
CPS: Embedded Fault Detection for Low-Cost,
Safety-Critical Systems

Overview

Issue: Current safety critical systems rely mainly on physical redundancy
but this increases system size, complexity and power consumption.

Objective: Develop algorithms and computing architectures that
enable fault detection without relying on physical redundancy.

Gary Balas, Jaideep Srivastava, Mats Heimdahl, Antonia Zhai, and Peter Seiler

Model-based Fault Detection
Synthesis of optimal, robust H∞ filters
using convex optimization.
Ref: P. Seiler, B. Vanek, J. Bokor, and G. Balas, Robust H∞ filter design
using frequency gridding, American Control Conference, 2011.

UAV flight tests of model-based FDI
Ref: R. Pandita. Dynamic Flight Envelope Assessment with Flight Safety
Applications. PhD thesis,University of Minnesota, 2010.

Analysis of safety critical FDI
Ref: T.J. Wheeler, P. Seiler, A. K. Packard, and G.J. Balas, Performance
analysis of fault detection systems, American Control Conference, 2011.

Data Driven Anomaly Detection

Designed hybrid logic algorithm for detecting
contextual anomalies in multivariate data from
complex physical systems.

Method is complementary to model-based fault
detection approaches. It also provides performance
improvements for general anomaly detection in
the form of intelligent dimensionality reduction.

Ref: N. Srivastava and J. Srivastava. A hybrid-logic approach towards fault detection in complex cyber-physical
 systems, Proceedings of PHM, 2010 (to appear)

Data-Driven
Anomaly Detection

Model-based
Fault Detection

Control Algorithms
and Signal Processing Software Monitors

and FDI Supervisor

Quad Core Processor

Ref: G. He and A. Zhai, "Improving the Performance of Program Monitors with Compiler Support in
 Multi-Core Systems". Proc. The IEEE International Parallel & Distributed Processing Symposium (2010)"

Requirements-Based Fault Detection
•  Write system and software requirements in some

formal notation suitable to the problem at hand
•  Generate run-time monitors for fault detection

Single-Core Program Monitor: Instrumentation-based

Application Processor Core

application
code

instrumentation
code

Checking Performance
overhead
too high

Monitoring Software Execution
HW and SW Support

The Problem:

Monitor software correctness with monitors
executing on different cores than applications

The Solution:

Communications
overhead could
be significant

Fundamental Aspects of Efficient Multi-core Based Program Monitor

•  Accelerate Information Extraction
•  No instrumentation to the monitored code
•  Use generic hardware support Ex-Mon

•  Reduce Communication
•  Reduce stress on the communication queue
•  Distill-based monitor generated by compiler support

•  Automatic Parallelization of Monitoring Tasks
•  Distribute monitoring task on many cores or GPGPUs

P P P P

P P P P

P P P P

P P P P

Current Compiler Infrastructure Summary of Monitor Research

Hybrid-logic algorithm

G (FD_On -> Cues_On);

G((¬ Onside_FD_On Λ ¬
 Is_AP_Engaged) →
 X(Is_AP_Engaged →
 Onside_FD_On))

Temporal Logic

1
Property_Satisfied

AND

OR

NOTAND

4
Right_FGS_Active

3
Left_FGS_Active

2
Right_Independent_Mode

1
Left_Independent_Mode

Synchronous
Observers

State
Machines

microwave_library_temp/mode_logic

Pri nted 14-Jul- 2006 12:51:47

ON

OFF
entry:
mode=1;

Ok
entry: mode=3;

FAILED
entry: mode=2;

[steps_remaining>0]
/steps_remaining--;

3

{steps_remaining=
steps_to_cook;}

[start &&
 steps_to_cook>0]

[steps_remaining<=0]

2 [door_closed]

1
[start && ...
door_closed]

1

[clear_off || ...
!door_closed]

1
2

[clear_off]
/steps_remaining=0;

2

Auto Generate Run time Monitors
for Multi Core Architecture

Generate the monitor code
from formal requirements

Plant

Monitor Generator

Monitor Code Specification

Requirements-Based Monitor Embedded Software

Environment

Generate a monitor for specific
embedded code base through a
monitor-aware compile (see panel
above)

Monitor software and plant though efficient
hardware enabled multi-core support

Challenges:
1.  Communication bandwidth and latencies
2.  Data dependences between consecutive events
3.  Trade-off between accuracy and correctness
4.  Recovery mechanisms

On-Chip
CPU

On-Chip GPU

Memory Bug Detection ✔ ✔

Taint Propagation ✔ ✔

Data Race Detection ✖ ✔

