab Emirates	5	3/16/2020
Kenya	4	1/22/2021
France	3	3/19/2020
Ireland	3	4/6/2020
Nigeria	3	4/6/2020
Philippines	3	3/19/2020
Australia	2	9/14/2020
South Africa	2	11/1/2020
Belgium	2	3/16/2020
Colombia	2	4/14/2020
Equatorial Guinea	2	9/24/2020
Greece	2	5/16/2020
Germany	2	4/4/2020

Country	Total	Date of Reported Use
Rwanda	2	5/19/2020
Austria	1	2/1/2020*
Chile	1	4/20/2020
Croatia	1	3/1/2020*
Cyprus	1	3/23/2020
Czech Republic	1	11/16/2020
Denmark	1	6/9/2020
Egypt	1	11/25/2020
Estonia	1	4/30/2020
Ghana	1	4/17/2020
Honduras	1	4/6/2020
Israel	1	4/16/2020
Jordan	1	5/5/2020
Kuwait	1	3/12/2020
Lithuania	1	5/13/2020
Malaysia	1	3/1/2020*
Mexico	1	4/17/2020
Netherlands	1	6/1/2020
Norway	1	4/1/2020*
Poland	1	11/16/2020
Russia	1	11/6/2020
Sweden	1	5/15/2020
Tunisia	1	3/25/2020
Turkey	1	4/14/2020
Total	338	

Clustering By Socio-Technical Work Domains*

- Stakeholders who make the adoption decision
- Interactants, their skills and expectations
- Regulatory or budget constraints
- Overall objectives
- Work envelope
- Types of use cases

*Glaser, B. G. (1965). The constant comparative method of qualitative analysis. Social Problems, 12(4):436–445.

TECHNICA

SOCIAL

Six Sociotechnical Work Domains and UGV (219), UAS (117), UMV (2) Distribution

- Public Safety was the largest: social distancing, disinfecting public spaces
- Public Safety has access to lots of general purpose drones
- Hospitals, Non-Hospital (Nursing Homes and Quarantine Camps) are indoors and cluttered, so favor UGV

International Trend: Breadth of Use From the Beginning

International Trend: Largest Use is Typically Broadest Use

Contro

40

Northospitalcare

Total

			Cor	1300
US	20	18	25	13
CN	21	17	12	9

/	/	/	/	/	/	/	/	/
US	20	18	25	13	19	0	95	
CN	21	17	12	9	6	7	72	
IN	15	15	2	1	0	0	33	
GB	5	2	6	3	0	0	16	
IT	4	7	0	1	0	1	13	
KR	1	5	3	1	1	1	12	
ES	4	2	3	3	0	0	12	
SG	2	2	2	1	0	0	7	
<u> </u>		-	-	-	-	-	_	

- China and South Korea • reported for all 6 domains
- But US only 5 with no ٠ reports for Non-hospital Care

			A Brit		AND Y	So AV	0100	S. OU.	10
				(Ger	108	50 .		- Phil	
_				/		/			
	US	20	18	25	13	19	0	95	RV
	CN	21	17	12	9	6	7	72	A
	IN	15	15	2	1	0	0	33	CL
Į	GB	5	2	6	3	0	0	16	HF
1	п	4	7	0	1	0	1	13	C
	KR	1	5	3	1	1	1	12	CZ
	ES	4	2	3	3	0	0	12	D
L	SG	2	2	2	1	0	0	7	EG
	TH	1	3	3	0	0	0	7	EE
	JP	1	0	5	0	0	0	6	GF
	CA	0	1	1	2	1	0	5	HN
	AE	4	1	0	0	0	0	5	IL
	KE	2	2	0	0	0	0	4	JC
	FR	3	0	0	0	0	0	3	KV
	IE	0	1	0	0	2	0	3	LT
	NG	1	2	0	0	0	0	3	M
	PH	1	0	1	0	1	0	3	M
	AU	2	0	0	0	0	0	2	N
	ZA	0	0	1	0	1	0	2	NC
	BE	1	0	0	0	0	1	2	PL
	CO	1	0	0	0	1	0	2	RU
	GQ	1	1	0	0	0	0	2	SE
	GR	1	0	0	1	0	0	2	TN
	DE	1	0	0	1	0	0	2	TF
									Tat

	RW	1	1	0	0	0	0	2
	AT	0	0	0	0	1	0	1
	CL	0	0	0	0	1	0	1
	HR	0	1	0	0	0	0	1
	CY	0	0	0	0	1	0	1
	CZ	0	1	0	0	0	0	1
	DK	0	0	0	1	0	0	1
	EG	0	1	0	0	0	0	1
	EE	0	0	0	1	0	0	1
	GH	0	0	0	1	0	0	1
	HN	1	0	0	0	0	0	1
	IL	0	1	0	0	0	0	1
	JO	0	0	1	0	0	0	1
	KW	1	0	0	0	0	0	1
L	LT	0	0	0	0	1	0	1
L	MY	1	0	0	0	0	0	1
	MX	1	0	0	0	0	0	1
L	NL	0	0	1	0	0	0	1
	NO	0	0	1	0	0	0	1
	PL	0	0	0	1	0	0	1
	RU	0	0	1	0	0	0	1
	SE	0	0	0	1	0	0	1
	ΤN	1	0	0	0	0	0	1
L	TR	0	1	0	0	0	0	1
٦	Total	98	85	68	41	36	10	338

Country

bic Safet

orston 8 Suppression

Policy: Countries with a National Policy Used More Robots

Countries with a National Robotics Policy or Initiative:

- China
- European Union
- Germany (in addition to the EU)
- Japan
- South Korea
- <mark>US</mark>

			Con	Labora			MO
US	20	18	25	13	19	0	95
CN	21	17	12	9	6	7	72
IN	15	15	2	1	0	0	33
GB	5	2	6	3	0	0	16
IT	4	7	0	1	0	1	13
KR	1	5	3	1	1	1	12
ES	4	2	3	3	0	0	12
SG	2	2	2	1	0	0	7
	-	-	-	_	-	-	_

Use Cases: 29 Clusters

NRI 2021 PI Meeting

Largest Uses: Disinfection (85), Delivery (77)

13

Morphology: Ground Robots Tend to Be Wheeled, Aerial Robots Tend to Be Quadcopters

Morphology: Many Humanoids, Many Manipulators, Few Humanoids with Manipulation

Responsible Innovation: Measuring Degree of Innovation with NASA Technical Readiness Assessment (TRA)*

*Hirshorn, S. R. and Jefferies, S. A. (2016). Final report of the nasa technology readiness assessment (tra) study team)

NRI 2021 PI Meeting

Responsible Innovation During a Disaster is Not Improvisation: 78% Heritage, 10% Engineering, 12% New

•••

Model of Adoption: Demand Pull, Not Innovation Push

61 Ethical Concerns: The Public Doesn't Trust Us. Or the Robots.

•••

19

Takeaways for Pandemics and Disasters in General

- For disasters, need to increase availability of existing robots
 - Create new designs/workflows/processes to rapidly manufacturing proven, reliable robots (Heritage)
 - Create general purpose robots that can be easily adapted without increasing risk (Engineering)
- To innovate means **understanding beforehand work domain** including ethics-- and have established partnerships with stakeholders
- Research opportunities appear to be in delivery, dexterous manipulation, quantitatively predicting risk

National Robotics Initiative may have put the US in the #1 position!

Resources (and Join Us)!

roboticsForInfectiousDiseases.org

- Interview Series with Healthcare Experts and Robot Practitioners
- National Academy of Engineering/CCC Study (G. Hager, V. Kumar, R. Murphy, D. Rus, R. Taylor)
- Science Robotics articles
- ICRA Plenary (K. Goldberg)
- IFRR Panel (R. Murphy)
- Special Issues of IEEE RAM, Robotics and Autonomous Systems (H. Su)

Chair, Robin Murphy, Texas A&M Dr. Antonio Bicchi, I-RIM, Italian Institute of Robotics and Intelligent Machines (Italy) Dr. Cindy Bethel, Mississippi State University Dr. Angela Clendenin, Texas A&M Dr. Murray Cote, Texas A&M Dr. Brittany Duncan, UNL Dr. Rebecca Fischer, Texas A&M Dr. Ken Goldberg, UC Berkeley Dr. Greg Hager, JHU Dr. Serena Ivaldi, Inria (France) Dr. Michael Lee, Science Robotics Dr. Jason Moats, TEEX Dr. Taskin Padir. Northeastern Dr. Russ Taylor, JHU Dr. Bill Smart, Oregon State University Dr. Stefano Stramigioli, DIH-HERO (Netherlands) Dr. Hao Su, CUNY Dr. Richard Voyles, Purdue

