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Scientific Goal

Coordinate a group of heterogeneous autonomous cyber-physical systems to satisty temporal logic control specifications
in a partially unknown and dynamically changing environment.

A Bird's-Eye View - Learning and Adaptation ) Temporal Logic Synthesis
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Goal:

Goal Synthesize a control policy to satisfy a mission specified using temporal logic

Learn from observations the behavior of the environment a multi-agent system interacts
with while attempting to satisfy its specification.

Example Mission:

Assumptions “Visit regions 11, and 11, infinitely often and always avoid the adversary” (see Example of Scenario

e Knowledge of the class of formal languages the environment behavior falls into below)

e Fully observable environment evolution
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I e Requirements for guaranteed asymptotic convergence of learning algorithm * Ensure progress towards goal desplte unknown actions by the adversary
e Full generalization without overfitting « Computational issues arising from planning for multiple agents and adversary
abstraction abstraction Approach

Technical Approach:
« Translate mission specification from Linear Temporal Logic to a Blchi Automaton
« Construct Product Automaton from Game Transition System (see Learning and Adaptation at left)

actuators
@ @ ' Example and Buchi Automaton to capture agent/environment interactions and satisfaction of specification
SENSOTS > \ 4 Suppose the dynamics of the unknown language can be modeled with a Strictly A-  Use “energy” function to determine distance to accepting states in the Product Automaton
Piecewise (SP) language [7]. This class of languages is learnable with a string extension + Function is computed using backward induction

learner [8]. : e :
8] * Adversary is assumed to choose most antagonistic actions

e Formulate the problem as learning a repeated two-player turn-based game
e Adapt grammatical inference algorithms for learning games

Strictly Piecewise Dynamics * Incrementally update the Product when new elements in the grammar are learned
o ISJtring v = aiaz...ap is absubsequencfe of wciff w E kE*alE*azZ* cLo 2T an 2. « Add new transitions in Game Transition System
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. Eiaﬁrgfg) o ({C;"bilé’dﬁs_a (X a.b e d ab. aa, ae a'g | b, b(}; bel., e} » For each new transition, add appropriate transitions in Product Automaton
\ e I € SP; iff there exists a finite set .S < >=F such that fk(L) = S. « Re-compute energy function
\ e 'This finite set can be viewed as the gramrmar generating L. « At each step, control policy is the action that leads to a state with lower value for energy function, if
\ String Extension Learning one exists, otherwise report failure
\ e A text I for L is an infinite sequence of elements of L such that each element of
\ I, occurs at least once in 7'. Result:
e 7'(2) is the ith element of 7', and 7'[¢] is the finite sequence 7'(1),7(2),...71(2). . Gi that the | d del f d behavior | t laorith t trol
\ e Given any text 7' for any SPg language L, the learning function ¢; converges to a IV_en a _e earne m.o. c _ Ol’a. versary ehavior IS correct, our algorithm guarantees a contro
\ grammar for L. policy to satisfy the specification, if one exists
A bu(T[i]) = 1 2 P TS
\ Pi(T[i —1]) U fu(T(i)) otherwise ~ o

Integration of Learning and Control in Cyber Physical Systems Operating Under Uncertainty

Example of scenario Approach Methodology Results

“Agents should visit the corners of the grid

ot . - Environment
l hile avoiding the ad g - - ST
infinitely often while avoiding the adversary * Interaction between agents and environment takes the form of a deterministic zero-sum game -
: — O O (- , . . . =
LTL: ¢ = Hom ALOm: AL Meapture \ « On the game graph, progress toward satisfaction of the LTL spec is quantified Q60
. o Learning * Agents strategize assuming their hypothesis about the adversary plays its best move 2
: : , ©
* Control strategy is synthesized along standard model-checking approaches w40
(; L4 U
agent Control * Adversary can move diagonally but not along compass more than once >
o .0 (agents do not know any of that at first) 5 20
e . . . . e . o
dversary .14 * Agents’ prior knowledge is that the environment behavior is 1n a specific class of formal languages |
- - | * They observe adversary actions and incrementally built a model for it % 50 \ 100b f 150 200 250
T umber of moves
2 m * The model is guaranteed to asymptotically converge to the true environment model
+ Agents constraints: move in compass directions * Observe the environment and build a model for it * After finite turns agents can recover the performance of full knowledge of their adversary dynamics In every game, as the environment model is refined and converges.
e Adversary constraints: unknown, * Refine the model in real-time the computed policy converges to the policy that would have been computed
but its behavior is an SP2 language * Use the refined model to update control strategies if environment dynamics were completely known.
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