
Embracing Uncertainty: Risk-Aware Methods for 
Safe Control and Navigation

https://pculbertson.github.io
Preston Culbertson, Caltech

2023 FRR & NRI Principal Investigators' Meeting
May 2-3, 2023

Motivation

Main question: How can we reason about 
safety when our underlying robot / world 

models are noisy, inaccurate, or uncertain?

Risk-aware, Reactive Control 

Fig. 1: Manipulation (noisy surface geometry), walking (rough terrain) and
navigation (collision geometry / state est.) are problem areas of interest where
robustness to uncertainty is a critical limiting factor in real-world performance.
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• Current work: Using Neural Radiance Fields (NeRFs) 
as a map representation for visual navigation [1].

• Goal: Build rigorous, model-based Bayesian filters 
on top of modern, learned perception stacks. Fig. 2: Chance-constrained paths for 

a quadrotor through a NeRF scene.
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Fig. 3: 
Comparison 
of proposed 
and baseline 
controllers for 
quadruped on 
rough terrain. 

• Current work: using martingales 
[2,3] to analyze safety of CBF 
controller; modify for process noise.

• Goal: Develop both theoretical tools 
and fast, risk-sensitive controllers.

• Social: Broaden situations where robots can 
operate under uncertainty (e.g., with humans).

• Outreach: Recruit, mentor, and retain a diverse 
research team; promote discussion of possible 
social outcomes of robotics research.

Robust Safety under Stochastic Uncertainty with
Discrete-Time Control Barrier Functions

Ryan K. Cosner1, Preston Culbertson1, Andrew J. Taylor2, and Aaron D. Ames1

1Department of Mechanical and Civil Engineering, 2Computing and Mathematical Sciences Department
California Institute of Technology, Pasadena, California 91125

{rkcosner, pculbert, ajtaylor, ames}@caltech.edu

Abstract—Robots deployed in unstructured, real-world envi-
ronments operate under considerable uncertainty due to imper-
fect state estimates, model error, and disturbances. Given this
real-world context, the goal of this paper is to develop controllers
that are provably safe under uncertainties. To this end, we
leverage Control Barrier Functions (CBFs) which guarantee
that a robot remains in a “safe set” during its operation—
yet CBFs (and their associated guarantees) are traditionally
studied in the context of continuous-time, deterministic systems
with bounded uncertainties. In this work, we study the safety
properties of discrete-time CBFs (DTCBFs) for systems with
discrete-time dynamics and unbounded stochastic disturbances.
Using tools from martingale theory, we develop probabilistic
bounds for the safety (over a finite time horizon) of systems whose
dynamics satisfy the discrete-time barrier function condition in
expectation, and analyze the effect of Jensen’s inequality on
DTCBF-based controllers. Finally, we present several examples
of our method synthesizing safe control inputs for systems subject
to significant process noise, including an inverted pendulum, a
double integrator, and a quadruped locomoting on a narrow path.

I. INTRODUCTION

Safety is critical for a multitude of modern robotic systems:
from autonomous vehicles, to medical and assistive robots,
to aerospace systems. When deployed in the real world,
these systems face sources of uncertainty such as imperfect
perception, approximate models of the world and the system,
and unexpected disturbances. In order to achieve the high
degrees of safety necessary for these robots to be deployed at
scale, it is essential that controllers can not only guarantee safe
behavior, but also provide robustness to these uncertainties.

In the field of control theory, safety is often defined as
the forward invariance of a “safe set” [6]. In this view,
a closed-loop system is considered safe if all trajectories
starting inside the safe set will remain in this set for all
time. Several tools exist for generating controllers which can
guarantee this forward-invariance property, including Control
Barrier Functions (CBFs) [7], reachability-based controllers
[9], and state-constrained Model-Predictive Controller (MPC)
approaches [19]. Considerable advancements have been made
in guaranteeing safety or stability in the presence of bounded
uncertainties [37, 11, 8, 29, 20, 5]. Yet less attention has
been paid to the case of unbounded uncertainties, where the
aforementioned methods generally do not apply.

Obtaining robust safety in the case of unbounded distur-
bances is particularly important when considering systems
subject to stochastic disturbances, since these disturbances are

Fig. 1. Safety of a simulated quadrupedal robot locomoting on a narrow path
for a variety of controllers. (Top Left) The safe region that the quadruped
is allowed to traverse. (Bottom Left) A system diagram depicting the states
of the quadruped

⇥
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⇤>. (Top Right) 50 trajectories for 3 controllers:
one without any knowledge of safety (knom), one with a standard safety filter
(DTCBF-OP), and finally our method which accounts for stochasticity (JED).
(Bottom Right) Plots of h(x), a scalar value representing safety. The system
is safe (i.e., in the green safe region) if h(x) � 0.

often modeled as continuous random variables with unbounded
support (e.g., zero-mean, additive Gaussian noise); for such
systems, it is impossible to give an absolute bound on the dis-
turbance magnitude. Existing methods for unbounded, random
disturbances fall into two categories. The first is to impose
step-wise chance constraints on a given safety criterion (e.g.,
a state constraint in MPC [19] or CBF-based controllers [4]),
which in turn provide one-step safety guarantees. The other
class of approaches [21, 26, 27, 17, 30] use Lyapunov or
barrier function techniques to provide bounds on the safety
probabilities for trajectories over a fixed time horizon; existing
approaches, however, often assume the presence of a stabiliz-
ing controller, or model the system in continuous-time (i.e.,
assume the controller has, in effect, infinite bandwidth).

In order to best represent the uncertainty that might ap-
pear from sources such as discrete-time perception errors or
sampled-data modeling errors, we focus our work on gen-
erating probabilistic bounds of safety for discrete-time (DT)
stochastic systems. While MPC state constraints are generally
enforced in discrete time, CBFs, normally applied in contin-
uous time, have a discrete-time counterpart (DTCBFs) that
were first introduced in [1] and have gained popularity due to
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Fig. 4: Robust, 
vision-based 
robots have 
broad uses 
(e.g., logistics, 
assembly, 
healthcare).
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