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CPS: Synergy: Collaborative Research: 

This project is bringing tools from formal methods to 
traffic management to meet control objectives 
expressed in temporal logic. This approach is being 
applied to signal timing and ramp metering strategies 
for signalized intersections and freeway traffic control. 
It will next be advanced to integrated control of 
freeways and arterials with a hierarchical control 
architecture that is compatible with the infrastructure.  
 

Overview 

 
 

Current Research 

•  Traffic networks are mixed monotone systems: 

 
 
•  Increasing and decreasing components 
•  Decomposition function  
•  Congestion causes nonmonotone behavior 

Mixed Monotonicity 
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•  For each link           , the state 
    represents the number of vehicles on the link 
•  Each link has: 
•  Demand                  
     to move downstream 
•  Supply                
     to accept upstream flow 

Dynamics:   
 
 
•  Turn ratios        divide demand among downstream 

links and supply ratios        divide supply among 
upstream links 

•  Signal variable                    indicates if link    is active  

Traffic Network Model 
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•  Mixed Monotonicity leads to efficient abstraction: 

 

•  The one-step reachable set from a box of initial 
conditions is tightly over-approximated by computing 
the decomposition function at only two points 

•  This allows a scalable abstraction algorithm 

Abstraction 
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Efficient abstraction from reachability computation

The transition system T = (Q,M,d ) is an over-approximating
abstraction of x+ = Fm(x,d):

If 9x 2 Iq 9d 2D such that Fm(x,d) 2 Iq0

Then q0 2 d (q,m)

Mixed monotonicity allows efficient abstraction
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Input to:

Verification and
synthesis tools
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Traffic flow model
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LTL Specification: 
•  Each signal actuates cross street traffic infinitely often 
•  Eventually, links 1, 2, 3, and 4 have fewer than 30 

vehicles on each link and this remains true for all time 
•  The signal at junction 4 must actuate cross street traffic 

for at least two sequential time-steps 
  

       

Example 
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ẋ 2 f(C, x)

g

1

rl

(x) � 0g

1

lr

(x) � 0

Mode D
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Correct-by-design control of arterial corridor
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Linear Temporal Logic spec.
I

Each signal actuates cross street

traffic infinitely often

I
Eventually, links 1, 2, 3, and 4 have

fewer than 30 vehicles on each link

and this remains true for all time

I
The signal at junction v

4

must

actuate each direction for at least

two sequential time-steps (pedestrian

crossings)

Naïve offset optimal policy
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Correct-by-design control of arterial corridor
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•  Contracts between neighboring subnetworks to limit  
     demand and guarantee adequate supply 
•  Neighbors’ guarantees enable decoupled 

subnetwork models and decentralized controllers 
•  Original specifications for each subnetwork must be  
     augmented with promises made to neighbors 
 

Compositional Synthesis 
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Fig. 3: Network from Fig. 1 partitioned into two sub-
networks N1 = ({l1, . . . , l4}, {v1, v2, v3}) and N2 =

({l5, . . . , l8}, {v4, v5, v6}). N1 has interfacing links I1 = {l4} and
O1 = {l2}, and adjacent upstream/downstream links Aup

1 = {l7}
and Adown

1 = {l5}. The set of interconnecting vertices is {v2, v5}.
N1 is upstream from N2 at v2 but is downstream from N2 at v5.

that the specification on the monolithic network �

original is a
conjunction of sub-specifications for each sub-network.
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These sets comprise the outside links to which a sub-network
has a supply or demand obligation; N

n

guarantees it will: 1)
provide adequate supply to links in Aup

n

, and 2) not introduce
unreasonably high demand to links in Adown

n

.
A vertex v 2 V is an interconnecting vertex if it contains

incoming and outgoing links in two different sub-networks,
that is, there exist distinct network indices v, v 2 {1, . . . , N}
such that Lin
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network N
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is the upstream sub-network and sub-network
N

v

is a downstream sub-network. There may be multiple
downstream sub-networks N
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that a sub-network can be both upstream and downstream
at different interconnecting vertices (see Fig. 3).

The supply and demand parameters between links in
different sub-networks are not explicitly included in the
dynamics for the individual sub-networks, but arise in the
subsequent definitions for supply-demand contracts.

C. Supply Contracts
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We accordingly modify (13) to reflect the outflow assump-
tion N
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makes from the supply contract.

Proposition 1. If all downstream sub-networks N
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fulfill
their supply contracts to upstream link l 2 O
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when l 2 u[t]. If l 62 u[t], then f
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D. Demand Contracts
At interconnecting vertex v, a downstream network N
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We replace the update equation (14) with (24) below.
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In (24) all of the additions are scalar Minkowski set additions
because the f

out terms may be sets as in (22).

E. Modified Synthesis Procedure
We concatenate a sub-network’s supply-demand assump-

tions and guarantees into a set of four vectors. Sub-network
N

n

makes supply and demand requests on behalf of its
interfacing output and input links, respectively, which we
encode in the vectors ⌃

n

2 R|On| and �
n

2 R|In|.
Dually, N

n

must fulfill its supply-demand obligations to
adjacent upstream and downstream links; these obligations

•  More flexible contracts 
•  Probabilistic transition models from statistical data 
•  Adding optimality criteria to specifications 
•  Freeway onramp and arterial signaling coordination 
•  Validation with hybrid freeway / arterial simulation 
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