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ScientiRic	  Goal	  

Coordinate	  a	  group	  of	  heterogeneous	  autonomous	  cyber-‐physical	  systems	  to	  satisfy	  temporal	  logic	  control	  speci7ications	  	  
in	  a	  partially	  unknown	  and	  dynamically	  changing	  environment.	  
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Example of scenario
“Agents should visit the corners of the grid���
infinitely often while avoiding the adversary”

' = ⇤}⇡1 ^⇤}⇡2 ^⇤¬⇡captureLTL :

Algorithm 2: Control Policy Synthesis
Input : Turn-based product T , Büchi automaton B
Output: Product automaton A, control policy µ
Construct A from T and B;
Compute d (s,FA) for all s in SA;
FA⇤  � FA;
for s 2 FA⇤ do

if min{s0|(s,⇡,s0)2!A} d (s
0,FA) =1 then

FA⇤  � FA⇤/s;

Compute d (s,FA⇤) for all s in SA;
for s 2 SA do

if V (s) <1 then
µ (s) = argmin{s0|(s,⇡,s0)2!A} V (s0);

else
µ (s) is undefined;

for s = (q, sB) 2 SA do
if sB 2 SB is current Büchi state then

µ
T

(q) = {q0 | µ (s) = (q0, sB)}

the adversary, we know that all accepting runs in A are
also feasible. At this time, the synthesis algorithm becomes
complete. The control synthesis essentially functions as it
would if the dynamics of the adversary were known a priori.
Until this stage is reached, the control synthesis module
operates based on the best available model for the adversary.
Whenever this model is refined by the learner � as a result
of some new capability of the adversary being observed,
then the control synthesis module must update the control
strategy. This process can, in general, be computationally
intense; fortunately, for the classes of systems considered in
this paper it can be performed incrementally, and thus faster.

To incrementally update the product automaton, we use
an algorithm first presented in Vasile and Belta [20]. For
each new transition (q, q0) that � adds to !0, the algorithm
considers all q 2 Q0 from which such a transition may
be made. For each of those states, a set of states in the
product containing that state is maintained. Further, a set of
transitions in !A from those states to states containing q0

is created. From these two sets, the product automaton can
be efficiently updated. For complete details of the algorithm,
the reader is directed to Vasile and Belta [20].

IV. SIMULATIONS AND RESULTS

To test our algorithm, a game simulation with two agents
and adversary operating in a grid environment3 was devel-
oped (Fig. 1). The agents (shown as red and blue circles)
must carry out the specification

' = ⇤⌃⇡1 ^⇤⌃⇡2 ^⇤¬⇡
capture

, (2)

which translates into English as “visit regions ⇡1 (shown in
violet) and ⇡2 (shown in yellow) infinitely often and always

3The grid structure is adopted here for illustration purposes only. The
method is applicable to workspaces with arbitrary graph structures.

avoid capture by the adversary (shown in green)” The agents’
motion primitives

⌃1 = ⌃2 = {(N, 1), (S, 1), (E, 1), (W, 1), (NE, 1),

(NW, 1), (SE, 1), (SW, 1), (O, 0)} (3)

allow them to transition one grid square in north, south,
east, west, north-east, north-west, south-east, and south-west
directions or just continue to stay in place respectively. In
this example, the adversary’s has same motion primitives as
the agents, ⌃0 = ⌃1 = ⌃2. The difference between the
agent and the adversary here is that the sequence of moves
played by the adversary during the game or in technical
terms, the language of the adversary belongs to a class of
Strictly 2-Piecewise languages where the adversary is forbid-
den to move along the four compass directions more than
once. In other words, the adversary’s actions cannot have
2-subsequences (N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1) or
(W, 1)(W, 1). In this case, the Strictly 2-Piecewise grammar
G of the adversary’s language L(G) is

G = (⌃0 ⇥ ⌃0)\Gf

. (4a)

G
f

= {(N, 1)(N, 1), (S, 1)(S, 1), (E, 1)(E, 1),

(W, 1)(W, 1)} (4b)

However there are no restrictions on the stay in place
or diagonal moves for the adversary. Initially, the agents
only knows that the adversary’s language belongs to a class
of Strictly 2-Piecewise language but have no knowledge
of the adversary’s transition relation !0 or the forbidden
subsequences in the grammar of the adversary’s language.
By observing the actions of the adversary, the agents incre-
mentally build a model of the adversary and devise a strategy
to satisfy their specification.

Fig. 1: Image of the 5⇥5 grid simulation game showing the agent
(red circle), adversary (green circle) and the regions ⇡1 and ⇡2

shown labeled by violet and yellow circles, respectively.
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agents

•  Agents constraints: move in compass directions 
•  Adversary constraints: unknown, ���

but its behavior is an SP2 language

Approach

•  Observe the environment and build a model for it
•  Refine the model in real-time
•  Use the refined model to update control strategies

Methodology

•  Interaction between agents and environment takes the form of a deterministic zero-sum game
•  On the game graph, progress toward satisfaction of the LTL spec is quantified
•  Agents strategize assuming their hypothesis about the adversary plays its best move
•  Control strategy is synthesized along standard model-checking approaches
•  Adversary can move diagonally but not along compass more than once ���

(agents do not know any of that at first)
•  Agents’ prior knowledge is that the environment behavior is in a specific class of formal languages
•  They observe adversary actions and incrementally built a model for it
•  The model is guaranteed to asymptotically converge to the true environment model
•  After finite turns agents can recover the performance of full knowledge of their adversary dynamics

Results

In every game, as the environment model is refined and converges, ���
the computed policy converges to the policy that would have been computed ���
if environment dynamics were completely known.
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Goal:  
Synthesize a control policy to satisfy a mission specified using temporal logic 
 
Example Mission:  
“Visit regions π1 and π2 infinitely often and always avoid the adversary” (see Example of Scenario 
below) 
 
Challenges: 
•  Ensure progress towards goal despite unknown actions by the adversary 
•  Computational issues arising from planning for multiple agents and adversary 
 
Technical Approach: 
•  Translate mission specification from Linear Temporal Logic to a Büchi Automaton 
•  Construct Product Automaton from Game Transition System (see Learning and Adaptation at left) 

and Büchi Automaton to capture agent/environment interactions and satisfaction of specification 
•  Use “energy” function to determine distance to accepting states in the Product Automaton 

•  Function is computed using backward induction 
•  Adversary is assumed to choose most antagonistic actions 

•  Incrementally update the Product when new elements in the grammar are learned 
•  Add new transitions in Game Transition System 
•  For each new transition, add appropriate transitions in Product Automaton 
•  Re-compute energy function 

•  At each step, control policy is the action that leads to a state with lower value for energy function, if 
one exists, otherwise report failure 

Result: 
•  Given that the learned model for adversary behavior is correct, our algorithm guarantees a control 

policy to satisfy the specification, if one exists 

	  	  	  	  Learning	  and	  Adaptation	  

Goal

Learn from observations the behavior of the environment a multi-agent system interacts

with while attempting to satisfy its specification.

Assumptions

• Knowledge of the class of formal languages the environment behavior falls into

• Fully observable environment evolution

Challenges

• Requirements for guaranteed asymptotic convergence of learning algorithm

• Full generalization without overfitting

Approach

• Formulate the problem as learning a repeated two-player turn-based game

• Adapt grammatical inference algorithms for learning games

Example

Suppose the dynamics of the unknown language can be modeled with a Strictly k-
Piecewise (SPk) language [7]. This class of languages is learnable with a string extension

learner [8].

Strictly Piecewise Dynamics

• String v = a1a2 . . . an is a subsequence of w i↵ w 2 ⌃

⇤a1⌃⇤a2⌃⇤ . . .⌃⇤an⌃⇤
.

• Let fk(w) = {v | v is a subsequence of w and |v|  k}.
• Example: f2(abacd) = {�, a, b, c, d, ab, aa, ac, ad, ba, bc, bd, cd}.
• L 2 SPk i↵ there exists a finite set S ✓ ⌃

k
such that fk(L) = S.

• This finite set can be viewed as the grammar generating L.

String Extension Learning

• A text T for L is an infinite sequence of elements of L such that each element of

L occurs at least once in T .
• T (i) is the ith element of T , and T [i] is the finite sequence T (1), T (2), . . . T (i).
• Given any text T for any SPk language L, the learning function �k converges to a

grammar for L.

�k(T [i]) =

⇢
? i = 0

�k(T [i� 1]) [ fk(T (i)) otherwise
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