Efficient Management of a High-Capacity

Airborne Network of Commercial Aircraft

Research Problem

Given thousands of commercial aircraft, flying regular routes, and a small number of ground station gateways, can an architecture be developed to connect these nodes into a robust high-capacity Airborne Network (AN) which can be efficiently managed?
We believe the complex infrastructure of thousands of passenger \& cargo aircraft is vastly underutilized. These highpassenger care uniquely positioned for a host of applications,
flying nodes and
yet no one has succeeded in utilizing this infrastructure to its yet no one hal.

Applications

An Airborne Network connecting aircraft to one another and the Internet enables a myriad of applications [1], including:

Solution Requirements
Our envisioned high-capacity network utilizes directional antennas, which require explicit topology control. Further, to limit overhead, a specialized routing protocol is needed.

Approach

While Ad-hoc, sensor, and vehicular networks, have elements in common with Airborne Networks, experience [2-3] has shown that the unique challenges and advantages of airborne networks warrant specialized protocols.
One unique advantage of commercial aircraft is their flight plans, which we intend to use to predict the future topology of the network, such that topology changes can be commanded before connections are broken as nodes move about.

Future Work

Once our initial protocol is designed, we plan to evaluate and compare it via simulation with existing protocols. We will also augment it by considering platform occlusions, ground station placement, unexpected outages, and flight plan changes and deviations.

[^0]
[^0]:

