
Optimizing Online Control of Constrained Systems
with Switched Dynamics

Zonglin Liu1 and Olaf Stursberg1

Abstract— This paper studies the online control of switched
systems over a finite time horizon subject to time-varying
constraints on the continuous states and bounded input set. The
formulation leads to optimization problems of the class mixed-
integer nonlinear programming (MINLP), which is known to
be computationally hard. This paper proposes a method to ap-
proximate the optimal solution while keeping the computational
effort low enough, to enable real-time applicability for many
systems. The main idea is to use heuristics based on the value
function for relaxed sub-problems to prune the tree encoding
the possible sequences of discrete choices (i.e. the selected
continuous dynamics) over a prediction horizon. Numeric tests
show that the times for computation are drastically below those
for standard MINLP solution in the vast majority of cases, while
good approximations of the optimal solutions are obtained.

I. INTRODUCTION

Switched systems are an appropriate class of model for all
those processes in which discrete controls enable to select
the continuous dynamics, while the latter is governed by
continuous controls. Automatic gear-shifts, which determine
a gear in conjunction to the engine torque, are an example for
such processes. While the presence of mixed (continuous-
discrete) degrees of freedom may enhance the chance of
reaching the control goal, the challenging aspect is to select
the combination of controls which maximizes the system
performance. If formulated as optimization problem, the
class of MINLP problems is encountered, which is known
to be NP hard, see e.g. [3], [10]. The use of relaxations
(i.e. temporarily treating an integer variable v ∈ {0, 1} as
a continuous one v ∈ [0, 1]) is an established method to
generate lower cost bounds when exploring and pruning the
tree of integer variables, and it has been used in a number
of approaches for solving control problems for switched
systems [4], [11], [13], [14]. While for some problem in-
stances relaxations may lead to satisfactory results (in terms
of efficiently pruning the search tree), the opposite effect can
occur for switched systems in some cases: using v ∈ [0, 1]
instead of v ∈ {0, 1} may mean to average between two
distinct dynamics, leading to system evolution which is not
possible for the switched system. A gross under-estimation of
a bound may result, i.e. many nodes of the search tree may be
explored which later turn out to be infeasible. If the solution
is approached by existing solvers for MINLP problems,
such as ’GUROBI’ [1], ’DICOPT’ [9], it can be observed
that typically the computation times increase quickly with
a growing number of integer variables. (In addition, it is
not guaranteed that global optima are determined.) These
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shortcomings motivate the investigation of techniques that
do not not rely on relaxations of binary variables.
This work studies the online control of switched systems
by optimizing over a finite horizon, considering state and
input constraints, and deriving effective bounds for pruning
the search tree from value function. The consideration of
constraints is in contrast to the work in [4], [14], which also
explores the use of value function for pruning, but for the
unconstrained case. In addition, the two approaches involve
the identification of a relaxation parameter on which the
outcome of the optimization depends with high sensitivity,
i.e. an appropriate value is difficult to find. The same
problem as in this paper (thus including constraints) has
been investigated in [2], but the latter does not focus on
computational complexity and thus on applicability in real-
time. In contrast, the paper on hand first decomposes the
original complex problem into simpler subproblems, each
of which can be solved in polynomial time with known
solvers, and which provide cost bounds. In a second step,
tree search with suitable branch and pruning strategies is
employed to determine good choices for the continuous and
discrete degrees of freedom.
Section 2 first defines the considered control problem, Sec.
3 proposes methods to derive lower and upper cost bounds,
Sec. 4 contains the tree search procedure, while several
numerical tests in Sec. 5 demonstrate the effectiveness of
the method, before Sec. 6 concludes the paper.

II. PROBLEM FORMULATION

The class of models studied in this paper are switched
systems, where a discrete input switches the continuous
dynamics. For k ∈ N≥0, consider the discrete-time model:

xk+1 = Avkxk +Bvkuk,

xk ∈ Xk, uk ∈ U, vk ∈ V, (1)

where xk ∈ Rnx×1 is the continuous state bounded to
time-varying convex constraints Xk, uk ∈ Rnu×1 is the
continuous input selected from a convex input space U , and
vk is the discrete input which determines the parametrization
of the continuous dynamics. The latter is chosen from the set
V = {v[1], . . . , v[nv]}, and any vk ∈ V corresponds to a pair
of matrices (Avk , Bvk). Note that the selection of this pair
by vk leads to a nonlinear right-hand side of the dynamics
equation.
In this paper, an online control scheme is considered: for a
finite horizon N ∈ N, let a state xk ∈ Xk measured in the
current step k, and a sequence of convex state constraints
(Xk, Xk+1|k, . . . , Xk+N |k) be given (through prediction).



The index k + j|k denotes a prediction of a quantity for
step k + j made at step k. If sequences of continuous
inputs φuk,N = (uk|k, . . . , uk+N−1|k) and discrete inputs
φvk,N = (vk|k, . . . , vk+N−1|k) are selected, then a sequence
of continuous states φxk,N = (xk, xk+1|k, · · · , xk+N |k) re-
sults satisfying for j ∈ {0, · · · , N − 1} according to 1:

xk+j+1|k =

(

j∏
l=0

Avk+l|k) · xk +

j∑
l=0

[(

j−l−1∏
t=0

Avk+j−t|k) ·Bvk+l|k · uk+l|k].

(2)

The control objective is to drive the state into the region
Xk+N |k containing the target state xf ∈ Xk+N |k (with a
target input uf = 0nu×1) in N steps, while minimizing the
following cost function:

Ω(xk, xf , φ
v
k,N , φ

u
k,N ) := (xk+N |k − xf )TQN (xk+N |k − xf )

+
N−1∑
j=0

(xk+j|k − xf )TQ1(xk+j|k − xf ) + uTk+j|kQ2uk+j|k.︸ ︷︷ ︸
step cost: L(xk+j|k,uk+j|k)

(3)

Here, Q1 = Q1
T ≥ 0, Q2 = Q2

T > 0 and QN = QN
T > 0

are the weighting matrices of the different parts. Now, the
overall online control problem can be defined as follows:

Problem 1:

min
φv
k,N ,φ

u
k,N

Ω(xk, xf , φ
v
k,N , φ

u
k,N )

s.t.: (2), xk+j|k ∈ Xk+j|k, j ∈ {1, . . . , N},
xf ∈ Xk+N |k,

uk+j|k ∈ U, vk+j|k ∈ V, j ∈ {0, . . . , N − 1}.

Such problems can be solved by available solvers for MINLP
problems, but the combinatorics with respect to φv leads
typically to large computation times (or only permits the use
of small values of N ): Since v(k + j|k) has to be selected
for any j ∈ {0, . . . , N −1}, the number of available discrete
input sequences φvk,N is nNv , i.e. it increases exponentially
with N , and the N must be chosen large enough to enable
xf ∈ Xk+N |k. This motivates the development of an
algorithm in this paper which aims at finding suitable
compromises between performance and applicability for
large N . This is achieved by a tree search algorithm
motivated by the one in [12] together with cost bounds
and search heuristics which are tailored to the structure of
Problem 1: Let a tree denoted by Tk = {Gk, Ek}, consisting
of a set of nodes Gk and a set of edges Ek, see also Fig. 1.
Each node represents a continuous state xk+j|k reachable
by one pair of input sequences φuk,j = (uk|k, . . . , uk+j−1|k)
and φvk,j = (vk|k, . . . , vk+j−1|k). Let the set Gk+j|k for
j ∈ {1, . . . , N} denote the set of nodes possibly explored
by the algorithm by choosing the possible options of input

1Note that
p∏

t=0
· = 1 for p < 0, as applies for j = 0.
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sequence φvk,j and φuk,j . Obviously Gk|k = {xk} can be
regarded as the root node of the tree (where we name the
nodes identical to the corresponding continuous states for
simplification). The symbol Ek = {Ek|k, · · · ,Ek+N−1|k}
denotes the set of edges of the tree, where an element of
Ek+j|k denotes an edge representing a particular choice for
the discrete input vk+j|k ∈ V ; here again, the edges are
denoted equivalently to the discrete inputs for simplicity.
For an efficient algorithm operating on the tree, the obvious
goal is to explore as few nodes of the tree as possible to
obtain trajectories that are (at least) close to the optimal
solution of Problem 1.

To avoid the exponential growth of the tree with increasing
j, two mechanisms are proposed and explored in this paper:

• any node is evaluated by its costs, i.e. by the accumu-
lated costs as the sum of the step-costs L(x, u) for the
transfer from the root node to the current node, and by
the cost-to-go as the costs estimated to be acquired for
the steps from the current node to the end of the time
horizon. Only if these costs compare to specific bounds
such that the node may belong to a path of low overall
costs of (3), the node is further explored, see Sec. 3;

• if two continuous states (nodes) xk+j|k,1 and xk+j|k,2
are reached by employing two different pairs of partial
strategies (φuk,j , φ

v
k,j)1 and (φuk,j , φ

v
k,j)2 of same length

j, and are close to each other (i.e. ‖xk+j|k,1−xk+j|k,2‖2
being small), only the node with smaller accumulated
cost is further explored, see Sec. 4.

III. LOWER AND UPPER COST BOUNDS

In order to prepare the computation of cost bounds, the
notion of cost-to-go is formalized first, and then schemes for
determining costs bounds are proposed, which are used later
to reduce the size of the search tree to be explored.



A. Definition of the Cost-To-Go

According to some recent results on optimizing discrete-
time switched systems (cf. [4], [15]), the notion of the value
function V(xk+j|k) can be used to formulate the minimal
cost-to-go from state xk+j|k to the end of the prediction
horizon. It takes the form:

V(xk+j|k) := min
φv
k+j,N ,φ

u
k+j,N

{
N−1∑
i=j

L(xk+i|k, uk+i|k)

+ (xk+N |k − xf )TQN (xk+N |k − xf )}
s. t.: vk+i|k ∈ V, uk+i|k ∈ U, ∀i ∈ {j, · · · , N − 1},

xk+i|k ∈ Xk+i|k, ∀i ∈ {j + 1, · · · , N}. (4)

In here, φvk+j,N = (vk+j|k, . . . , vk+N−1|k) denotes the dis-
crete input sequence from step k+j to step k+N−1 (equiv-
alently for φuk+j,N ). Note that for j = 0, the value of V(xk)
is identical to the solution of Problem 1, and is denoted then
by Ω∗(xk, xf , φ

v,∗
k,N , φ

u,∗
k,N ). If state x(k+j+1|k) ∈ X(k+j+1|k)

is reachable from xk+j|k by selecting a feasible uk+j|k ∈ U
and vk+j|k ∈ V , then V(xk+j|k) satisfies:

V(xk+j|k) = min
vk+j|k,uk+j|k

{L(xk+j|k, uk+j|k) + V(xk+j+1|k)}

s. t.: xk+j+1|k = Avk+j|kxk+j|k +Bvk+j|kuk+j|k. (5)

B. Lower Bound Identification

A lower bound of V(xk+j|k) (and thus of the cost-to-
go from xk+j|k) is determined as follows: By omitting the
constraints for the continuous inputs and states in (4), the
following relaxed problem is formulated:

Vun(xk+j|k) := min
φv
k+j,N ,φ

u
k+j,N

{
N−1∑
i=j

L(xk+i|k, uk+i|k)

+ (xk+N |k − xf )TQN (xk+N |k − xf )} (6)
s. t.: vk+i|k ∈ V, ∀i ∈ {j, · · · , N − 1}.

Due to an enlarged feasible space in comparison to problem
(4), the optimal cost satisfies: Vun(xk+j|k) ≤ V(xk+j|k), i.e.
it determines a lower bound of V(xk+j|k). The difference be-
tween Vun(xk+j|k) and V(xk+j|k) depends on the extent by
which input and state constraints are active for the solution
of (4). For computing Vun(xk+j|k), the use of difference
Riccati equations according to [8] has been discussed in
different approaches (see [4], [11], [15]). This concept is
briefly reviewed here:

1) starting from the last step k + N , the value of
Vun(xk+N |k) is determined by the continuous state
achievable at step k +N :

Vun(xk+N |k) :=

min
xk+N|k

(xk+N |k − xf )TQN (xk+N |k − xf ) (7)

Meanwhile, a matrix Pun,∗N := QN is defined to
replace QN in (7) for a notation that is consistent with
the following;

2) for each available input v[q] ∈ V at any step k + i,
i ∈ {j + 1, · · · , N}, a matrix Pun,v[q]i−1 originated from
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matrix Puni is determined by applying the following
difference Riccati equation backwards:

Pun,v[q]i−1 = AT
v[q]
Puni Av[q] + 2KT

i−1B
T
v[q]
Puni Av[q]

+Q1 +KT
i−1(BT

v[q]
Puni Bv[q] +Q2)Ki−1,

Ki−1 = −(BT
v[q]
Puni Bv[q] +Q2)−1BT

v[q]
Puni Av[q] .

(8)

Let the symbol Puni−1 denote the set of matrices Pun,v[q]i−1
obtained in step i− 1 for all v[q] ∈ V ;

3) if the computation above is repeated backwards up to
step k + j, a set of nvN−j different matrices are con-
tained in the set Punj . Then, the value of Vun(xk+j|k)
can be determined by:

Pun,∗j = arg min
Pun

j ∈Pun
j

(xk+j|k − xf )TPunj (xk+j|k − xf ),

(9)

Vun(xk+j|k) = (xk+j|k − xf )TPun,∗j (xk+j|k − xf ).

(10)

The procedure is illustrated in Fig. 2. Obviously, the explicit
enumeration of the discrete choices induces an exponential
growing of the computational complexity and lets the lower
bound identification become intractable rapidly, since up

to
N∑
i=1

nv
i different matrices have to be evaluated for the

determination of Pun,∗0 on the root layer.
As a countermeasure, [4] and [11] proposed to multiply the

step-cost L by a relaxation factor, leading to an efficient
reduction of the size of the set Punj . However, selecting
an appropriate value of the relaxation factor is difficult,
and no constructive rule seems to exist. The pruning of
the tree appears to be extremely sensitive to the factor,
as indicated in [4]: increasing the factor from α = 1.0
to α = 1.0001 reduces the size of Pun0 from 386 to 22.
While the computation of Vun(xk+j|k) is very similar to
the one in [4], [11], our objective is not quite the same: the
references aim at an explicit and efficient approximation of
Vun(xk+j|k), whereas we go for approximating V(xk+j|k)
instead of Vun(xk+j|k), where Vun(xk+j|k) only provides



a lower bound of the original variant. Thus, computing a
lower bound of V(xk+j|k) is just an intermediate step for
the later comparison of different nodes, i.e. approximating
Vun(xk+j|k) should not incur significant effort.
To this end, the following method is proposed in order to
reduce the complexity of computing Vun(xk+j|k): Note first
that the definition of the value function V(xk+j|k) in (5) is
based on the principle of Dynamic Programming, which can
be transferred to the computation of Vun(xk+j|k), i.e. for
any vk+j|k ∈ V applies:

Vun(xk+j|k) :=

min
vk+j|k,uk+j|k

{L(xk+j|k, uk+j|k) + Vun(xk+j+1|k)} (11)

s. t.: xk+j+1|k = Avk+j|kxk+j|k +Bvk+j|kuk+j|k.

This can be rewritten by substituting Vun(xk+j+1|k) by
(xk+j+1|k − xf )TPun,∗j+1 (xk+j+1|k − xf ) such that:

Vun(xk+j|k) := min
vk+j|k,uk+j|k

{L(xk+j|k, uk+j|k)

+ (xk+j+1|k − xf )TPun,∗j+1 (xk+j+1|k − xf )} (12)

s. t.: xk+j+1|k = Avk+j|kxk+j|k +Bvk+j|kuk+j|k.

Now for state xk+j|k, assuming that the optimal state se-
quence φx,∗k+j,N = (xk+j|k, x∗k+j+1|k · · · , x∗k+N |k) result-
ing from (6) would be known and that only one pair
(u∗k+j|k, v

∗
k+j|k) can drive the state xk+j|k to x∗k+j+1|k,

then the value of the first term L(xk+j|k, uk+j|k) in (12)
can be fixed, and the minimization of the second term
(xk+j+1|k−xf )TPun,∗j+1 (xk+j+1|k−xf ) can be approximated
by:

min
Pun

j+1∈Pun
j+1

(x∗k+j+1|k − xf )TPunj+1(x∗k+j+1|k − xf ). (13)

As the optimal state x∗k+j+1|k is assumed to be known,
the value of Vun(xk+j|k) solely depends on the selection
of the matrix Punj+1. This indicates that, in the backwards
computational procedure, one only has to expand the matrix
Punj+1 which leads to the minimal value of (13) over the set
Punj+1, instead of expanding all of the matrices. However,
the optimal state sequence φx,∗k+j,N cannot be determined
before Vun(xk+j|k) is identified. But if it is assumed that
N is chosen large enough for xN = xf , the reasoning (used
also in [5], [6]) applies that the infinite-horizon costs can be
formulated as quadratic function of the initial state. Here,
of course, x∗k+j+1|k plays the role of the initial state of the
consideration, and the matrix for encoding the costs (within
the quadratic function) has to account for the v-dependency
of the cost terms. If so, we choose to minimize the trace of
Punj+1 to replace problem (13) in determining the minimal
value of the first step of the cost-to-go:

min
Pun

j+1∈Pun
j+1

trace(Punj+1). (14)

Then, the traces of the matrices in the set Punj+1 have to
be compared, and the one with minimal value is expanded
for the next step. Algorithm 1 shows how this concept
can be used to determine an approximation of Vun(xk+j|k)

efficiently.
Starting from the last step k +N of the prediction horizon,
the algorithm constitutes a ’best-first’ type search method,
in which the traces of all PunN−i ∈ PunN−i are compared, and
only the one with the minimal trace found so far is kept.
Thus, the sets PunN−i contain for all i ∈ {0, · · · , N − j}
only one element, and the only matrix Pun,apxj contained
in Punj determines an approximation of Pun,∗j . Thereby, as
each matrix with minimal trace refers to a specific discrete
input, the sequence φv,apxk+j,N = (vapxk+j|k, . . . , v

apx
k+N−1|k) is

obtained, which corresponds to the approximation of the
lower cost bound. In contrast to the explicit enumeration
of all discrete sequences, the computational complexity is

reduced from
N−j∑
i=1

nv
i to (N − j) · nv . Moreover, the

tuning of a relaxation factor is not required, and numeric
studies for several examples show that the obtained lower
bounds for V(xk+j|k) are suitable for pruning the search
tree significantly.
Eventually, the approximated lower bound V(xk+j|k) of
V(xk+j|k) is defined as:

V(xk+j|k) := (xk+j|k − xf )TPun,apxj (xk+j|k − xf )

≈ (xk+j|k − xf )TPun,∗j (xk+j|k − xf ) = Vun(xk+j|k)

≤ V(xk+j|k). (15)

The above relation suggests that once xk+j|k and Pun,apxj are
known, the lower bound of the cost-to-go from state xk+j|k
in Problem 1 can be computed immediately.

C. Upper Bound Determination

In reference to (4), the optimal discrete and continuous
input sequences φv,∗k+j,N , φ

u,∗
k+j,N should satisfy the following

property: for all φvk+j,N and φuk+j,N satisfying that xk+i|k ∈
Xk+i|k for all i ∈ {j+1, · · · , N}, the corresponding value of
the cost function in (4) is not smaller than V(xk+j|k). Thus,
when applying φv,apxk+j,N = (vapxk+j|k, . . . , v

apx
k+N−1|k) obtained

from Algorithm 1, the evolution of the continuous state in
(2) only depends on the continuous input. Correspondingly,
the binary variables in the original MINLP problem are

Algorithm 1 The approximation of Vun(xk+j|k)

1: Given: Node xk+j|k, PunN = Pun,∗N = QN ;
2: for i = 1 : N − j do
3: for m = 1 : |PunN−i+1| do
4: for q = 1 : nv do
5: compute the matrix Pun,v[q]N−i according to (8)

and insert it into the set PunN−i
6: end for
7: end for
8: find the PunN−i ∈ PunN−i with the minimal trace and

assign PunN−i := {PunN−i}
9: end for

10: for the only matrix Pun,apxj in Punj compute:
Vun,apx(xk+j|k):=(xk+j|k−xf )TPun,apxj (xk+j|k−xf ).



fixed with the choice of φv,apxk+j,N , and a simple Quadratic
Programming (QP) problem results, which can be solved ef-
ficiently. In general, an upper bound V(xk+j|k) of V(xk+j|k)
is obtained by solving the following QP problem:

V(xk+j|k) = min
φu
k+j,N

{
N−1∑
i=j

L(xk+i|k, uk+i|k)

+ (xk+N |k − xf )TQN (xk+N |k − xf )} (16)
s.t.: xk+i|k ∈ Xk+i|k, i ∈ {j, . . . , N},

uk+i|k ∈ U, vk+i|k := vapxk+i|k, i ∈ {j, . . . , N − 1}.

In case no feasible solution exists to this problem, V(xk+j|k)
is assigned with a value of ∞. In summary, for any state
xk+j|k on any corresponding tree layer with index k+ j, the
costs-to-go in Problem 1 is bounded by:

V(xk+j|k) ≤ V(xk+j|k) ≤ V(xk+j|k). (17)

Overall, the computational effort for the bound computations
can be estimated to comprise (N−j) ·nv trace computations
for the lower bound and the solution of one QP problem for
the upper bound.

IV. THE SEARCH PROCEDURE

The bounds derived before are now used within a tree
search procedure to reduce the number of candidates for the
optimal solution of Problem 1. The root node of the tree Tk
to be investigated for the step k represents the state xk. For
any node xk+j|k on the layer referring to time k + j, the
accumulated cost are determined from the partial strategy
(φuk,j , φ

v
k,j) that transfers xk to xk+j|k:

Ω(xk, xk+j|k, φ
v
k,j , φ

u
k,j) =

j−1∑
i=0

L(xk+i|k, uk+i|k) (18)

s.t.: (2), uk+i|k ∈ φuk,j , vk+i|k ∈ φvk,j , i ∈ {0, . . . , j − 1}.
In order to determine the best partial strategy from step k+j
to k+ j+1, consider the transition from xk+j|k to x

∗,v[q]
k+j+1|k

upon v[q] ∈ V for this step, leading according to (5) to the
node:

x
∗,v[q]
k+j+1|k = arg min

uk+j|k∈U
{L(xk+j|k, uk+j|k) + V(xk+j+1|k)}

s.t.: xk+j+1|k = Av[q]xk+j|k +Bv[q]uk+j|k (19)

xk+j+1|k ∈ Xk+j+1|k.

Since V(xk+j+1|k) in here is not yet known, it is substituted
by its upper and lower bound:

x
∗,v[q]
k+j+1|k :=

arg min
u(k+j|k)∈U

{L+ V(x(k+j+1|k))︸ ︷︷ ︸
Lower Bound

+L+ V(x(k+j+1|k))︸ ︷︷ ︸
Upper Bound

}

s.t.: xk+j+1|k = Av[q]xk+j|k +Bv[q]uk+j|k, (20)

V(x(k+j+1|k)) according to (15),

V(x(k+j+1|k)) according to (16),
xk+i|k ∈ Xk+i|k, i ∈ {j + 1, . . . , N},
uk+i|k ∈ U, vk+i|k := vapxk+i|k, i ∈ {j + 1, . . . , N − 1}.

In comparison to (19), the new optimization problem
minimizes the upper and lower bounds of the costs-to-go
of the new node simultaneously. The continuous state
constraints in (20) ensures the feasibility of solution
x
∗,v[q]
k+j+1|k as well as the corresponding state trajectory in the

remaining steps from k + j + 1 to k + N . If no solution
is obtained for (20), the corresponding edge v[q] is not a
feasible option. If the solution exists, a node corresponding
to x

∗,v[q]
k+j+1|k is inserted in the set Gk+j+1|k of the tree. The

solution of (20) leads to relatively low effort, since only a
QP problem is used.
Now, given the procedure to generate new nodes, criteria
for comparing the nodes on one layer (for index k + j + 1)
with respect to their overall costs in (3), and for pruning
those nodes which are definitely suboptimal. The following
lemma obviously holds:

Lemma. 1: Let two different nodes x
v[m]

k+j+1|k and
x
v[n]

k+j+1|k be generated on the layer k + j + 1
as successors of node xk+j|k under two different
discrete inputs v(k+j|k) := v[m] and v(k+j|k) := v[n].
Then, if V(x

v[m]

k+j+1|k) > V(x
v[n]

k+j+1|k), the relation
V(x

v[m]

k+j+1|k) > V(x
v[n]

k+j+1|k) follows.

Assuming that the continuous inputs to reach both nodes
were also known, namely u(k+j|k) : = u[m] ∈ U
and u(k+j|k) : = u[n] ∈ U , then the overall costs
Ω(xk, xf , φ

v
k,N , φ

u
k,N ) for first reaching xk+j|k in terms of

(18), then reaching x
v[m]

k+j+1|k in step k + j + 1, can be
formulated as follows:

Ω(xk, xf , φ
v
k,N , φ

u
k,N ) = Ω(xk, xk+j|k, φ

v
k,j , φ

u
k,j)

+ L(x(k+j|k), u[m]) + V(x
v[m]

k+j+1|k), (21)

and likewise for Ω(xk, xf , φ̃
v
k,N , φ̃

u
k,N ) by reaching

x
v[n]

k+j+1|k. For the unknown terms V(x
v[m]

k+j+1|k) and
V(x

v[n]

k+j+1|k), their range of values can be once
more determined by (17), leading to ranges for
Ω(xk, xf , φ

v
k,N , φ

u
k,N ) and Ω(xk, xf , φ̃

v
k,N , φ̃

u
k,N ). Now, if

the lower bound of Ω(xk, xf , φ
v
k,N , φ

u
k,N ) is higher than the

upper bound of Ω(xk, xf , φ̃
v
k,N , φ̃

u
k,N ), then reaching node

x
v[m]

k+j+1|k will result in a higher overall cost and thus need
not to be explored further according to Lemma 1 (and is
eliminated from Gk+j+1|k).
As a further means to reduce the search graph, the concept
of adjacency of states as introduced in [12] can be applied
to the remaining nodes in the set Gk+j+1|k. Let again two
different nodes in Gk+j+1|k be denoted by x

v[m]

k+j+1|k and
x
v[n]

k+j+1|k (now they may not originate from the same node
at last layer). They are said to be adjacent if:

‖xv[m]

k+j+1|k − x
v[n]

k+j+1|k‖2 ≤ γ (22)

holds for an appropriately chosen small γ > 0. For any adja-
cent pair of states, only the one with the smaller accumulated
costs is kept in the set Gk+j+1|k.
The following Algorithm 2 combines the details explained



above in order to search the tree of possible discrete input
sequences:

Algorithm 2 Search over the tree Tk
1: Given: Gk|k = {xk}, U , V ;
2: for j = 0 : N − 1 do
3: for m = 1 : |Gk+j|k| do
4: for q = 1 : nv do
5: compute x

∗,v[q]
(k+j+1|k) for each v[q] ∈ V ,

xmk+j|k ∈ Gk+j|k by using (20) and insert it into
set Gk+j+1|k. Determine the corresponding range of
Ω(xk, xf , φ

v
k,N , φ

u
k,N ) by using (21)

6: end for
7: end for
8: eliminate the nodes from Gk+j+1|k, for which the

lower bound of Ω(xk, xf , φ
v
k,N , φ

u
k,N ) is higher than the

upper bound of the nodes in this set
9: check the adjacency criterion according to (22) for

any pair of nodes in Gk+j+1|k and (if satisfied) eliminate
the node with a higher accumulated costs

10: end for

After executing Algorithm 2, the nodes still present in the
search tree determine a subset of the discrete input sequences
φvk,N which connect the initial node with a node in Gk+N |k.
For any such φvk,N , the Problem 1 is once more solved for
the continuous inputs, and the pair (φv,∗k,N , φ

u,∗
k,N ) leading to

the minimal value of Ω(xk, xf , φ
v
k,N , φ

u
k,N ) is determined as

the approximation of the solution of the original problem.

V. NUMERICAL EVALUATION

A. Test Series

As a first instance of evaluating the proposed scheme, the
latter is applied to a set of 30 randomly created systems
of the type in (1) with nx = 10, nu = 8, nv = 4,
N = 8, as well as chosen cost functions, constraints, and
an adjacency parameter of γ = 2. Fig. 3 shows a summary
of the results. In this test, the average deviation of using
proposed method to the globally optimal solution is 1.16%,
and the average computation time was 0.0802s (the global
optimum is obtained by enumerating all possible φv with an
average computation time of 5 minutes). By increasing the
value of adjacency parameter to γ = 5, the average deviation
from the globally optimal solution stays at 1.10%, and the
average computation time is slightly reduced to 0.0651s.

The figures 4 and 5 show the course of the average compu-
tation time (in seconds) for using the proposed technique for
N increasing from 1 to 20, as well as the average relative
deviation (in percent) from the globally optimal solution
from N = 1 to N = 10.

B. Vehicle Platoon

To illustrate the use for an application, the method is
now applied to a vehicle platooning example inspired from
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Fig. 3. Comparison of the costs obtained with the proposed method Ω∗,a

and the globally optimal solution Ω∗,b for randomly generated switched
systems: the ordinate shows the ratio Ω∗,a−Ω∗,b

Ω∗,b
% over the test index.
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[7], but extended to constraints, discrete inputs, different
vehicle dynamics. The example comprises 4 vehicles on
a highway (one lane), which have to reach defined target
positions. Each vehicle here is modelled by a switched
system, where a discrete input represent a gear by which
a mode of acceleration can be selected. The continuous
input u corresponds to the gas-level of local vehicle. The
vehicle-specific constraints models different vehicle-masses
(which results in different accelerations under the same gas-
level) and ranges of possible velocities and accelerations.
Coupling constraints arise from keeping a desired distances
between the vehicles (d = 25) in order to avoid collision.
In addition, the local cost functions of each vehicle have
different parametrization.

The considered horizon N is selected to be 15. Thus, based
on the above description, overall a number of 36 modes over
all vehicles results for a single time step. For N = 15,
a number of 540 binary variables would be required for
modeling, leading to 3615 ≈ 2.2107×1023 different discrete
input sequences in each prediction. The initial and target
state of each vehicle are given. When using the proposed

PSfrag replacements

s1 s2 s3 s4

Fig. 6. A platoon of 4 vehicles are driving in the highway, over-take
behavior between vehicles is not allowed.



method, the vehicles reach their target state after 19 steps
with an average computation time of 0.9557s in each step.
The following figures show the position, gear, velocity and
gas-level of each vehicle (s4 in black, s3 in magenta, s2 in
blue, s1 in red), and the vehicles reach their designated target
states while satisfying all given constraints.
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Fig. 7. Position, gear, velocity, and gas-level of each vehicle.

VI. CONCLUSION

In this paper, an approach for optimal control of discrete-
time switched systems with time-varying state constraints
and constant input constraints was proposed (the extension to
time-varying input constraints is straightforward). The main
asset of the proposed technique is that lower and upper
cost bounds are derived, which serve to reduce the tree
representing the possible discrete input sequences that may
be applied. While the bounds depend on the cost function
parametrization and the specific dynamics, it does (except
of a parameter used in the adjacency criterion) not require
a tuning factor to adjust the effectiveness of the bounds
– such factors are typically very difficult to select as the
pruning effect is very sensitive to them. The proposed scheme
for obtaining the bounds turned out to be very effective
with respect to reducing the computational time, while the
distance to the true optimal solution was observed to be small
for a larger set of test runs.
Current work comprises to extend the given scheme also
to hybrid systems in which switching between different
modes occurs autonomously (not as degree of freedom of
the optimization).
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